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Abstract: This study was dedicated to illustrating the significance of sensor manipulation 

in the case of terrestrial laser scanning, which is a field now in quick development. In fact, 

this quickness was mainly rooted in the emergence of new sensors with better performance, 

while the implications of sensor manipulation have not been fully recognized by the whole 

community. For this technical gap, the stop-and-go mapping mode can be reckoned as one 

of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency 

of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the 

stability of sample collections for the state-of-the-art technology of mobile laser scanning. 

This work reviewed the previous efforts of trying the stop-and-go mode for improving the 

performance of static and mobile terrestrial laser scanning and generalized their principles 

respectively. This work also analyzed its advantages compared to the fully-static and  

fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic 

measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review 

indicated that the stop-and-go mapping mode as a case with generic sense can verify the 

presumption of sensor manipulation as essential as sensor development. 

Keywords: stop-and-go; static terrestrial laser scanning; mobile terrestrial laser scanning; 

sensor manipulation 
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1. Introduction 

With the vigorous emergence of various laser scanners, the technique of light detection and ranging 

(LiDAR) has undergone developments and applications in an explosive fashion. As one of its important 

branches, terrestrial laser scanning has also evolved quickly. This evolution was driven by the relevant 

demands in an extensive sense, i.e., from fine-scale 3D object reconstruction [1] to sample acquisition for 

training large-scale parameter retrievals [2]. During this progress phase, it has also been gradually 

recognized that the traditional static terrestrial laser scanning (conventionally termed as TLS) [3] tends to 

suffer from low surveying efficiency. That is, as TLS scanners are often mounted onto tripods and 

their data-georeferencing operations are generally based on the location-indicating marks, moving such 

supporting bases and then re-placing the reference marks at each new position require a lot of labors. 

This somehow restricts promoting TLS for more extensive uses in practice. In order to overcome this 

problem, new versions of terrestrial laser scanning are needed. 

As a state-of-the-art surveying technology, mobile terrestrial laser scanning (MLS) [4] can serve as 

an alternative solution. Compared to TLS which mostly has only a laser scanner, the configuration of 

MLS generally incorporates an inertial measurement unit/global navigation satellite system 

(IMU/GNSS) or an inertial navigation system/global navigation satellite system (INS/GNSS) module, 

which can supply the real-time attitude/location information for directly georeferencing each laser 

echo. With the laser scanners and such attitude/location modules integrated together and fixed on the 

mobile platforms, the resulting MLS systems can continuously get point clouds for featuring the 3D 

spaces along the routes. Thus, the laborious relocation of the supporting tripods and the re-placement 

of the reference marks can be largely eliminated. In fact, the concept of MLS has been proposed long 

before, but its thriving progress mainly spanned the last decade [4]. During that phase, a large number 

of MLS systems aimed at various applications have been established. The representative MLS systems 

include the commercial ones like the Riegl VMX-250, StreetMapper, Optech LYNX and Trimble 

Cougar as summarized in [5] as well as the research-purposed ones like VLMS [6], Roamer [7]  

and Sensei [8]. 

Higher measurement efficiency, however, does not mean that MLS performs better than TLS in all 

of the aspects. MLS also suffers from some limitations in its practical usage. For example, with 

traveling bumps MLS often tends to present lower stability in the aspect of data georeferencing 

accuracy. In addition, as MLS often collects data in the way of parallel scan profiles, the sampling 

resolutions of MLS are easily influenced by the mutative velocities of the moving platforms. These 

limitations all impact the performance of MLS in object characterization, sometimes even rendering 

the necessitated spatial information missed. In contrast, for the above-mentioned items, TLS can 

perform better with higher stability and higher sampling densities. In fact, the strengths of TLS have 

already been noticed by the MLS community [9]. 

To synthetically embody the strengths of MLS and TLS, a flexible mapping mode of stop-and-go 

(sometimes termed as stop-scan-go or stop-go) has been assumed in the MLS mapping field [9,10]. 

The specific implementation of stop-and-go is to park the moving mapping platform when reaching the 

target plot and then carry out the mapping of the whole system-surrounding space. Then, the mapping 

system moves to the next target plot and the same operations are repeated. In fact, the theme of  

stop-and-go measurement mode has been proposed and applied in a variety of domains, such as for 
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solar energy accumulation in Mars Rover exploration [11] and for simultaneous localization and 

mapping (SLAM) in robot navigation [12]. Specifically for MLS, data collections in the stop-and-go 

mapping mode have been utilized as the reference data for, e.g., the calibration of the low-cost mobile 

mapping system [8] and the assessment of the mapping performance of different MLS systems [13]. 

Meantime, it is worth mentioning that the stop-and-go mode did not stem only from the process of 

improving MLS by incorporating the opposite strengths of TLS. It has been earlier recognized by the 

TLS field suffering from its low measurement efficiency, and some relevant trial works have been 

conducted (e.g., [14]). Collectively, in both of the fields, the stop-and-go mapping mode, compared to 

the fully-static (scanning while keeping still) and fully-kinematic (scanning continuously while moving) 

modes, has been primarily validated as a promising plan for surveying, particularly, special scenarios. 

However, the stop-and-go mapping mode emerged in the previous works still as a supplementary 

way for terrestrial observation in a whole sense. Theoretically, it can be reckoned that its roles have not 

been fully played. Aimed at this technical gap, this study was dedicated to investigating the potentials 

of this special mapping mode. Specifically, a relevant literature review was first run individually. Then, 

the principles of the static and mobile terrestrial laser scanning patterns were analyzed and compared. 

Next, its power was illustrated by a case study based on the Roamer [7] in the stop-and-go mapping 

mode. Finally, the strengths of its application were compared and summarized, and the aspects and 

means involving the enhancement of its application were discussed and suggested, respectively. 

2. Literature Review 

As mentioned above, the stop-and-go mapping mode has been proposed individually in the TLS and 

MLS fields aimed at their corresponding shortages. In other words, the stop-and-go mapping has been 

fulfilled based on TLS and MLS systems respectively. Hence, the literature reviews concerning these 

two fields were implemented separately. The strengths of the stop-and-go mapping mode compared to 

the fully-static TLS and fully-kinematic MLS mapping modes were also summarized. 

2.1. TLS-System-Based Works 

The so-called TLS-system-based stop-and-go mapping mode is generally implemented based on the 

traditional TLS systems, which briefly comprise laser scanners and GPS receivers. Even though IMUs 

sometimes are included, their low-accuracy pose information cannot be relied on. The transition may 

be involved with little adaptations concerning the components, but their dominant functional modules 

in hardware are still rooted in the original ones. Namely, TLS systems are just mounted on the mobile 

platforms for the convenience of their relocations during data collections. However, this minor change 

proved to release the field-survey engineers from the cumbersome repetitions of carrying-mounting-

scanning-dismounting-carrying a laser scanner from one targeted plot to another. After the stop-and-go 

mapping mode was introduced, the repetition process can be simplified into merely moving-scanning-

moving a scanner. The transition from carrying to moving can reduce the in-situ labor demands to a 

large extent, and the cancellation of mounting and dismounting can enhance the efficiency of mapping 

in a large amount. 
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Following the above-mentioned scheme plan, some trial works aiming at analysis, optimization and 

application of the stop-and-go mapping mode have been conducted, particularly in the robot perception 

and remote sensing fields. 

Jones [14] applied the stop-and-go mappings for the extraction of large scale digital terrain models 

(DTMs) within dangerous mine sites. The assumed TLS system comprised a Riegl Z420i laser scanner 

and a Trimble R8 GNSS Receiver, and it was mounted to a Caterpillar all-terrain loader. The software 

used to run the scanner was Riscan Pro. Once all of the scan datasets were registered, the resulted data 

was manipulated by multi-station adjusted (MSA). MSA ensured that no tilted sets of scan data were 

provided to users. 

Choi et al. [15] used the stop-and-go mapping mode to acquire an occupancy grid-based indoor map 

for mobile robot (mobot) path planning and navigation. The mobot used in the experiment contained a 

single ultrasonic sensor and a mono-vision system along with a notebook PC, which were mounted on 

a mobile base. 

Jensen et al. [16] assumed the stop-and-go data collections in principally addressing the question of 

generating large-scale 3D models from a set of 2D laser scans. The scanned data was acquired by the 

Biba-robot using a rotating SICK laser scanner. The robot was moving in a stop-and-go mode through 

the test site. The initial pose estimation was derived from odometry, which was then fed to the feature-

based pose correction and map generation. 

De la Puente et al. [17] referred to the stop-and-go mapping mode towards mobile robot’s enhanced 

performance in rescue missions. The pioneering 3AT robot Nemo in usage was equipped with a SICK 

LMS200 laser device mounted on top of a servo pan-tilt (Powercube Wrist 70, Amtec Robotics). A 3D 

scan was obtained by varying the tilt angle at a constant speed. A data server running on an onboard 

mini laptop computer sent the synchronized and updated information about odometry, PW70 and laser 

measurements at client’s cyclical requests within a capture procedure. 

Heikkilä et al. [18] developed a 3D calibration approach for the stop-and-go scanning in highway 

measurements. The method was not based on any GNSS or inertia-based systems. Four reflectors were 

installed on the vehicle, and the positions of the reflectors in the project’s 3D coordinate system were 

measured with total station when the vehicle was kept stationary and set into scanning. This provided 

sufficient information to determine the vehicle’s 3D pose (position and orientation). A laser scanner 

and four active targets (prisms) were installed on the system frame. The frame was ensured to be 

sufficiently steady and rigid. The system was first calibrated by measuring the prism targets. The laser 

scanner was controlled remotely by a laptop via TCP/IP using a WLAN connection. 

Elhabiby and Teskey [19] summarized the advantages of the stop-and-go laser scanning system by 

describing the procedure and equipment for data collection and processing. The TLS system assumed 

for data collection consisted of an automobile with a mounting rack on top. The rack contains three 

global positioning system (GPS) receivers (at the vehicle corners), and a mounted laser scanner system. 

There was also a fourth GPS/GNSS receiver, to be place over a known location (for the duration of all 

scans), to ensure the accuracy of measurement for the three vehicle-mounted GPS receivers. The use of 

a fourth receiver in this manner allowed for Real Time Kinematic (RTK) processing of GPS/GNSS 

data [20]. The strength of what was proposed was that GPS/GNSS information was used in lieu of 

manual alignment of adjacent scans, so that commonly used (and well-understood) ICP algorithm [21,22] 

was assumed for scan data registration. After the ICP algorithm is performed, GPS/GNSS data were 
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applied to geo-reference the registered scan data. This also saved time in collection and processing the 

data, because no external geo-referencing information was needed, other than what was collected 

during stop-and-go mapping. 

Pervölz et al. [23] used the stop-and-go manner in manipulating robotic systems for tele-exploration. 

The scan system comprised a standard SICK LMS200 2D laser range finder, which was mounted onto 

a robot platform Kurt3D. The scan system let rotate the laser scanner continuously around its vertical 

axis, but accomplished the 3D mapping in a stop-scan-go fashion, therefore acquiring consistent 3D 

scans as well. 

Nüchter et al. [12,24,25] assumed the stop-and-go mapping mode in the robot-based SLAM. The 

used system contained a SICK LMS 291 laser scanner, which was mounted on a mobile robot platform 

Kurt3D. The 2D laser range finder was attached in the center of rotation to the mount for getting a 

controlled pitch motion with a standard servo. With the operation modes similar with [23], the scan 

system let rotate the scanner continuously around its vertical axis, but accomplished the 3D mapping in 

a stop-scan-go fashion, therefore acquiring consistent 3D scans. A novel scan matching method based 

on the semantic information was also proposed. In addition to the typical ICP algorithm, the k-d trees 

method [26] has been proposed for performance enhancement. 

Chmelina et al. [27] designed a system able to most-efficiently (rapidly, automatically) acquire and 

georeference tunnel wall scans and images in a static (stop-and-go) measuring mode. The developed 

Orthos Plus prototype consists of a 3D laser scanner (Riegl and Faro scanners are currently supported), 

a digital camera (e.g., a Nikon D90) and a robotic total station (e.g., Leica TPS1200 series). The three 

sensors are installed on a light metal frame that can be attached onto a mobile platform (e.g., a hand 

driven trolley). The platform carries all further needed components, most basically the power supply 

unit and the control computer with WLAN display. 

Pfennigbauer et al. [28] used a RIEGL VZ-400 to scan the target area from different scan-positions, 

simulating a mobile scanning system working in the stop-and-go mode. For the simulation goal, the 

laser scanner mounted on a tripod and powered by its battery pack was controlled by using a laptop 

computer via Ethernet TCP/IP link. The internal GPS receiver was used for coarse determination of the 

different scan-positions. In lieu of employing the information from an INS to match the point clouds, a 

number of reference targets marked by the reflecting foil were used to determine the relative position 

and attitude of the scanner for the different scan-positions. With the stop-and-go-simulated multi-scans 

deployed, the detection of objects concealed by vegetation or camouflage tarps was facilitated. 

Carlberg et al. [29] used a set of ground-based data scanned in the stop-and-go manner for 

exploring how to fulfill fast surface reconstruction and segmentation. One of the datasets was acquired 

using a single 2D laser scanner to obtain terrestrial data in a “stop, scan, and go” way. The scanner is 

mounted on a stationary platform, rotates about its vertical axis, and incrementally scans the 

environment until it has obtained a 360° field of view. 

2.2. MLS-System-Based Works 

The MLS-based stop-and-go mappings are facilitated based on the typical MLS systems, commonly 

with reliable IMU or INS components supplying pose information. It looks like that the mapping is 

implemented just by parking the carrier supporting the MLS system for one-time measurement of the 
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plot of interest. The minor change is involved in a switch of the system setting from the profile-scan 

mode to the 360°-scan mode. Compared to the fully-kinematic MLS measurements, the stop-and-go-

resulting data tend to perform better in terms of mapping stability and accuracy. 

With the performance enhancement of laser scanner in sampling frequency and ranging accuracy, a 

trend of rotating or pitching the scanner while moving in laser-based mapping, especially in the field of 

robots for SLAM, once occurred so as to overcome the restrictions of the stop-and-go mapping fashion. 

This is evidenced by the studies of Wulf et al. [30–32] and the achievements of other research  

groups [33–36]. Some specific examples are presented as follows. 

Frueh and Zakhor [35] assumed a vehicle equipped with fast 2D laser scanners and a digital camera 

while driving at normal speeds on public roads, hence acquiring data continuously rather than in a 

stop-and-go fashion. That is, the data acquisition was performed in a fast drive-by rather than a  

stop-and-go fashion, enabling short acquisition times limited only by traffic conditions.  

Kümmerle et al. [36] used a Mobile Robots Powerbot with a SICK LMS laser range finder mounted 

on an Amtec wrist unit. The 3D data used for the localization algorithm was acquired by continuously 

tilting the laser up and down while the robot moved. The maximum translational velocity of the robot 

during data acquisition was 0.35 m/s. This relatively low speed allows the robot to obtain 3D data that 

is sufficiently dense to perform scan matching without the need to acquire the scans in a stop-and-go 

mapping mode. 

Then, the implications of the stop-and-go mapping mode were re-emphasized in the MLS domain. 

Asai et al. [10,37] integrated the stop-and-go and continuous scanning of the same rangefinder by 

registering the overlapped parts of range data for 3D outdoor scene modeling. The system equipped an 

omni-directional laser rangefinder (Riegl, LMS-Z360), a RTK-GPS (Nikon-Trimble, Log-PakII), and 

an INS sensor (Tokimec, TISS-5-40). The INS is interlocked with the RTK-GPS in order to correct the 

cumulative error by measuring the direction of movement derived from GPS data during movement. 

This hybrid sensor module facilitated acquiring the position and orientation with high accuracy by 

compensating the low measurement rate of the RTK-GPS and the cumulative error of the INS sensor. 

Hyyppä et al. [9] used MLS data collections in the stop-and-go mode instead of the conventional 

TLS mapping as the reference for urban tree change detection. The advantage is that a TLS system can 

be reduced in the campaigns of MLS mapping. The stop-and-go mobile mapping data collected by the 

Roamer system [7] was used as the reference data for calibration of the low-cost mobile mapping 

system [8]. The stop-and-go mobile mapping data has also been used for tree height monitoring [13], 

biomass estimation at individual tree level [38], tree crown attributes investigation [39], snow cover 

profiling [40] and culvert detection [41]. So far, the stop-and-go mode in the MLS-based mappings is 

mainly applied for providing the high-accuracy reference data. 

Colombo et al. [42,43] developed the software module with the stop-and-go mapping solution for 

rapid mobile surveys with pre-surveyed way-points, and this module was aimed at fulfilling large-area, 

sub-decimeter positioning for airborne LiDAR surveys. 

3. Principles Analysis 

The literature review primarily presented the promising roles of the stop-and-go mode in terrestrial 

laser mapping. However, different variants of terrestrial laser scanning show different features, and the 
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generic principles of TLS-system-based and MLS-system-based stop-and-go mapping modes need to 

be analyzed respectively. Then, with their individual strengths absorbed, more efficient stop-and-go 

mapping modes in mobile terrestrial laser scanning can be designed. 

3.1. TLS-System-Based Mode 

The typical schematic principle of the TLS-system-based stop-and-go mapping mode is illustrated 

in Figure 1(a). The components involve one laser scanner and some reference marks fixed to the TLS 

system frame, and the relative locations of the marks are measured in advance using, e.g., GPS. When 

the platform stops at the targeted plot, the laser scanner emits and receives laser pulses within its preset 

scan profile and simultaneously rotates continuously around its axis, therefore acquiring consistent 3D 

scans. The workflow of georeferencing the TLS-system-collected point cloud is shown in Figure 1(b). 

Figure 1. (a) The schematic diagram of TLS-system-based stop-and-go mapping principle. 

(b) The workflow of georeferencing TLS-system-collected point clouds. 

 

The first step of georeferencing is to convert the 1D ranging data recorded by the laser scanner into 

3D coordinates. The 3D calculation procedure is based on the projection model derived from the 

configuration of the TLS system and the reference marks. The specific transformation matrix can refer 

to [19] and [44]. However, the resulted data can only characterize each local 3D plot space. In order to 

represent the whole site for mapping, registration is necessitated. A number of registration algorithms 

have been attempted for acquiring a consistent 3D representation of the whole target space. The related 

3D registration methods such as ICP can refer to [21] and [22]. Further, in order to automate the ICP 

algorithms, a neighborhood search based technique proposed by Bae and Lichti [45] and a method by 

integrating image data to supplement scan data proposed by Dold and Brenner [46] were attempted. 

Yet, the resulted data are merely a representation of the mapped region with relative 3D coordinates. 

For practical applications, the absolute 3D coordinates need to be acquired. This is implemented by 

MSA, which can ensure that no tilted sets of scan data are provided to users. The 3D calibration is 

fulfilled based on the MSA marks accurately measured by such as RTK-GPS. 

3.2. MLS-System-Based Mode 

The typical schematic principle of the MLS-system-based stop-and-go mapping mode is illustrated 

in Figure 2(a). The system comprises a laser scanner and a set of IMU/GPS sensors, which are fixed on 
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the frame with the pre-determined relative locations. When the platform stops at the targeted plot, the 

laser scanner emits and receives laser pulses within its preset scan profile and simultaneously rotates 

continuously around its axis as TLS, acquiring consistent 3D scans in the end. The workflow of 

georeferencing the MLS-system-collected point cloud is shown in Figure 2(b). 

Figure 2. (a) The schematic diagram of MLS-system-based stop-and-go mapping principle. 

(b) The workflow of georeferencing MLS-system-collected point clouds. 

 

The process of georeferencing MLS-system-collected data is similar with the TLS-related one. The 

differences lie mainly on the IMU/GPS module, which can directly supply the pose information of the 

whole system. This change makes the setup of the mapping system simpler. This adding also facilitates 

a direct 3D projection, sometimes even with the absolute 3D coordinates output if the accuracy of the 

IMU/GPS is high enough. The specific transformation matrix can refer to [7] and [37]. In addition, in 

order to represent the whole region of interest, registration is necessitated as in the scenario of TLS-

system-based mapping. The related 3D registration methods such as ICP [21,22] are also available for 

the MLS-system-collected data registration. At the same time, the algorithms aimed at the special 

features of MLS have also been put forward, such as by Rieger et al. [47]. Finally, the MSA-based 

calibration also needs to be manipulated to render absolute 3D coordinates with high accuracy. 

3.3. Step-forwards in Principle 

From principle analysis, the specific schematic plans of the stop-and-go mapping mode based on 

TLS and MLS systems can be generalized as listed in Table 1. The already-implemented modes refer 

to three types, i.e., TLS-system-based 3D-scan when the platform is kept static (termed as TLS-based), 

MLS-system-based 3D-scan when the platform is kept static, and MLS-system-based 3D-scan but with 

sampling density adapted higher when the platform is kept static. As both of the MLS-system-based 

modes for most of the existing MLS systems now still need some manual operations and cannot transit 

directly from the fully-kinematic mapping mode, they are termed as MLS-based (M-1) and MLS-based 

(M-2) respectively. Now, the relevant studies are focusing on fulfilling MLS-based (M-2) mode. 

It is worth mentioning that from the perspective of efficiency, the two existing plans of MLS-based 

stop-and-go mapping up to manual switch-on/off manipulations are still far from enough. If automatic 

control is introduced, the stop-and-go mapping can be continuously implemented along with the  

fully-kinematic mapping. Accordingly, two different specific schematic plans for the stop-and-go 
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mapping mode can be figured out, as listed in Table 1. In these two schematic plans, MLS systems run 

profile-scans when moving and then run 3D-scans when parking. Their only difference is to maintain 

or raise their sampling densities in the “stop” pattern compared to the “go” pattern. Correspondingly, 

the two mapping modes in automatic way are termed as MLS-based (A-3) and MLS-based (A-4). 

Table 1. The specific schematic plans of the stop-and-go mapping mode based on TLS and 

MLS systems. 

 Go Stop Go Schematic term 

TLS - 3D-scan - TLS-based 

MLS 

- 3D-scan - MLS-based (M-1) 

- 3D-scan (higher sampling density) - MLS-based (M-2) 

Profile-scan 3D-scan Profile-scan MLS-based (A-3) 

Profile-scan 3D-scan (higher sampling density) Profile-scan MLS-based (A-4) 

Figure 3. (a) Illustration of lighting pole reconstruction based on the fully-kinematic MLS 

data; (b) The same lighting pole reconstruction based on the stop-and-go data mapped by 

the same MLS system; (c) Illustration of tree reconstruction based on the fully-kinematic 

MLS data; (d) The same tree reconstruction based on the stop-and-go data mapped by the 

same MLS system. 

 

4. Case Study 

The MLS system assumed for case study is the Roamer [7]. It comprises a FARO LS 880HE80 

laser scanner for 3D mapping, with its spatial trajectory derived by the NovAtel Synchronized Position 
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Attitude Navigation (SPAN) technology. In addition, Roamer can perform panoramic scans when the 

mobile platform is held static (i.e., stop-and-go), as FARO LS 880HE80 originally was designed to be 

a terrestrial laser scanner with a field-of-view 320° × 360°. 

The data for a study of built environment representation was collected at the Espoonlahti district in 

Southern Finland, a typical urban street environment, and the same data was used here. The Roamer-

based fully-kinematic MLS campaign was deployed on 10 June 2009. The Roamer-based stop-and-go 

mapping was conducted on 7 May 2009, but its scan resolution was set to 1/8 of the value specified in 

its fully-kinematic collection. That is, its maximum sampling rate can reach 960,000 hits per second. 

The advantages of the stop-and-go mapping mode can be illustrated by the case study in Figure 3. 

The cases involve the reconstructions of a lighting pole and a tree, which maintain almost the equal 

distances to the laser scanner in the two mapping modes. From Figure 3, it can be clearly learnt that the 

lighting pole reconstructed from the stop-and-go data is more complete than the opposite one from the 

fully-kinematic data. For example, the advertisement board is relatively-completely represented by the 

stop-and-go data, while the lighting pole branch is even missed in the fully-kinematic MLS surveying. 

For the same tree, its details like thin branches can be reflected by the stop-and-go mapping data better 

than the fully-kinematic Roamer MLS data, although in the latter scenario laser pulses were somehow 

impacted by the growing leaves. The two cases can intuitively validate the strength of the stop-and-go 

mapping mode. 

5. Discussions and Suggestions 

5.1. Summary of the Advantages—Compared to Fully-static TLS 

The principal advantage of the stop-and-go MLS/TLS compared to the fully-static TLS mapping 

mode is efficiency. This is also the strongest motive urging the researchers to develop the stop-and-go 

mode in the TLS field. The efficiency is reflected in multiple aspects as follows. 

First, the stop-and-go MLS/TLS can save time in the measurement campaigns. As reviewed in the 

Section 2.1, the stop-and-go MLS/TLS can replace the traditional operations of carrying-mounting-

scanning-dismounting-carrying with moving-scanning-moving. Specifically, it is only required to drive 

between subsequent scan sites, rather than move the equipment from one site to another. Moreover, the 

repeated manual manipulations of setting-up and taking-down the laser scanner from the tripod in each 

mapping site are omitted. All of these operation simplifications can save a lot of time. 

Second, the stop-and-go MLS/TLS mode can save expenditure in the field inventories. As the TLS 

systems have not received many adaptations, it can be reckoned that the cost in terms of hardware is 

constant. The reduction of expenditure is mainly up to the decrease in the number of survey engineers. 

In traditional fully-static TLS-based mapping, more than one crew is required, because sometimes scan 

equipments are so heavy to carry. Instead, the stop-and-go MLS/TLS mapping is vehicle-based and 

only requires a single operator in all cases. The reduction of labor cost can save a lot of money. 

Third, the stop-and-go MLS/TLS can add the richness of samples under the same measurement 

conditions. Compared to time and money saving, sample increasing in some cases is more important 

for training the information retrieval models. With the high mobility enabled by vehicles, the stop-and-

go MLS/TLS can cover larger areas. Larger areas mean more diverse samples with the representative 
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significances. More samples tend to mean more accurate and reliable models for information retrieval. 

In fact, sample collection is a conventional issue in the fields of earth observation and remote sensing, 

and thus, the stop-and-go MLS/TLS mode is particularly useful. 

5.2. Summary of the Advantages—Compared to Fully-Kinematic MLS 

The primary advantage of the stop-and-go MLS in contrast to the fully-kinematic MLS mapping 

mode is stability. This is also the reason for the researchers to re-highlight the stop-and-go mode in the 

MLS field. The stability is characterized by many factors as follows. 

First, the stop-and-go MLS mapping can maintain accuracy in the survey campaigns. Although the 

fully-kinematic MLS systems can theoretically achieve similar accuracies as the stop-and-go mapping 

mode does, the practices are not like so. The reason is that the fully-kinematic MLS systems are often 

driven on uneven terrains. The bumps of the platform may impact the performance of IMU/GPS unit. 

In contrast, the stop-and-go mapping mode is much more suited to producing consistent high quality 

and accurate scan data. 

Second, the stop-and-go MLS mapping can enhance the completeness in target representation. As 

the fully-kinematic MLS systems generally measure targets in the mode of parallel scan profiles, the 

details of targets between two adjacent scan profiles are often missed. This is intractable if the vehicle 

moves with varying speeds. But for the stop-and-go mapping mode, its scanning rate is constant. Thus, 

the targets can be better characterized by the laser echoes with stable angles, especially when the scan 

frequency is raised, e.g., in the scenario of MLS-based (M-2). Higher sampling density tends to render 

higher completeness of target representation. 

In addition, an important merit of the stop-and-go TLS compared to the fully-kinematic MLS is cost. 

The stop-and-go TLS systems are typically in lower expenditure than the fully-kinematic MLS systems, 

because the latter ones generally incorporate the IMU/GNSS modules. The pose/position modules able 

of facilitating the major functions of MLS are so expensive, and the prices of MLS systems are often 

tripled opposite to TLS. At the same time, the stop-and-go TLS systems are almost as efficient as the 

fully-kinematic MLS systems in gathering data. Thus, the low-price stop-and-go TLS systems are very 

attracting to the research groups with funding in shortage.  

5.3. Suggestions  

From the literature review and the case study, it can be derived that stop-and-go as an implementing 

way of sensor manipulation is a promising mapping mode for terrestrial laser scanning, and further, 

sensor manipulation is as important as sensor development in a generic sense. Stop-and-go performs 

with many strengths, e.g., with better efficiency than the fully-static TLS and with better stability than 

the fully-kinematic MLS. However, its current studies only reach the MLS-based (M-2) stage, which 

still demands the engineers to manually switch on/off or tune the laser scanner when arriving at the test 

plot. At the same time, the affiliated mechanism analysis and method development for its performance 

improvement are still far from enough. Thus, the stop-and-go mapping mode in the field of terrestrial 

laser scanning is yet to be explored. 

From the perspective of function enhancement, the particular features embedded in the stop-and-go 

data collection need to be explored. For example, does it have any differences with the conventional 
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fully-static TLS in terms of measurement mechanism? Then, aimed at such features, appropriate and 

powerful algorithms for information extraction need to be developed. For example, how to get balance 

between coping with high sampling density and ensuring data-processing efficiency? 

From the perspective of system coordination, more measures about automatic controlling need to be 

introduced into the stop-and-go mapping mode. For example, how to maintain continuous scanning 

from the “stop” mode to the “go” mode? Further, for this case, the software modules concerning data-

processing algorithms can robustly handle the datasets of different mapping modes, even in the pattern 

of on-line data processing when the vehicle moves. 

Specifically, the above-mentioned works can be carried out by implementing the mapping modes of 

MLS-based (A-3) and MLS-based (A-4). The advantages of utilizing the mapping modes A-3 and A-4 

in Table 1 are obvious. With A-3 and A-4, the target areas, where improved mapping quality (accuracy, 

density, stability) is required, can be automatically measured with 3D-scan mode. The vehicle stops, 

until then the system measures in the fully-kinematic mode. After the 3D scan, the vehicle continues. 

The 3D scan provides a rigid geometry, and other scan-profile data can also be fitted to that, i.e., the 

3D scan data are the reference data used for georeferencing of the fully-kinematic data. 

Overall, the next-step research plans potential for improving the stop-and-go mapping mode can be 

suggested. That is, more algorithms appropriate for the features of the stop-and-go mapping mode need 

to be developed, and the two enhanced stages (MLS-based (A-3) and MLS-based (A-4)) need to be 

fulfilled in the field of mobile terrestrial laser scanning in the future. 
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