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Abstract: Strapdown inertial navigation systems (INS) need an alignment process to 
determine the initial attitude matrix between the body frame and the navigation frame. The 
conventional alignment process is to compute the initial attitude matrix using the gravity 
and Earth rotational rate measurements. However, under mooring conditions, the inertial 
measurement unit (IMU) employed in a ship’s strapdown INS often suffers from both the 
intrinsic sensor noise components and the external disturbance components caused by the 
motions of the sea waves and wind waves, so a rapid and precise alignment of a ship’s 
strapdown INS without any auxiliary information is hard to achieve. A robust solution is 
given in this paper to solve this problem. The inertial frame based alignment method is 
utilized to adapt the mooring condition, most of the periodical low-frequency external 
disturbance components could be removed by the mathematical integration and averaging 
characteristic of this method. A novel prefilter named hidden Markov model based Kalman 
filter (HMM-KF) is proposed to remove the relatively high-frequency error components. 
Different from the digital filters, the HMM-KF barely cause time-delay problem. The 
turntable, mooring and sea experiments favorably validate the rapidness and accuracy of 
the proposed self-alignment method and the good de-noising performance of HMM-KF. 

OPEN ACCESS



Sensors 2013, 13 8104 
 

 

Keywords: inertial navigation systems (INS); alignment; mooring condition; inertial 
measurement unit (IMU); inertial frame; hidden Markov model; Kalman filter 

 

1. Introduction  

Alignment is the essential procedure for strapdown inertial navigation systems (INS). The purpose 
of alignment is to establish the initial attitude transformation matrix between the body frame and 
navigation frame [1]. Before the start of navigation, accurate alignment is crucial for strapdown INS if 
precise navigation results, namely position, velocity and attitude (PVA), are to be achieved, especially 
for the ship’s strapdown INS which may be required to provide PVA information of a ship with 
relatively high precision over periods of days, weeks, or even longer [2,3]. 

Normally, alignment techniques can be categorized into two types based on the conditions of 
strapdown INS: stationary alignment and in-motion alignment [4–6]. The essence of stationary 
alignment is to compute the initial attitude matrix using two non-collinear vectors, namely the gravity 
and the earth rotational rate measurements from accelerometers and gyroscopes respectively [7,8]. 
Nowadays, the stationary alignment has been studied and developed very well [9–12]. In-motion 
alignment means alignment on a moving or shaking platform, in this case, different from stationary 
alignment, the above mentioned gravity and earth rotational rate measurements cannot be accurately 
measured due to the external motion dynamics of the vehicles. Sometimes, there is not enough time for 
strapdown INS to get alignment process done on a static platform at the starting point [13–15]. And 
also strapdown INS applied in ships or weapon systems of vessels have to move in response to the 
motion of the sea and wind waves both under mooring and voyaging conditions [16–18]. Moreover, 
after starting the navigation calculation procedure, re-alignment process is necessary for strapdown 
INS on the moving platform, as the errors of navigation solution could gradually grow up due to the 
poor initial alignment inaccuracies and the growing sensor errors [19–21]. Accordingly, it is essential 
to explore the reliable in-motion alignment schemes for strapdown INS. 

The alignment of ship’s strapdown INS contains mooring alignment in docks and alignment at sea 
based on the conditions of the ship [17]. As for alignment at sea, the auxiliary external information 
should be used, such as position information provided by the global positioning system (GPS) [22–28], 
velocity reference given by the Doppler velocity log (DVL) [29–31], etc. This article will not discuss 
the methods of alignment at sea. Mooring alignment belongs to in-motion alignment. As mentioned 
above that under mooring condition, the ship has to withstand external random movements which are 
mainly caused by the sea wind and sea waves, and mostly the frequencies of these external movements 
are higher than 1/15 Hz [32]. So the primary problem of ship’s strapdown INS alignment under 
mooring condition is that the gravity and the earth rotational rate measurements will be disturbed by 
lineal and angular movements of the ship especially for the accelerations measurements, thus resulting 
in the alignment accuracy falling and time increasing [16–18]. Also, as state-of-the-art inertial 
measurement unit (IMU) employed in a strapdown INS often suffers from intrinsic sensor noise, 
especially for the low-end tactical grade and low-cost IMU, thus the alignment angles more or less 
may not be computed accurately and rapidly enough [21,22]. Figure 1 shows the frequency spectrum 
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of the z axis raw acceleration of a ship’s strapdown INS under mooring condition, The INS contains a 
self-made medium level IMU, and its sampling frequency is 100 Hz (the relative coordinate frames 
definition and experimental details will be addressed further in this article). It can be depicted that the 
raw measurements of z axis accelerometer are mainly mixed with both the intrinsic sensor noise 
components (in broadband-frequency) and the relatively low-frequency error components which are 
mostly caused by the external disturbance. Besides, other inertial sensors’ outputs of this IMU have the 
same frequency spectrum characteristic as the outputs of the z axis accelerometer [17]. 

Figure 1. The z axis acceleration frequency spectrum under mooring condition. 

 

In this work, we concentrate on the investigation of mooring alignment method for ship’s 
strapdown INS. As is evident from the above discussions, how to extract the useful gravity and angular 
rate of earth rotation measurements from the IMU outputs is the primary objective. Two useless error 
components which are blended in the useful measurements need to be removed as much as possible 
before or during the alignment process: 

1. Intrinsic sensor noise. 
2. External random disturbance.  

For solving this problem, studies on alignment of ship’s strapdown INS under mooring conditions 
have employed various approaches. The conventional Kalman filter methods or other optimal 
estimation methods are utilized in [13,24–26] to estimate the misalignment angles. However, as the 
estimation process is affected by the external disturbed movements of the ship, the alignment duration 
will be beyond 20 minutes [20]. In some studies, the pre-filters are designed to remove or attenuate the 
influence of external disturbed movements and sensor noise. Wavelet de-noising technique is used  
in [21,22] to remove the high-frequency sensors noise components. Lian et al. [33,34] firstly give the 
idea of utilizing the finite impulse response (FIR) digital filters to attenuate disturbing accelerations, 
and they claim this method is suitable for large initial misalignment angles cases. Similarly,  
Zhao [35,36], Zhang [37] and Li, et al. [38] utilize the cascaded FIR filters. However, as proved by 
Zhang in [37], these FIR filters should be designed with very large orders to meet the de-nosing 
requirement, thus resulting in the increasing of both the computation burden and alignment time.  
In [39], we adopt the infinite impulse response (IIR) digital low-pass filter to process the gyroscope 
and accelerometer outputs. The proposed IIR filter can reduce well the influence caused by the 
disturbed movements of the ship with very small filter orders. Nevertheless, one major drawback of all 
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these digital filters is that they will more or less suffer from time-delay problems in real-time 
implementations. Lü et al. [40,41] propose a novel prefitler which combines a Kalman filter and a IIR 
digital filter to filter the outer disturbances and the sensor noise in a real-time way, different from the 
Wavelet de-noising techniques, which have block processing structures, the computation time of the 
frefilter is much shorter than the Wavelet methodology. Gaiffe [42] and Napolitano [43] give the idea 
of inertial frame based alignment (IFBA) scheme which uses the projection of gravity in the inertial 
frame to calculate the attitude matrix between inertial frame and body frame. This scheme can 
attenuate the disturbed movements, and quickly obtain the initial attitude matrix. Various authors have 
presented solutions using this method [44–50]. As analyzed in [49], most of the periodical and low-
frequency random disturbance can be removed by the mathematical integration and average 
characteristic of this method, however, the relatively high-frequency and non-periodical components 
would stay all through the alignment process. 

The Hidden Markov model (HMM) is a powerful statistical tool for the modelling of sequence  
data [51]. It has been originally applied to stochastic signal processing, and nowadays has been widely 
used in speech recognition [52,53], human movement analysis [54], etc. Enlightened by Lü et al. [40,41] 
and the theory of HMM [51], we consider the useful IMU outputs for alignment as a HMM, viz., the 
valid measurements of IMU used for INS alignment (the local gravity and earth rotational rate) are 
hidden in the IMU’s raw outputs which include intrinsic sensor noise and external disturbance. Based 
on this, we propose a two-dimensional hidden Markov model based Kalman filter (HMM-KF) to  
pre-process the IMU output signals, most of the error components referred above could be filtered out 
by the proposed HMM-KF, then the useful data for INS alignment can be obtained. Different from the 
pre-filters in [17,21,22,33–39], the main advantage of the proposed HMM-KF is that the processing of 
sequential data will barely cause time-delay problem. After pre-processing the IMU outputs, useful 
input measurements are used in the following alignment process which can be divided into two steps 
i.e., coarse alignment and fine alignment [5]. Due to the benefits that the IFBA method can counteract 
and average the low-frequency periodical disturbed accelerations, in our approach, we adopt the IFBA 
method, both in the coarse and fine alignment processes.  

The remainder of this paper is organized as follows: Section 2 addresses the coordinate frames used 
in this paper. Section 3 describes the modified IFBA method for ship’s INS under mooring condition. 
Section 4 introduces the principle of the proposed two-dimensional HMM-KF, its usefulness for  
de-noising the error components of the IMU outputs is evaluated by experiments. Section 5 details the 
connection between HMM-KF and low-pass digital filter, which explains why the HMM-KF can 
remove the high-frequency noise components, and time-delay performance comparison will be shown 
using the HMM-KF as compared with the corresponding low-pass digital filter. Experimental results 
that validate the proposed approach are presented and discussed in Section 6. Finally, conclusions are 
given in Section 7. 

2. Frames Definitions 

The different coordinate frames used in this paper are defined as follows and illustrated in  
Figure 2(a). Each frame is an orthogonal, right-handed coordinate frame.  
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(1) The e frame: Earth-fixed frame, with its z axis paralleling the earth’s rotation axis, x and y axes 
are fixed and parallel equatorial plane. 

(2) The i frame: Inertial frame, stabilized in inertial space, at the beginning of inertial alignment, it 
parallels earth frame. 

(3) The n frame: Navigation frame, used for navigation and attitude representation, in this work, we 
choose the local level coordinate frame as the n frame, its x, y and z axis point to local east, north and 
upward respectively. 

(4) The b frame: Body frame, IMU sensor coordinate frame with its origin at the centroid of IMU, 
three axes parallel inertial sensors’ input axes. 

(5) The ib0 frame: Body inertial frame, at the beginning of inertial alignment procedure, it is formed 
by fixing the b frame in the inertial space. 

Figure 2. (a) The different coordinate frames; (b) Conical movements of the gravity vector 
in inertial frame. 

(a) (b) 

3. Modified Inertial Frame based Alignment Method 

3.1. Problem Formulation  

The traditional analytical alignment of strapdown INS is to calculate the initial value of attitude 
matrix Cn 
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strapdown INS under mooring condition, due to the external movements of the ship, the IMU  
outputs are mixed with external random disturbance, so the alignment method mentioned above  
is inapplicable. 

3.2. Inertial Frame based Alignment 

As we know that the pure gravity vector can form a cone in the inertial frame due to the rotation of 
the Earth, see Figure 2(b). So the projections of gravity vector in the inertial frame change slowly with 
a period of 24 hours, namely the Earth’s rotation period. When the ship’s strapdown INS is under 
mooring conditions, most of the disturbed angular rate and acceleration components vary periodically 
and in relatively low frequencies [44]. By projecting the measurements of accelerometers and 
gyroscopes into the inertial frame, the periodic disturbed components can be averaged and 
counteracted, the pure gravity vector and earth rotational rate vector remain [45,46]. Given the 
particularity of ship’s strapdown INS under mooring condition and by making full useful of the 
information mentioned above, here we give the derivation of the analytical inertial frame based 
alignment method for ship’s strapdown INS. This method contains coarse and fine alignment process, 
and both are derived in the inertial frame. 

3.2.1. Coarse Alignment 

In order to fulfill the alignment process, the body inertial frame (the ib0 frame) is introduced firstly, 
which is formed by fixing the b frame in the inertial space at the beginning of the alignment (t0), 
namely ( )0

0
bi

bC t I= . Then after the start of alignment, the ib0 frame is fixed in the inertial space. So the 
alignment matrix between the b frame and the n frame can be expressed by:  

0

0

b

b

in n i
b i i bC C C C=  (2)

where 0bi
bC  represents the attitude transformation matrix of the strapdown INS body frame (b frame) 

relative to the ib0 frame, and can be instantaneously updated by using the following expression [3]: 
0 0 [ ]b bi i b

b b ibC C ω= ×  (3)

where ×b
ibω  is the skew symmetric matrix of the vector [ , , ]b b b b T

ib ibx iby ibzω ω ω ω=  measured by the 
gyroscopes represents the turn rate of the b frame with respect to the i frame [3]. Notice that the 
external disturbed angular velocity δωs and the random error of gyroscopes are included in b

ibω . 
Also, the matrix Cn 

i can be updated by a function of local latitude L and the time t as follows: 
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As the mooring alignment is generally implemented in the specific docks, the local latitude L in 
Equation (4) is a known quantity. i

ib
C

0
 is a constant matrix representing the transformation matrix 

between the i frame and the ib0 frame, the detailed derivation of i
ib

C
0
 can be seen in Appendix A. 
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Finally, substituting for 0bi
bC , n

iC  and i
ib

C
0

 respectively from Equations (3), (4) and (A8) in 

Equation (2) gives the coarse alignment result n
bC . Worth noting that in Equation (A4), the 

accelerometer sensor noise component is ignored, and in Equation (3), the gyroscope outputs b
ibω  used 

to update 0bi
bC  contain sensor noise. Moreover, after the integration of Equation (A5), the non-periodic 

disturbance components remain, so the further fine alignment stage is indispensable. 

3.2.2. Fine Alignment 

We use the standard Kalman filter to estimate the misalignment angles in the fine alignment 
procedure, the state and measurement equations of the Kalman filter are both established in the inertial 
frame. The velocity-error differential equation and the misalignment angles equation in the inertial 
frame could be written as: 

i i i i b i b
b bias b noise

i i b i b
b bias b noise

V g C C

C C

δ ϕ
ϕ ε ε
⎧ = − × + ∇ + ∇⎪
⎨

= − −⎪⎩
 (5)

where [ ]i i i i T
x y zV V V Vδ δ δ δ=  is the velocity-error vector in inertial frame. gi is given in  

Equation (5), [ ]i i i i T
x y zϕ ϕ ϕ ϕ=  denotes the misalignment angle vector. b

noise∇  and b
noiseε  are 

Gaussian white noises related to the velocity errors and the misalignment angles respectively. b
bias∇  is 

the random acceleration bias vector, b
biasε  is the random gyroscope drift vector, both are assumed in 

gauss distribution, namely 0b
bias∇ = , 0b

biasε = . The detailed derivation procedure can be seen in [45]. 

Equation (5) can be regarded as the standard linear system driven by the Gaussian white noises. 
Then the state equation of the fine alignment Kalman filter can be represented as: 
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where [ ] [ ] [ ] [ ]
Ti T i T b T b T

bias biasX Vδ ϕ ε⎡ ⎤= ∇⎣ ⎦  is the state vector. The measurement equation is 

formulated as: 
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where 13×N  is the measurement noise vector, [ ]i i i i T
x y zV V V V=  given in Equation (A2) is the 

integration of the gravity in the inertial frame, ˆ ˆ ˆ ˆ[ ]i i i i T
x y zV V V V=  is the velocity of the strapdown 

INS calculated in the inertial frame, and is given by: 
0ˆ bii b

bV C f dt= ∫  (8)



Sensors 2013, 13 8110 
 

 

Equations (6) and (7) constitute the state and measurement model respectively. Through using the 
discrete Kalman filter, the converging values of the misalignment angles could be estimated, then the 
coarse attitude matrix derived in Equation (2) will be corrected. Although all the remained components 
depicted in the last section are in small quantities, however, the alignment speed slows down due to 
these error components, also the precision of alignment results are still more or less affected by these 
components [17]. If precise and rapid alignment results are to be achieved, these error components 
should be pre-filtered as much as possible. In next section, a novel technique is proposed to solve  
this problem. 

4. Hidden Markov Model Based Kalman Filter 

In an ordinary Markov model, the states are directly visible to the observations. However, in a 
hidden Markov model (HMM), the states are not directly visible, but the outputs dependent on the 
states are visible. Each state has a probability distribution over the possible output sequence. Therefore 
the output sequence generated by the HMM gives some information about the sequence of the states. 
Figure 3 shows the topology structure of the HMM. 

Figure 3. Topology structure of the hidden Markov model. 

 

In Figure 3, {Ok} is the observation sequence at time step tk, {qk} in the shadow circle denotes the 
hidden state sequence, and q0 is the initial value of the state. H is the transition matrix between the 
hidden state {qk} and observation {Ok}, F is the transition matrix between the states q, both H and F 
are governed by probability distributions. 

4.1. HMM of IMU Outputs  

We define Xk (k = 1,2,…) as the IMU ideal output sequence (a Markov chain) which is valid for 
INS alignment. When the ship is under mooring condition, Xk is disturbed by the additive sensor noise 
and random movements of the ship, so the resultant output sequence is Zk. From the preceding 
discussion we know that Xk is hidden in Zk (particularly when Xk = Zk, the state is no longer hidden) 
then the HMM can be formulated as follows: 

1 1+ += +k k kX FX μ (9)

1 1k k kZ HX ν+ += + (10)

0q 1q 2q kq 1kq +

F

H

1O 2O kO 1kO +

0t 1t 2t kt 1kt +
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where Equations (9) and (10) are discrete in the time, in the state space and the measurement space 
respectively, NRX ∈ , MRZ ∈ , the matrices F and H consist of transition probabilities and have 
elements Fij, Hij, satisfying: 

1

1
N

ij
j

F
=

=∑ , 
1

1
M

ij
j

H
=

=∑ , , 0ij ijF H ≥  (11)

In this study the IMU outputs are modeled as a two dimensional HMM. And based on the 
characteristics of IMU outputs, Equations (9) and (10) can respectively be expanded into [55]: 
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We term μk the driving noises and νk the measurement noise, they are assumed to be zero mean 
Gaussian white noise, satisfying:  
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4.2. Kalman Filter Based on HMM 

After deriving the discrete HMM, the next step is to estimate the state sequence Xk from the 
measurement sequence Zk using some optimal algorithms. An optimal solution is through combining 
the standard Kalman filter with HMM to remove the noise and other perturbation components [51]. 
The standard Kalman filter equations are described in [56], in each filtering step, the Kalman gain K is 
calculated and used to correct the propagated state when a measurement is available. In this specific 
application, the dynamics matrix F and measurement matrix H of HMM can be regarded as constant 
matrices, so the Kalman gain K will quickly tend to be a constant, represented by K0. Then the Kalman 
filter equations based on the two dimensional HMM are simplified as follows: 

 Computing the state prediction: 

1/
, 1

/ 1
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 Updating the state estimate: 
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 Smoothing the two state estimate for removing the filtering ripples: 
1 1

ˆ ˆ( ) 2k k kX X X∗
+ += +  (16)
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where 1
~

+kX  is the IMU output at time step k + 1, *
1+kX  is the smoothed estimate at time step k + 1. 

4.3. HMM-KF Implementation Experiments 

The proposed HMM-KF algorithm was applied to the real data collected from a self-made medium-
accuracy IMU. The IMU consists of three interferometric fiber optic gyroscopes (IFOG) and three 
accelerometers mounted in three mutually orthogonal directions. The specifications of the self-made 
IMU are shown in Table 1. During the experiments, the IMU was on a mooring ship, so the error 
components of the IMU outputs under this condition mainly contain the external disturbance and 
sensor noise. The HMM-KF parameters of accelerometer outputs were initially set as follows: 

{ }23 30.003 10 , 0.003 10aQ diag g g− −= ∗ ∗ , { }24 4100 10 , 100 10aR diag g g− −= ∗ ∗  

where Qa and Ra are the process noise covariance and measurement error covariance of the filter, g is 
the local gravity. Similarly, the HMM-KF initial parameters of gyroscope Qg and Rg are: 

{ }25 50.5 10 ( / ) , 0.5 10 ( / )gQ diag h h− −= ∗ ° ∗ ° , { }25 550 10 ( / ) , 50 10 ( / )gR diag h h− −= ∗ ° ∗ °  

Table 1. Specifications of the IFOG based IMU. 

Parameters Gyroscope Accelerometer 
Constant bias 0.01o/h 10−4g 
Random noise 0.005o/h 2× 10−4g/ Hz  
Dynamic range ±200o/s ±30g 

The choices of the parameters Qa, Ra, Qg, Rg will be discussed in the following section. Figures 4 
and 5 respectively show the accelerometer and gyroscope outputs in time-domain with and without 
using the proposed HMM-KF. Table 2 and Table 3 list the standard deviation (STD) of the error 
components of each inertial sensor for both the original and the filtered outputs. 

Figure 4. Time-domain analysis of the accelerometer outputs with and without HMM-KF 
(a) x axis accelerometer; (b) y axis accelerometer; (c) z axis accelerometer. 
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Figure 4. Cont. 

(b) 

(c) 

Figure 5. Time-domain analysis of the gyroscope outputs with and without HMM-KF.  
(a) x axis gyroscope; (b) y axis gyroscope; (c) z axis gyroscope. 

(a) 

(b) 

0 20 40 60 80 100 120

-4

-2

0

2

4

x 10-3

Time/s

f y (m
/s

2 )

 

 
Without HMM-KF
With HMM-KF

0 20 40 60 80 100 120
9.805

9.806

9.807

9.808

9.809

Time/s

f z (m
/s

2 )

 

 
Without HMM-KF
With HMM-KF

0 20 40 60 80 100 120
-20

-10

0

10

20

Time/s

ω
x (°

/h
)

 

 
Without HMM-KF
With HMM-KF

0 20 40 60 80 100 120
-60

-40

-20

0

20

40

60

80

Time/s

ω
y (°

/h
)

 

 
Without HMM-KF
With HMM-KF



Sensors 2013, 13 8114 
 

 

Figure 5. Cont. 

(c) 

Table 2. STD of accelerometer outputs with and without HMM-KF. 

Methods fx [m/s2] fy [m/s2] fz [m/s2] 
STD without HMM-KF 0.0023 0.0019 0.0021 

STD with HMM-KF 1.85e-4 6.93e-4 4.36e-4 

Table 3. STD of gyroscope outputs with and without HMM-KF. 

Methods ωx [o/h] ωy [o/h] ωz [o/h] 
STD without HMM-KF 3.2836 7.5493 6.0536 

STD with HMM-KF 0.2823 0.7261 0.6597 

It is obvious from Figures 4 and 5 that most of the noise components are removed. Tables 2 and 3 
provide the comparison of the standard deviation of the accelerometer and gyroscope outputs with and 
without using the proposed HMM-KF. The two tables indicate that significant reductions in noise 
components are achieved through using the HMM-KF. Figures 6 and 7 respectively analyze the 
accelerometer and gyroscope outputs in frequency-domain with and without the HMM-KF. It can be 
depicted that the HMM-KF can provide obvious attenuation of noise components with specific 
frequency bands for both the accelerometer and gyroscope outputs. 

Figure 6. Frequency-domain analysis of the accelerometer outputs with and without 
HMM-KF (a) x axis accelerometer; (b) y axis accelerometer; (c) z axis accelerometer. 
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Figure 6. Cont. 

(b) 

(c) 

Figure 7. Frequency-domain analysis of the gyroscope outputs with and without HMM-KF 
(a) x axis gyroscope; (b) y axis gyroscope; (c) z axis gyroscope. 
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Figure 7. Cont. 

(c) 

5. Analyses of HMM-KF 

In this section, some discussions on the principle of the proposed HMM-KF are introduced, which 
elaborate the de-noising characteristic of the HMM-KF. By mathematical derivation, we found the 
filtering property of the HMM-KF, as it can be changed to the form of digital filter’s difference 
equation. Then experiments were conducted to compare the HMM-KF with the corresponding digital 
filter. Results clearly show that the proposed HMM-KF has better real-time characteristic as compared 
with the corresponding digital filter, while the digital filter gets obvious signal time delay(s) under the 
same filtering effect. 

5.1. Connections between Digital Filter and the HMM-KF 

Substituting Equation (14) in Equation (15), we have: 

( )0 , 1 1 0
ˆ ˆ

k k k k k kX I K H F X K Z− −= − +  (17)

Substituting Equations (12) and (13) in Equation (17), expanding it yields: 

1 1
0 0

1

1 0 1 0 1 0
0 1 0 1 0 1

k k k

k k k

X X Z
K K

X X Z
+ +

−

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − ⋅ ⋅ ⋅ + ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
 (18)

Simplifying it, one gets: 

( )
( )

1 0 0 1

0 1 0

1

1
k k k

k k k

X K X K Z

X K X K Z
+ +

−

= − ⋅ + ⋅⎧⎪
⎨

= − ⋅ + ⋅⎪⎩
 (19)

Assume that x = Z, y = X, then the Equation (19) can be described as the form: 

( ) ( ) ( ) ( )0 01 1 1y k K y k K x k+ = − ⋅ + ⋅ +  (20)

We infer from Equation (20) that the value of y at time k + 1 only depends on the current input  
x(k + 1) and the prior output y(k). This propagation model is the standard recursive digital filter’s 
difference equation [57]. So Equation (20) formulates that *the HMM-KF has the digital filter’s 
characteristics, which explains why HMM-KF can remove the noise and error components of the IMU 
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outputs. Moreover, the connection between HMM-KF gain K0 and the cutoff frequency fc of the 
corresponding digital filter is as follows: 

( )
( )

( )

2
0 0

2
0

2 21 arccos
2 12 1/

c
s

K K
f

Kfπ
− −

= ⋅
−

 (21)

where fs is the sampling frequency, and the detailed derivation procedures are given in  
Appendix B. Through using Equation (21), the HMM-KF and the corresponding digital filter can be  
mutually transformed. 

Commonly, before using digital filters for signals processing, the signals’ frequency spectrum or 
power spectrum should be analysed in advance, based on this, the filter’s cutoff frequency fc can be 
determined. In contrast to the use of digital filters, the initialization of HMM-KF is relatively easier. 
As the choices of the initial measurement error covariance matrix R and the process noise covariance 
matrix Q are less deterministic in the actual implementation of Kalman filter [56], this is also suitable 
for the proposed HMM-KF. But once Q and R are determined, HMM-KF gain K0 will stabilize quickly 
and then remain constant. To our knowledge, the different initial conditions of Q and R for the HMM-
KF do not influence the filters’ performances clearly, this will be evaluated and discussed next in the 
experiments part of this section. 

5.2. Comparisons of the HMM-KF and the Corresponding Digital Filters  

Once Q and R are determined off-line, we can get the deterministic HMM-KF gain K0, then the 
corresponding digital filter’s cutoff frequency fc can be determined by Equation (21). Two different 
digital filters have been widely used: IIR (Infinite Impulse Response) filters and FIR (Finite Impulse 
Response) filters. In general, IIR filters could be approximated by a prescribed frequency response 
with relatively fewer multiplications and lower computation burdens than FIR filters, because that the 
FIR filters need much higher orders than the corresponding IIR filters to meet the same filtering 
requirements. However, the FIR filters are capable of working with a strict linear-phase, i.e., the time 
delay between the inputs and outputs of FIR filters can be exactly known [57]. For this reason, IIR 
filters are more reliable in the applications that do not need real-time requirements and are in low 
computation abilities, while the FIR filters are always employed in systems which need to know the 
accurate filtering time delay. Here in our study, both the corresponding IIR and FIR low-pass digital 
filters were designed and analyzed to compare the real-time abilities and the filtering performances 
with the proposed HMM-KF. 

The comparison experiments were conducted through using the same IMU data as depicted in 
Section 4.3. In this work, we use the MATLAB/Filter Design & Analysis Tool to design the two digital 
filters. The sampling frequency of the IMU is 100 Hz, then Fs equals 100 Hz. For the IIR filters, we 
choose the Butterworth low-pass digital filters and specify the filter order NIIR as 5 and  
10 respectively. For the FIR filters, the transition-band is set as [fc–0.05 Hz, fc+0.05 Hz], the pass-band 
attenuation Ap is 1 dB, while the stop-band attenuation As equals 40 dB, 60 dB respectively. Worth 
noting that in order to reduce the FIR filters’ orders for the convenience of giving the time-delay 
comparisons, we intentionally set the transition-band of the FIR filters relatively in width. 
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Assume that the different initial parameters Qa, Ra, Qg, Rg of HMM-KF are expressed by: 

{ }23 310 , 10aQ diag q g q g− −= ⋅ ⋅ , { }24 410 , 10aR diag r g r g− −= ⋅ ⋅  

{ }25 510 ( / ) , 10 ( / )gQ diag m h m h− −= ⋅ ° ⋅ ° , { }25 510 ( / ) , 10 ( / )gR diag n h n h− −= ⋅ ° ⋅ °  

where q, r, m and n are variables, Table 4 gives the different values of K0, fc and NFIR (minimum order 
of FIR in different stop-band attenuation Ap) for q remains 0.5, r = 500, 1,000, 1,500; and for r remains 
100, q = 0.1, 0.05, 0.02. Similarly, Table 5 shows the corresponding values of K0, fc and NFIR, when m 
and n respectively remain constants or change as variables. Figure 8 provides the HMM-KF filtering 
results of the z axis acceleration using the different parameters q and r in Table 4. 

Table 4. Values of K0, fc and NFIR with different q and r. 

Parameters K0 fc [Hz] 
NFIR [Minimum order] 

As = 40 dB As = 60 dB 
r1 = 500, q = 0.5 0.0107 0.9836 1678 2255 

r2 = 1,000, q = 0.5 0.0055 0.4914 1712 2319 
r3 = 1,500, q = 0.5 0.0028 0.2139 1726 2420 
q1 = 0.1, r = 100 0.0102 0.9831 1681 2257 

q2 = 0.05, r = 100 0.0052 0.4912 1712 2319 
q3 = 0.02, r = 100 0.0020 0.1964 1731 2454 

Table 5. Values of K0, fc and NFIR with different m and n. 

Parameters K0 fc [Hz] 
NFIR [Minimum order] 

As = 40 dB As = 60 dB 
n1 = 200, m = 2 0.0103 0.9831 1681 2257 
n2 = 500, m = 2 0.0043 0.3927 1721 2335 

n3 = 1,000, m = 2 0.0021 0.1965 1732 2454 
m1 = 0.5, n = 50 0.0102 0.9831 1681 2257 

m2 = 0.25, n = 50 0.0054 0.4914 1713 2319 
m3 = 0.125, n = 50 0.0025 0.2138 1726 2420 

Figure 8. Comparison of the HMM-KF filtering results using the different parameters in 
Table 4. (a) q remains 0.5, r = 500, 1,000, 1,500; (b) r remains 100, q = 0.1, 0.05, 0.02. 
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Figure 8. Cont. 

(b) 

Figure 9 compares the group time delay and the filtering results of the IIR filters using the different 
parameter fc and filter order NIIR.  

Figure 9. (a) Group time delay of IIR filters with different fc and orders in broad-band 
frequencies; (b) IIR filtering results of the z axis acceleration with different fc and orders. 
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Figure 10 gives the exact group time delay and the filtering results of the FIR filters using the 
parameters fc and NFIR in Table 4. Tables 6 and 7 present the results of the time delay (in samples) after 
using the three different approaches to process the z axis accelerometer outputs and z axis gyroscope 
outputs respectively. 

Figure 10. (a) Group time delay of FIR filters with different fc and As in broad-band 
frequencies; (b) FIR filtering results of the z axis acceleration with different fc and As. 

(a) 

(b) 

Table 6. Comparison of the time delay (in samples) of the z axis acceleration using the 
three filters. 

Parameters 
HMM-KF 
[samples] 

5 order IIR 
[Max. samples] 

10 order IIR 
[Max. samples] 

FIR As = 40 dB 
[samples] 

r1 = 500, q = 0.5 5 84 199 839 
r2 = 1,000, q = 0.5 18 167 398 856 
r3 = 1,500, q = 0.5 41 384 913 863 
q1 = 0.1, r = 100 1 84 197 838 

q2 = 0.05, r = 100 4 164 398 855 
q3 = 0.02, r = 100 6 428 1016 867 
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Table 7. Comparison of the time delay (in samples) of the z axis angular rate using the 
three filters. 

Parameters 
HMM-KF 
[samples] 

5 order IIR 
[Max. samples]

10 order IIR 
[Max. samples]

FIR As = 40 dB 
[samples] 

n1=200, m = 2 10 84 199 841 
n2 = 500, m = 2 42 208 486 862 

n3 = 1,000, m = 2 70 411 991 866 
m1 = 0.5, n = 50 1 84 199 841 

m2 = 0.25, n = 50 3 165 391 857 
m3 = 0.125, n = 50 4 384 914 863 

Without reference to the time-delay issue, it can be seen in Figure 8 and the vertical-zoomed 
pictures of both Figures 9(b) and 10(b) that the de-noising performance of the proposed HMM-KF has 
almost the same level as compared with the other two digital filter approaches. And the de-noising 
performance of the three methods can be achieved and gradually increased through decreasing both the 
values of HMM-KF gain K0 and the digital filter’s cutoff frequency fc. However, increasing the  
de-noising performance of the three filters will more or less cause the time-delay problem. And there 
are significant differences in the time-delay performance of the three different approaches. The smaller 
the values of K0 and fc are, the larger the time delay of the three filters will get, obviously for the IIR 
and FIR digital filters, slightly for the proposed HMM-KF, that can be seen in Figures 7–10, and 
summarized in Tables 6 and 7. Some conclusions on the time-delay issue of the three approaches are 
given as follows: 

1. As above mentioned that the input-output of the IIR filters do not satisfy linear-phase, so the 
time delay of the IIR filters cannot be exactly calculated and given. Also, it can be seen in 
Figure 9(a) that the blended signal components with frequencies around cutoff frequency fc 
suffer from relatively larger time delay than that with frequencies not close to fc. 

2. As for the FIR digital filters, it is shown in Tables 4 and 5 that even with relatively wide 
transition-bands, the minimum orders of the FIR filters are much higher than the corresponding 
IIR filters. Moreover, the larger the values of Ap are, the larger the orders of the FIR filters will 
be, thus resulting in obvious time delay, which can be seen in Figure 10(b). However, as shown 
in Figure 10(a) that for each specific FIR filter, the time delay could remain a certain constant 
after processing signals with any frequency bands. And, the time delay of the specific FIR filter 
can be exactly calculated using the following equation [57]: 

1
2
FIR

delay
s

NT
F

−=  (22)

3. As for the HMM-KF, it can be depicted in Figures 8 and 9 (drawing the z axis acceleration de-
noising results) that effects of lowering the values of q and meanwhile keeping the values of r 
in a constant will barely cause the time-delay problem. Conversely, the HMM-KF could suffer 
from obvious time-delay problem to a certain extent when q remains 0.5, r varies in 500, 1,000 
and 1,500. 
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So we can experimentally conclude that under the same de-noising performance, the proposed 
HMM-KF has better real-time abilities than the digital filters. And how to make the HMM-KF work 
appropriately depends on the adjusting of the values of parameters Q and R. As different IMU have 
different noise levels, the optimization of choosing the values of Q and R cannot be mathematically 
solved. But it is no doubt that the HMM-KF parameters Q and R impact not only the de-noising 
performance of the IMU outputs, but also the filtering response speed, namely the time-delay level. 
The de-noising performance increases together with the values of parameters R, while the time delay 
increase slightly for the HMM-KF. Conversely, the de-nosing performance increases together with the 
decrease of the values of Q, while the time delay barely increase for HMM-KF. So in real-time 
implementations, in order to augment the filtering performance at no cost of increasing the time delay, 
the parameter Q should be kept in relatively small values, and through adjusting the values of R to 
meet the good de-noising performance. In addition, the conclusions addressed above are equivalent to 
every channel of the inertial sensors, i.e., the three accelerometers and the three gyroscopes, as the 
relevant experiments have been conducted through using the measurements of all these sensors. 

Under static conditions, the time-delay problem does not affect the INS alignment results very much, 
whereas under mooring or voyaging conditions, as the INS are sometimes in the dynamic modes, errors 
caused by the time delay could accumulate gradually all through the alignment process [6]. This is will 
be validated and discussed in Section 6. Firstly, two different alignment mechanisms using the 
proposed HMM-KF, FIR and IIR filters will be given and discussed in the following section. 

5.3. Alignment Mechanisms Using Different Filters 

In Section 5.2, the time-delay performance of the proposed HMMKF and digital filters were 
compared and discussed. In order to cope with the time-delay issue in the alignment process when 
using the different pre-filters, two alignment mechanisms are given in this section. 

According to references [42] and [45] that the inertial frame based alignment method can well 
attenuate the angular-motion disturbances, and also for avoiding the situation that the time delay of the 
accelerometer’s digital filter may not be identical to that of the gyroscope’s digital filter, in this way, 
the digital filters are employed only to remove the linear-motion disturbances and thus extracting the 
pure gravity for the INS alignment. The flowchart of the digital filter aided inertial frame based 
alignment mechanism can be seen in detail in Figure 11(a). As specified in ref. [33], the digital filters 
should be adopted after the integration of specific force bf , then the output of the digital filter 0biV  at 
current time step t corresponds to the value 0biV (t–Tdelay) at a former time step t–Tdelay with the time 
delay Tdelay. In order to eliminate the effect of the time delay Tdelay and still get the correct value of i

ib
C

0

derived from Equation (A8), equally, the value of iV  calculated using Equation (A2) at current time 
step t should be represented by iV (t–Tdelay) at time step t–Tdelay. 

For each specific FIR filter, as Tdelay can be accurately calculated using Equation (22), the alignment 
results will not be influenced by the FIR filters very much, however the alignment duration and 
computation burden can be greatly increased, because as interpreted in Section 5.2, Tdelay is always in a 
very large value. For the IIR digital filters, Tdelay cannot be exactly given, but relatively is in small 
value, so sometimes the time delay of IIR filters used in the application of INS alignment is ignored, 
such as the schemes given by Sun, et al. in [17] and Yan, et al. in [44]. 
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Figure 11. Flowcharts of the digital filter aided and the HMM-KF aided inertial frame 
based alignment mechanisms. (a) Digital filter aided; (b) HMM-KF aided. 

(a) (b) 

Different from the digital filter aided inertial frame based alignment mechanism, the HMM-KF 
aided mechanism does not have to consider the time-delay issue, which can be avoided through 
adjusting the initial parameters Q and R, both for the outputs of the gyroscope and accelerometer. So 
the HMM-KF can favorably and properly be used as the optimal pre-filters to pre-process the 
gyroscope outputs and accelerometer outputs before and during the alignment procedures, the details 
of the HMM-KF aided mechanism can be seen in Figure 11(b). 

6. Alignment Experiments and Performance Evaluation  

In order to evaluate the performance of the proposed new robust self-alignment method for the 
ship’s strapdown INS under mooring condition, in this section, several experiments under different 
circumstances were conducted. The turntable experiments were implemented in the lab, as the test 
condition was relatively ideal and uncomplex, the external disturbances were constrained in periodical 
forms, so only the coarse alignment process was conducted. In Section 6.2, both the coarse and fine 
alignment procedures were conducted to test the robust alignment method in the ship’s mooring 
experiments. At last, the data from a sea experiment was used to validate the IFOG online de-noising 
performance of the proposed HMM-KF in the navigation calculation stage. 

6.1. Turntable Coarse Alignment Experiments 

We fixed the IFOG-IMU based strapdown INS which is produced by our laboratory on the SGT-3 
three-axis turntable to implement the coarse alignment experiments. The IMU, strapdown INS and the 
turntable can be seen in Figure 12. The specifications of the SGT-3 turntable are shown in Table 8. 
The IMU’s three output axes (xb, yb, zb) paralleled to the turntable’s inside frame, middle frame and 
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outside frame respectively. At the start of each experiment, the three frames of the turntable initially 
turned to a static position for 20 seconds, i.e., pitch angle 0°, roll angle 0°, yaw angle 180°, the start 
time of alignment t0 was chosen at the 10th second. Then all the three frames of the turntable started to 
sway with 5° in magnitude and 4 seconds in period. The total swaying time was 200 seconds. For each 
experiment, tk1 was set at the 100th second when the turntable enters the swaying mode. After finishing 
the swaying form, the turntable turned to the static mode again with the initial position for 20 seconds, 
tk2 was set at the 10th second in the static time, the pitch, roll and yaw angles of the turntable at this 
time were considered as references (the true values) to compare the results of the different alignment 
schemes. During the alignment process, a specific lever-arm between the strapdown INS and the 
turntable’s frames should not be ignored. When the turntable was in swaying mode, the strapdown INS 
could accordingly experience a velocity component due to this lever-arm. And this velocity component 
can be regarded as the disturbing velocity in period form of 4 seconds too. 

Figure 12. (a) Self-made IFOG-IMU and its body frame; (b) IFOG-IMU based strapdown 
INS; (c) STG-3 turntable and the experiment scene. 

 
(a) (b) 

(c) 

Table 8. Specifications of the SGT-3 turntable. 

Parameters Precision 
Position resolution ±3′′ (1° = 60′ =3600′′) 

Position range ±360° 
Angular rate resolution 0.001°/h 

Angular rate range ±150°/s 

bx by

bz
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Fifty experiments were conducted. During the turntable experiments, the frequency of the 
disturbance could be regarded as 0.25 Hz (1/4 Hz), we set the IIR filter cutoff frequency fc as 0.2 Hz 
with order NIIR = 5, the transition-band of the FIR filter was [0.1 Hz, 0.2 Hz], stop-band attenuation Ap 
= 40 dB, the order of FIR NFIR = 1418, Tdelay of the FIR was 7.09 seconds, and the parameters of the 
HMM-KF Qa, Ra, Qg, Rg were optimally set as follows: 

{ }23 30.02 10 , 0.02 10aQ diag g g− −= ∗ ∗ , { }24 4100 10 , 100 10aR diag g g− −= ∗ ∗  

{ }25 50.5 10 ( / ) , 0.5 10 ( / )gQ diag h h− −= ∗ ° ∗ ° , { }25 550 10 ( / ) , 50 10 ( / )gR diag h h− −= ∗ ° ∗ °  

Figure 13 provides the misalignment angles of pitch error φe, roll error φn and yaw error φu of the 50 
coarse alignment results using four different alignment schemes, i.e., (a) alignment without any 
prefilters, only the inertial frame based alignment (IFBA) technique was adopted; (b) IFBA + HMM-KF 
aided alignment scheme; (c) IFBA + FIR aided alignment scheme; (d) IFBA + IIR aided alignment 
scheme. In accordance to Figure 13, Table 9 shows the mean and STD values of the misalignment 
angles using the four approaches. Figure 13 and Table 9 clearly indicate that all the four methods 
employing the IFBA technique can well accomplish the alignment process and get reasonable 
alignment results, this demonstrates the effectiveness of the IFBA for the in-motion or mooring 
alignment applications of strapdown INS. While the alignment methods with prefilters (HMM-KF, 
FIR and IIR filters) could more or less improve the alignment results than that without any prefilters. 
However, among the three frefilter aided alignment methodologies, the HMM-KF aided scheme can 
achieve the optimal alignment precisions, all the three misalignment angles are smaller than that of the 
IIR aided scheme, especially for the yaw misalignment angle φu, precision increased by more than 
0.01°. That is because different from the other two digital filter aided methods, the proposed  
HMM-KF could filter out the relatively high-frequency sensor noises and external disturbances both 
for the measurements of gyroscope and accelerometer. 

Figure 13. 50 times turntable coarse alignment experiments results. (a) Misalignment 
without any prefilters; (b) Misalignment with HMM-KF; (c) Misalignment with FIR;  
(d) Misalignment with IIR (NIIR = 3). 
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Figure 13. Cont. 

(c) (d) 

Table 9. Mean and STD of the misalignment angles using the four alignment schemes. 

Alignment Schemes φe [degree] φn [degree] φu [degree] 
Mean without Prefilters 0.0095 −0.0113 0.0418 
Mean with HMM-KF 0.0049 −0.0085 0.0197 

Mean with FIR 0.0053 −0.0087 0.0204 
Mean with IIR (NIIR = 3) 0.0073 −0.0106 0.0317 

STD without Prefilters 0.0027 9.166e-4 0.0158 
STD with HMM-KF 0.0012 6.549e-4 0.0099 

STD with FIR 0.0013 6.758e-4 0.0120 
STD with IIR (NIIR = 3) 0.0025 8.692e-4 0.0086 

Although the precision of the FIR aided method has almost the same level compared with that of 
the HMM-KF aided scheme. The computation time is obviously shorter for the HMM-KF aided 
scheme than that of the FIR aided method. In the 50 experiments with the alignment program written 
in C++ language, tested on an Intel Core 2 Due 1.94 GHz CPU, the average time for each FIR aided 
method is 4.03 seconds and 1.69 seconds for each HMM-KF aided method implementation. 

As the experiments were conducted on the turntable, the external disturbances were constrained 
relatively in long periodical time (4 seconds), then the cutoff frequency fc was chosen smaller than 1/4 
Hz, namely, 0.2 Hz in the experiments. However, as mentioned in the Introduction part, in practice, the 
frequencies of the external disturbances are mostly higher than 1/15 Hz during the mooring alignment. 
So accordingly, fc should be set smaller than 1/15 Hz, thus the orders and time delay of the digital 
filters will increase, and the corresponding results and the influence will be given and discussed in 
detail in the following mooring experiment section. 

6.2. Mooring Experiment 

The mooring experiment was conducted in the East Sea of China to validate the proposed alignment 
method. In this experiment, the ship was under mooring condition. A self-made IFOG based IMU was 
used for the experiment, the attitude reference was given by the PHINS from the company IXSEA, 
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details of this system are described in [58]. The performance of the PHINS in GPS aided mode is as 
follows: both pitch and roll errors are less than 0.01°, heading error is less than 0.02°. The self-made 
IMU, PHINS and information control panel are shown in Figure 14. The fine alignment procedure was 
performed to estimate the misalignment angles by using a software package which is compiled by the 
Marine Navigation Research Institute of Harbin Engineering University. We carried out the alignment 
experiments three times. During the mooring experiments, the cutoff frequency fc was set as 0.03 Hz, 
the IIR order NIIR = 5, the FIR filter transition-band was [0.01 Hz, 0.05 Hz], stop-band attenuation  
Ap = 40 dB, then the order of FIR NFIR = 3544, Tdelay of the FIR was 17.72 seconds, and accordingly the 
parameters of the HMM-KF Qa, Ra, Qg, Rg were optimal chosen as follows: 

{ }23 30.003 10 , 0.003 10aQ diag g g− −= ∗ ∗ , { }24 4100 10 , 100 10aR diag g g− −= ∗ ∗  

{ }25 52.5 10 ( / ) , 2.5 10 ( / )gQ diag h h− −= ∗ ° ∗ ° , { }25 550 10 ( / ) , 50 10 ( / )gR diag h h− −= ∗ ° ∗ °  

Figure 14. (a) Self-made strapdown INS, PHINS; (b) Information control panel. 

(a) (b) 

The coarse and fine alignment time were set as 200 seconds and 6 minutes, respectively. The 
alignment results utilizing the above mentioned four schemes are depicted in histogram form in  
Figure 15. In accordance with Figure 15, the mean and STD values of the misalignment angles are 
shown in Table 10. It is clear from Figure 15 and Table 10 that the overall trends of the alignment 
results using the four schemes could also preferably validate the conclusions in Section 6.1. The 
misalignment angles of pitch errors and roll errors with HMM-KF are less than 0.02°, and yaw errors 
are less than 0.06°. Although the alignment results are less accurate than the results from the turntable 
experiments, while as the IMU was in mooing dynamic mode, these alignment results all the same 
primely fulfill the requirement and the accuracy of the ship’s strapdown INS alignment under mooring 
condition. Moreover, compared with other three alignment schemes, the proposed HMM-KF aided 
scheme can not only help the Kalman filter in the fine alignment stage to converge faster, but also help 
to get more reliable misalignment angle estimates, especially for the yaw angle, that can be seen in 
Figure 16. 
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Figure 15. Comparison of the misalignment angles using the four alignment schemes.  
(a) Pitch error; (b) Roll error; (c) Yaw error. 

(a) (b) (c) 

Table 10. Mean and STD of the misalignment angles using the four alignment schemes. 

Alignment Schemes φe [degree] φn [degree] φu [degree] 
Mean without Prefilters 0.0311 0.0212 0.1287 
Mean with HMM-KF 0.0181 0.0152 0.0554 

Mean with FIR 0.0236 0.0178 0.0871 
Mean with IIR (NIIR = 3) 0.0257 0.0194 0.1037 

STD without Prefilters 0.0036 0.0016 0.0111 
STD with HMM-KF 0.0012 0.0014 0.0047 

STD with FIR 0.0023 0.0019 0.0033 
STD with IIR (NIIR = 3) 0.0017 0.0005 0.0064 

Figure 16. Estimation curves of the misalignment angles in fine alignment stage. (a) Fine 
alignment without any prefilters; (b) Fine alignment with HMM-KF; (c) Fine alignment 
with FIR; (d) Fine alignment with IIR (NIIR = 3). 
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Figure 16. Cont. 

(c) (d) 

Figure 16(a–d) present the estimation curves of the misalignment angles in the fine alignment stage 
respectively utilizing the four different alignment schemes. For the convenience of clearly showing the 
convergence part of the estimation curves, the initial 30 seconds part was omitted. As depicted in 
Figure 16(a) and validated in ref. [11] that, under mooring condition, because the yaw error is in low 
observability, the estimation filters need relatively long time to converge to the true values when 
choosing the velocity errors as the only measurement vector to estimate the misalignment angles. 

However, Figure 16(b) indicates that the HMM-KF aided scheme could shorten the estimation time 
to large extent, especially for the yaw error estimation. As can be seen in Figure 16(b) that the pitch 
and roll error estimations with HMM-KF are in about 1.5 minutes of convergence time instead of more 
than 3 minutes without any prefilters, and heading error convergence time with HMM-KF is about 2.5 
minutes instead of more than 5 minutes without any prefilters. Figure 16(c) and (d) also show that FIR 
and IIR aided schemes could slightly shorten the estimation time to a certain extent. To our 
knowledge, for the self-alignment of strapdown INS under mooring condition, without using external 
information or equipments to augment the measurement vector of the system, such as GPS providing 
position information, the following three factors are able to improve the observability of the yaw 
misalignment angle using only the velocity errors as the measurement vector: 

1. It has been well demonstrated that estimation process with large initial yaw (heading) error 
needs more time to converge than that with small initial yaw error [11,12,19,40]. That means 
that the precise coarse alignment result is an important factor which is to provide a reliable 
initial condition for the following fine alignment process. So the convergence speed of the yaw 
error estimate could decrease with a small initial coarse alignment result. 

2. Also, through augmenting the signal to noise ratio (SNR) of gyroscope outputs could also 
shorten the yaw error estimation time because one reason why the yaw error estimate gets 
convergent slowly is that the earth rotational rate is too slow while the sensor noise is relatively 
two large under mooring dynamic conditions. Through utilizing some prefilter techniques (like 
the proposed HMM-KF) to preprocess the gyroscope outputs, the convergence speed and the 
accuracy of the yaw error estimate can also be improved. 
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3. In addition, the convergence speed of the yaw misalignment estimate could change by 
adjusting the estimated variance of the yaw azimuth. We have experientially and 
experimentally get the idea that in order to shorten the convergence time, the estimated 
variance of the yaw error should be initialized as a relatively large value. 

6.3. Sea Experiment 

A sea experiment was conducted to evaluate the online de-noising performance of the proposed 
HMM-KF. During the sea experiment, due to the dithering motion of ship engines, and commonly the 
inertial sensors could suffer from additional high-frequency random noises induced by external high 
dynamic motions, so the self-made medium-accuracy IMU (mainly for the self-made IFOG, 
marginally for the accelerometer) could experience not only the intrinsic sensor noises mentioned in 
Section 1, but also these additional random noises, thus bring some accumulative errors into the 
navigation solutions [37]. Some de-noising techniques have been used to filter out these noise 
components, such as Zu, et al. in [59,60] adopting the second generation wavelet transform method, 
and Li, et al. utilizing the different digital filters [61]. Here in this section, the proposed HMM-KF was 
adopted and tested for the on-line de-noising of the IFOG raw signals. The objective of the IFOG  
de-noising process is to improve the accuracy of the navigation solutions, i.e., the velocity, position 
and attitude. Figure 17 illustrates the de-noising process. 

Figure 17. The de-noising of the IFOG signals before the navigation calculation stage. 

 

As explained in Section 5 that the IIR digital filters are more reliable in real-time signal processing 
with relatively small time delay than that of the corresponding FIR filters. So in this experiment, the 
IIR filter was designed and utilized to compare the online de-noising performance with the proposed 
HMM-KF. At this time, the movements of the ship, whether caused by waves or the ship itself, are in 
relatively low frequencies. These movements are what we ask the IMU to measure, they are regarded 
as the useful signals for the navigation calculations. So the cutoff frequency fc to attenuate the noise 
components mentioned in last paragraph could be larger than those used in Section 6.1 and 6.2 for the 
alignment process. Here we set the IIR filter cutoff frequency fc as 5 Hz with the order NIIR = 3. 
Accordingly, the parameters Qa, Ra, Qg, Rg of the HMM-KF were optimally reset, and they are  
as follows: 

{ }25 52.5 10 ( / ) , 2.5 10 ( / )gQ diag h h− −= ∗ ° ∗ ° , { }25 550 10 ( / ) , 50 10 ( / )gR diag h h− −= ∗ ° ∗ °  

After finishing the mooring alignment procedure of the strapdown INS in the dock, the ship sailed 
successively with speed change, heading change, manoeuvres, etc. The sea experiment lasted about  
5 hours. The navigation data from the reference system (PHINS) and the self-made strapdown INS 
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were collected, the navigation solutions (attitude, position) from PHINS were used as the reference 
solutions. The comparison of the yaw (heading) error utilizing the three different schemes (without any 
prefilters, with HMM-KF and with IIR filter) is shown in Figure 18. Trajectories derived from the 
three schemes and the reference system are illustrated in Figure 19. 

Figure 18. Comparison of the yaw (heading) error using the three schemes. 

 

Figure 19. Trajectory comparison of the different navigation solutions. 

 

Figures 18 and 19 clearly indicate that as compared with the scheme without any prefilters, the 
HMM-KF de-noising technique could obviously improve the accuracy of the heading and positioning 
solutions. In addition, as can be seen in Figure 18 that, because the IIR filter and the corresponding 
HMM-KF are designed to have the same de-noising performance, at most of the time in this 
experiment, the yaw errors of the two schemes are almost in the same level. However, it is also 
depicted in Figure 18 that there are noticeable vibrations for the three schemes between the time 1 h 
and 1.5 h, which were mainly caused by the ship’s movements of rapid heading changes, manoeuvres, 
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et al., marginally caused by the limitations of the navigation algorithm itself. Besides, for the two 
schemes with HMM-KF and without any prefilters, both the yaw errors could quickly tend to be stable 
in the following time (1.5 h–).  

As for the IIR de-noising scheme, these consecutive motions of heading changes and manoeuvres 
could cause severe time delay for the processed IFOG output signals, thus resulting in the maximum 
yaw error above 0.2° (at time 1.5 h), more than 2 hours’ stabilizing time (1.5 h–3.5 h) and the 
divergence of the corresponding trajectory shown in Figure 19. These are all because that under high 
dynamic conditions, any small time delay between the original and filtered IFOG output signals will 
bring about some certain navigation errors for the strapdown INS, especially for those dynamic 
motions with frequencies close to the IIR filter’s cutoff frequency fc, so the major drawback of using 
digital filters for this purpose is defining the proper filter cutoff frequency. On the contrary, the use of 
the proposed HMM-KF is much easier than the digital filters, as the former could merely cause time-
delay issue once the optimal parameters of the specific HMM-KF are determined. So the results from 
the sea experiment indicate that the proposed HMM-KF could be used for the real-time de-noising in 
the navigation calculation process, and thus can improve the results of the navigation solutions. 

Some remarks on the three experiments are made as follows: 

1. Although the same IMU was used for the three experiments, the values of HMM-KF 
parameters Q and R are different. As we have not yet found a mathematical method to get the 
optimal HMM-KF parameters. So, to meet the requirements of the three different experiments, 
the choosing of Q and R are rather a matter of tuning based on the discussions and conclusions 
in Section 5. Each group of Q and R corresponds to a stable value of K0, and each K0 
corresponds to a specific fc. Through experimentally adjusting the parameters Q and R, we 
could get the potential connections of the HMM-KF parameters (Q and R), K0, fc and the 
HMMKF time delay, such as the connections partially given in Tables 4, 5, 6 and 7. Based on 
these connections, we can feasibly get the parameters Q and R for each specific experiment.  

2. It is worth mentioning that, although only one mooring experiment was conducted, all the 
results and conclusions are relevant to the one experiment, we still believe in the robustness of 
the proposed self-alignment method. As based on the researches about the topic “measurement 
of ship’s instantaneous line motion under dynamic conditions” in [62–65], which were 
conducted by our group, that no matter under mooring or voyaging conditions, the external 
body dynamics of the ship are mainly caused by the sea waves. The relation between the testing 
platform properties, such as the size or mass of the testing ship, the water depth of the docks, et 
al. could merely cause the strong dynamics of the ship. However, this conclusion should and 
will be verified by the further experiments at different conditions. 

7. Conclusions 

When the ship is under mooring conditions, the IMU outputs from the ship-mounted strapdown INS 
not only contain the intrinsic sensor noise components but also experience the external random 
disturbances due to the movements of the ship, caused by the sea waves and wind waves. These mixed 
error components will result in both the inaccuracies of the alignment results and also the increasing of 
the alignment time. 
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This current work has presented a new robust scheme to solve the alignment problem of the ship’s 
strapdown INS under mooring condition. The error components of accelerations and angular velocities 
will be effectively pre-filtered by using the proposed hidden Markov model based Kalman filter 
(HMM-KF). Different from the IIR and FIR digital filters aided techniques, as these methods will 
more or less cause the time-delay problems, the HMM-KF has good real-time ability at no cost of 
lowering the de-noising performance. After pre-processing the inertial sensors’ outputs, we adopt the 
inertial frame based alignment (IFBA) method which can counteract and average the low-frequency 
periodical disturbed accelerations and angular velocities in our approach, in both the coarse and fine 
alignment procedures.  

The turntable and mooring experiments results show that when the ship’s strapdown INS is under 
mooring conditions, the proposed self-alignment scheme can make the initial attitude matrix of the 
strapdown INS built rapidly and accurately. Moreover, the sea experiment validate that the good  
de-noising performance of the proposed HMM-KF also can be applied in the navigation calculation 
process, making the navigation results calculated more accurately. 

Although the effective de-noising results can be achieved by choosing appropriate initial values of 
HMM-KF parameters Qa, Ra, Qg, Rg However, different IMUs will have different statistical 
characteristics of the noise components. So the choices of the HMM-KF parameters are different from 
each IMUs. As there is no criterion to identify the optimal parameters of HMM-KF at the present time, 
only we can get the relatively optimal parameters is through using the experiment methods to realize. 

Besides, some future works and improvements should be accomplished, they are as follows: 

1. The Allan variance analysis will be used to exactly separate the random noise components and 
other error components, so we can effectively evaluate the de-nosing performances of the 
HMM-KF by choosing different filtering parameters. 

2. Try to find an optimization method to adjusting the HMM-KF parameters. As we found that 
under high dynamic conditions, the de-noising results will more or less degenerate by using the 
parameters in static or in low dynamic conditions, so the adaptive adjusting and choosing of the  
HMM-KF parameters for the on-line de-noising applications under different conditions is also 
involved in our further studies. 

3. Further works also include the expanding of other sensor suit to enhance the accuracy and 
rapidness of the mooring or in-motion alignment of ship’s strapdown INS, such as GPS 
providing position information to enter the Kalman filter to bound the attitude errors in the 
alignment results during the fine alignment process. 

4. Also, as we assume that the misalignment angles of coarse alignment results are in very small 
values, so during the fine alignment process, the state equation is regarded as the standard 
linear system. Future work should discuss the no-linear problem of the fine alignment process 
in case that the coarse alignment results are in large alignment angles. At that time, the utilizing 
of some complementary or no-linear filtering techniques is necessary. 

5. Mooring alignment experiments should be conducted at different conditions and environments, 
and try to get some conclusions on the relation between the overall alignment performance and 
the above mentioned testing platform properties (e.g., the size or mass of the test ship, the 
water depth of the docks). 
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Appendix  

A. The derivation of i
ib

C
0
 

After the alignment process gets started, the projection of the pure gravity vector in the i frame can 
be expressed as follows: 

[ ]
[ ]
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cos cos ( )
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ie
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g L t t
g g L t t

g L

λ ω
λ ω
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(A1)

Then the velocity of strapdown INS in the i frame can be calculated by the integration of Equation 
(A1) from time t0 to tk: 
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(A2)

Under mooring condition, the measurements of specific force provided by the accelerometers in the 
b frame can be expressed by: 

b b b b
noisef g a aδ+ +=-  (A3)

where gb is the local gravity expressed in the b frame, δab is the external disturbed components, b
noisea  

is the random sensor noise. Ignoring the sensor noise b
noisea  and transforming bf  from the b frame into 

the ib0 frame yields: 
0 0 0 0= = − +b b b bi i i ib b b

b b bf C f C g C aδ  (A4)

The integration of Equation (A4) from time t0 to tk can be described as follows: 
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where 
0

kti i

t
V g dt= −∫ , 0 0

0

Δ = ∫
k

b b
ti i b

bt
V C a dtδ , as the external disturbance δab is mainly caused by  

the sea waves which could be decomposed into many small components in periodic form, that is to  
say most of the disturbance may change periodically. Then after the integration of δab, 0biVΔ   
could be expressed approximately as zero, namely 0 0

0

0Δ = ≈∫
k

b b
ti i b

bt
V C a dtδ . Substituting 0biVΔ  in  

Equation (A5) gives: 
0 0=b bi i i

iV C V  (A6)

From Equation (A6) we can get the different values of Vi at different time, so at time tk1 and  
tk2 (t0 < tk1 < tk2) we have: 
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Combining Equations (A6) and (A7) and rearranging yields: 
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B. Connection between K0 and fc 

Performing Z-transform on Equation (27) results in the system’s transfer function: 

( ) ( )
( ) ( )
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− −
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(B1)

For the convenience of system frequency responses analysis, we transform Equation (B1) into S-domain: 
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− +
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ω

 
(B2)

where ( ) ( )01 1 cosa K Tω= − − , ( ) ( )01 sinb K Tω= − . From Equation (B2) we can get the amplitude-

frequency characteristic function ( )i TH e ω of the proposed HMM-KF: 
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When 0ω = , ( )i TH e ω  can get the maximum value, namely 1. As the cutoff frequency is usually d

efined to be where the amplitude is reduced to 1 2 0.707=  (i.e., −3 dB). Suppose ωf is the frequency 

when the value of ( )i TH e ω  decline to 1 1
2

⋅ , which satisfies: 
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Expanding Equation (B4), we have the circle frequency ωf [57]: 
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Then the system’s real cutoff frequency fc is: 
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where fs and Ts are sampling frequency and sampling period respectively. 
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