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Abstract: Ubiquitous positioning is considered to be a highly demanding application for 

today’s Location-Based Services (LBS). While satellite-based navigation has achieved 

great advances in the past few decades, positioning and navigation in indoor scenarios and 

deep urban areas has remained a challenging topic of substantial research interest. Various 

strategies have been adopted to fill this gap, within which vision-based methods have 

attracted growing attention due to the widespread use of cameras on mobile devices. 

However, current vision-based methods using image processing have yet to revealed their 

full potential for navigation applications and are insufficient in many aspects. Therefore in 

this paper, we present a hybrid image-based positioning system that is intended to provide 

seamless position solution in six degrees of freedom (6DoF) for location-based services in 

both outdoor and indoor environments. It mainly uses visual sensor input to match with 

geo-referenced images for image-based positioning resolution, and also takes advantage of 

multiple onboard sensors, including the built-in GPS receiver and digital compass to assist 

visual methods. Experiments demonstrate that such a system can greatly improve the 

position accuracy for areas where the GPS signal is negatively affected (such as in urban 

canyons), and it also provides excellent position accuracy for indoor environments. 
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1. Introduction 

Ubiquitous positioning is considered to be the main goal for today’s Location-Based Services 

(LBS). While satellite-based navigation has achieved great advances in the past few decades and has 

been applied to both military and civilian applications in a mature manner, positioning and navigation 

in GPS-challenged areas has remained a largely unsolved problem and thus is currently receiving 

growing attention. The availability of rich imagery of large parts of the Earth’s surface under many 

different viewing conditions presents great potential, both in computer vision research and for practical 

applications [1]. We believe it can also bring enormous opportunities to the field of navigation and 

location-based services. Images associated with vision sensors have been researched for positioning 

and navigation purposes since early in the last century. They are superior to many other techniques 

because they can operate both indoors and outdoors. In recent years low cost built-in sensors on mobile 

devices (e.g., smartphones), especially high resolution cameras, have placed greater demand for a 

breakthroughs in their applications for location-based services (LBS). 

The main function of vision-based navigation is to determine the position and possibly the 

orientation of the imaging sensor, so as to recover the user’s (or platform) position which is assumed to 

have a known position and orientation relative to the sensor [2]. However, the significant difference 

between outdoor and indoor environments has divided the early stages of this research topic into two 

different groups. The traditional approach for outdoor vision-based positioning is to match the real 

time query image with reference images in a database. Whenever a match is found, the position 

information of this reference image is transferred to the query image and used as the user position. 

This is essentially an object-recognition and image retrieval problem. A great variety of work has been 

done to address the location recognition aspect by using different image matching techniques  

(e.g., [3,4]). A further improvement is to calculate the relative position between the query view and the 

identified reference view to obtain more accurate position estimation. In 2006 Zhang and Kosecka [5] 

first used a wide-baseline matching technique based on SIFT features to select the closest views in the 

database, then the location of the query view was obtained by triangulation. In [6] the orientation of the 

sensor was also estimated since the pose of the query view is obtained from plane-to-plane 

transformation. A building façade was used as dominant plane. On the other hand, indoor visual 

navigation has been considered a quite different field. Related research has mainly focused on robotic 

visual SLAM (e.g., [7]), and significantly different methodologies like structure from motion and stereo 

viewing [8] are adopted, which are not suitable/attainable to be extended to LBS for common users. The 

major reason for it lies in that indoor and outdoor environments create different scenarios, requirements, 

and sometimes contradictory conditions to the visual system. In terms of size indoor environments are 

limited to certain buildings while outdoor positioning requires regional or even global coverage. In terms 

of accuracy indoor positioning obviously poses a greater challenge. In terms of sensors used to assist 

vision sensors, satellite-based navigation system can only cover outdoors and WiFi is more likely to be 

used indoors. In terms of vision-based algorithms and methods, greater diversity can be found. For 

instance, the use of stereo vision to extract depth information is more suitable for indoors since the range 

for depth detection is limited by the baseline. The visual features are normally different: in outdoor 

environments artificial landmarks (e.g., buildings, road signs, etc.) feature primarily the edges and corner 

points, while for indoor environment features are richer in the shapes and textures. However, despite all 
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these factors, vision is by its nature capable of working in a complementary manner to satellite-based 

technology. Therefore, it is high time that a consistent framework of image-based visual navigation 

technology to be developed, which is capable of filling the gap in satellite-based system deficiencies, 

providing coverage from outdoors, urban canyons to indoor environments.  

Seamless vision-based positioning covering both indoor and dense urban environments has 

therefore attracted growing attention nowadays, especially for the research of navigation system that 

can be used on mobile platforms. A common approach is to use a visual device as the main or 

complementary sensor that collaborates with other on-board sensors. In [9] the authors present an 

algorithm for estimating a pedestrian’s location in an urban environment, and include data from GPS, 

inertial sensors, probability maps and a stereo camera. In [10] the authors utilize GNSS and  

map-matching for outdoor positioning; multiple sensors as well as signals of opportunity are adopted 

for the indoor environment. From the perspective of vision-based navigation, the major difference 

between these two approaches lies in that the former uses a stereo camera to directly extract depth 

information, while the second is based on a single camera and query image matching. Following these 

two main streams, many vision-related navigation solutions designed for GPS-degraded environment can 

be found (e.g., [11–15]).  

In this paper, we present a hybrid image-based positioning system that intends to provide a 

seamless indoor/outdoor positioning solution. The system is designed to be applied to mobile 

platforms such as smartphones and moving vehicles. It mainly uses visual input to match with  

geo-referenced images for positioning resolution, and also takes advantage of multiple onboard 

sensors, including a GPS receiver and a digital compass to assist visual methods in various aspects. 

The major contribution that distinguish this paper from other approaches in the literature lies in that the 

geo-referenced images function as a 3D map, which enables the position information to be obtained in 

six degrees of freedom (6DoF, namely sensor position and orientation) based on a single image.  

The function model with its stochastic model of the system have been developed and tested with  

real datasets.  

The paper is structured as follows: in the next section, the methodology of the system is described; 

then outdoor positioning and indoor positioning will be discussed, respectively, in greater detail;  

we present the experiment results in Section 5, while in the last section the concluding remarks  

are presented.  

2. Methodology 

Positioning is an essential component in navigation systems. It mainly functions in two different 

ways: absolute self-localization (e.g., GPS) and dead-reckoning (e.g., inertial navigation system). In 

this paper, we propose a hybrid image-based navigation system that is capable of self-localization in 

both outdoor and indoor environments. It requires a mapping process where images of the navigation 

environment are captured and geo-referenced. The main improvements in this work are to geo-reference 

image feature points and use these features as 3D natural landmarks for positioning and navigation. By 

matching the real time query image with pre-stored geo-referenced images, the 3D landmarks 

represented by feature points are recognized and geo-information can be transferred from reference 

image to query image through these common feature points. Final positioning is based on 
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photogrammetric space resection. To strengthen the robustness of the system, the main sensor camera 

has been calibrated for any biases. The inherent error such as mismatches and any error from the input 

go through a multi-level outlier detection process, including RANSAC, data snooping algorithms. 

More details can be found in our previous work [16]. 

One essential element of the system is image matching. The state of the art image matching 

algorithms usually consist of two parts: detector and descriptor. They first detect points of interest in 

the images being matched and select a region around it, then they associate an invariant descriptor or 

feature to each region. Correspondences may thus be established by matching the descriptors [17]. To 

suit the scenario of the system, we have adopted various image processing techniques: Harris corner 

detector [18] and SIFT [19] for feature-based image matching, and RANSAC [20] as well as  

area-based matching method for the detection of mismatches. 

2.1. Image Geo-Referencing and Mapping 

During the mapping stage, image feature geo-referencing is the core process. Different types of 

image features are used to cater different scenarios. In outdoor urban environments, artificial 

landmarks (e.g., buildings, road signs) feature primarily the edges and corner points. Therefore they 

are first surveyed in the field with derived Map Grid of Australia (MGA) coordinates. Then images are 

collected and the Harris corner detector is used to exact the corner features from these images. Among 

the big number of features points extracted, the ones that have been surveyed are identified from the 

feature list and associated with images with both 2D image pixel coordinates and 3D surveyed 

coordinates been recorded (e.g., Figure 1 and Table 1).  

Figure 1. Reference image No. 15: Corner points have been extracted by Harris corner 

detector and shown with red crosses; 4 geo-located corner points have been identified and 

shown in green circle. 
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Table 1. Geo-located corner points for reference image No. 15, X, Y in pixel and Easting, 

Northing and Height in meters. 

RefIM PointID X(pixel) Y(pixel) Easting(m) Northing(m) Height(m) 

15 807 83 108 336512.9 6245551 63.9 

15 811 106 184 336511.4 6245548 56.9 

15 806 154 49 336511.9 6245543 63.9 

15 805 280 76 336519.8 6245542 63.9 
 

For landmarks that have a certain volume in space, such as buildings, images of façades are  

geo-referenced. Each building is described by the contour information (corner coordinates and  

edges they intersect) and the geo-referenced images, including both the outdoor façades and the  

indoor environments.  

For indoor positioning and navigation, higher accuracy is required. Additionally, the texture of the 

indoor environment, which may contain furniture, walls, posters and curtains instead of corner features 

is different from the outdoors. Therefore, we have introduced SIFT feature points for geo-referencing 

in the indoor mapping stage. This method increases the density of geo-referenced feature points and 

does not rely on corner features. For better illustration, Wu’s VisualSfM software [21] is used to visualize 

the features (in Figures 2 and 3), but this software has not been used in data processing. 

Figure 2. Visualization of SIFT features for geo-referencing (point cloud) produced by 

Wu’s VisualSfM software from the reference images, which are shown by square patches. 

 

Figure 3. Panorama view of the mapped area in Figure 2. 

 

To produce geo-referenced 3D maps for indoor positioning, ground control points have been set up 

and the images of the navigational environment are collected. Then SIFT feature points are extracted 

from these images and feature matching is performed between images with overlapped areas to 

produce tie points. These tie SIFT feature points are then geo-referenced through the least-square 

solution of photogrammetric bundle adjustment. The geometric accuracy of the map depends on the 
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accuracy of geo-referencing. The overall flowchart for mapping is shown in Figure 4. At the current 

stage of the research, a local coordinate system is used for indoor environments. Using the geo-located 

façade information, the local coordinates can be transformed to the desired real world coordinate system. 

Figure 4. Flowchart for the mapping procedure. 

 

2.2. Image-Based Positioning 

During the navigation process, query images are taken wherever self-localization is needed. 

Although the method varies for indoors and outdoors, the processes for the two environments are 

based on the same principles: by performing the image matching between a real time query image and 

reference images, 3D coordinates are transferred through common features from reference images to 

the query image. The innovation is that these 3D features are used in the same way as ground control 

points are used. We give them the name pseudo ground control points (PGCP). By obtaining 3D points 

and their 2D positions on the query image, camera position and orientation of the query image can be 

determined through space resection. 

Here we use the classical method for position resolution: space resection based on a least squares 

solution of linearised collinearity equations. This method is normally used to compute the exterior 

orientation of a single image. This procedure requires known coordinates of at least three object points 

which do not lie on a common straight line. The theory lies in that the bundle of rays through the 

perspective center from the reference points can fit the corresponding points in the image plane in only 

one unique (camera) position and orientation [22]. 

One of the major characters for a least squares based solution is that it needs an initial value for 

each unknown parameter to start the adjustment iteration. Therefore, the GPS data provides the initial 

positions and compass chip on mobile devices registers magnetism in three dimensions, which gives 

initial orientation values. By using the least square adjustment, user position and camera orientation in 

6DoF can be achieved using vision measurements. 

The least squares models are listed as Equations (1) and (2). It provides highly accurate results in 

the presence of redundant measurements: 
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       (1) 

     
   1. (2) 

in which Equation (1) denotes the function model, Equation (2) the stochastic model and σ0 the a priori 

standard deviation of measurements.In Equation (1)   denotes the observation, image measurement of 

reference points in this case;   denotes the design matrix;   denotes the unknowns, camera exterior 

orientation in this case;   denotes the residues. In Equation (2)   denotes the variance covariance 

matrix of observations;    denotes a priori standard deviation and   the cofactor matrix. Using this 

model, the covariance matrix for the estimated camera external parameters     can be obtained using 

Equation (3), in which   represents the weight matrix. It is listed as:  

      
          

(3)  

Primarily the accuracy of camera external parameters is a function of point distribution and relative 

positions between the reference objects and the camera [23]. In our case, the relative positions change 

during navigation process, therefore the accuracy of positioning largely depends on the geometry of 

PGCPs. To evaluate the impact of geometry, the covariance of x will be simplified to: 

      
         (4)  

In fact, the elements in the trace of the matrix         are functions of the geometry only. In the 

GPS community, DOP values are used to represent the effect of satellite geometric distribution on the 

accuracy of a navigation solution. In our image-based positioning system, we give DOP values for 

resolved camera external parameters (position and orientation) to evaluate the precision, which is 

influenced by PGCP geometry. The diagonal of the matrix         is calculated as:  
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Then we give DOP values for 6DOF, which are calculated as follows: 

       
 
            

 
           

 (6)  
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in which the PDOP represents the position DOP, while the ADOP represents Orientation DOP. 
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Therefore, the main contribution of the system methodology is the use of geo-referenced feature 

points as pseudo ground control points for positioning resolution; and major factor that influences 

positioning accuracy is the geometry (number& distribution) of these PGCPs. Greater details of  

the positioning solutions in outdoor and indoor environments are presented in the following two  

sections, respectively. 

3. Outdoor Positioning 

In urban canyons or indoor areas, GPS positioning accuracy can be degraded because the signal 

may suffer from blockage, multi-path effects, etc. For single point positioning (SPP) used on people’s 

mobile devices, the accuracy can be 10 s of meters or worse. Therefore, image-based methods are used 

to mitigate the deficiency. However, if solely replacing GPS with image-based methods, retrieving 

images from a large image database that covers the whole navigation route will be time consuming and 

the computational load is not affordable for mobile devices. Therefore, we propose a multi-step 

solution: firstly we use GPS data to narrow down the search space; then a voting strategy is used to 

find reference images corresponding to the query view among the localized image space; finally, a 

hybrid technique is proposed that uses the measurements from GPS, digital compass and visual sensor 

onboard to calculate the final positioning result in 6DoF for outdoor environments. The overall outdoor 

positioning procedure is shown as follows:  

 Step1: Take query image with GPS and compass measurements; 

 Step2: Use GPS data to localize image space; 

 Step3: Retrieve from the candidate image space the reference image(s) that contain the scene 

corresponding to the query image. If no correspondence is found, go to step 1 with enlarged search 

space. If yes, continue; 

 Step4: Outdoor positioning resolution. 

3.1. Using GPS to Localize Image Space 

In the central database, we store the 3D maps in the form of reference images and their  

corresponding geo-information. We treat each building as a record and describe its contours with line 

segments which contain coordinates of both ends (corners). When a user is navigating (walking or 

driving) through the space, images are taken when position information is required.  

Whenever a query image is taken with its GPS position tagged, the initial position is given by the 

GPS tag and the initial orientation is given by the digital compass onboard (e.g., P for query image  

No. 3 in Figure 5). A circle will be generated with the center at current GPS tagged position, and the 

radius (r) determined by a threshold (n), which is a certain magnitude of the horizontal precision of the 

GPS reading (σ). By default n = 1: 

      (10) 

Then the system will search for landmarks (corner points or line segments) appearing within the 

circle. The mobile device will load the images related to the landmarks that have been found. For 

buildings, the algorithm calculates the shortest distance between center point and the building line 
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segments. If this distance is shorter than the radius, the segment line must cross with the circle. The 

corresponding building(s) images will be chosen and form an image space for further processing. 

Figure 6 illustrates the calculation process for user position P, and the resulting image space is shown 

in Figure 7. By using GPS information to narrow down the search space, the query image will need to 

match with a small image space rather than a whole image database at later stage. 

Figure 5. Query image No. 3 with GPS tag information: Zone 56, Latitude: 

−33°55'5.40120'', Longitude: 151°13'52.79880'', Altitude: 33.92 m; digital compass 

measurement: 34°NE. 

 

Figure 6. Given a GPS position data from mobile device at P shown with red dot, a circle 

is drawn with 20 m radius representing the search space. Line segment from building No. 7 

crossed with the circle, so reference images of building No. 7 are chosen for image space. 

 

Figure 7. Image space created for P including façade images of Building No. 7. 
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3.2. Image Retrieval Using SIFT-Based Voting Strategy 

The goal of this process is to retrieve, in the candidate image space, the reference images with the 

scene corresponding to the query image. If no corresponding image is found within current candidate 

image space, the procedure goes back to previous step and enlarges the threshold (n) to recalculate the 

crossed landmarks. And the images in previous image space are removed and new image space is 

produced. In the example of query image No. 3 at point P, image space in Figure 7 is removed because 

no corresponding image has been found, and a new image space is generated after the search space has 

been enlarged.  

Figure 8. SIFT features extracted from the query image No. 3. 

 

Figure 9. Reference feature database generated for the candidate image space: 13182 

features from 20 reference images in the image space. 

 

In the system this process identifies the target building and prepares the corresponding reference 

images for outdoor and indoor navigation. We first use a voting strategy to find candidate reference 

images, then check the geometric consistency to detect mismatches and remove mismatched reference 

images from the image space. First, the SIFT features are extracted for the query image (e.g.,  

Figure 8). Then a reference feature database is generated for the candidate image space. SIFT feature 

points are extracted from each candidate reference image and put into two sub datasets: keypoint 

database (F_database) and descriptor database (D_database). F_database contains SIFT keypoints’ 
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location, scale, orientation using four parameters, and the D_database contains 128 dimensional SIFT 

descriptors. Figure 9 gives the visualization of the feature database generated from the image space. 

Secondly, SIFT matching is performed between the query image and the newly generated reference 

feature database (Figure 10) to find corresponding reference images. A K-NN (here k = 3) search 

function is used to find the k nearest neighbours from the feature database for the feature points in the 

query image. Each correspondence adds one vote to the reference image it belongs to. The reference 

images with greater numbers of votes obviously have higher chance of containing common scene with 

query image. Therefore, by ranking in descending order of the number of votes, the top m (5 in our 

case) reference images are chosen as ones corresponding to the query scene and retrieved from the 

candidate image space. Specific building(s) that covered by the query view can also be identified. 

Figure 10. Image retrieval: 5 top ranked images have been identified from the image space 

with 20 reference images. Query image has a green border when the five top voted 

reference images have borders from dark red to light yellow, the darker the colour the 

higher rank it has (which indicates greater relevance). All top voted reference images 

indicates the same target building, BD No. 8. 

 

To improve the robustness of the system, a further step is to check to the correctness of the top 

voted images based on pair-wise geometric consistency. This process can detect any falsely 

ranked/selected reference images as well as remove mismatches. First RANSAC is used to estimate the 

homography (projective transformation) between the two images, and remove mismatches (Figure 11). 

A new method we proposed in previous research [24] that utilizes cross-correlation information to 

check the quality of the homography model built by RANSAC is used here to further ensure the 

correctness of matching. We calculate the cross-correlation   (Equation (11)) for each pair of inliers, in 

which     and    
  represent the intensity values of the two correlation windows, respectively, 

whereas      and       denote their average intensity. In Equation (11)         varies from −1 to 1, 

the closer to 1 the higher correlation, and here indicates the bigger similarity between two patches and 

greater possibility to be correct corresponding points. Therefore we calculate the cross-correlation for 

each pair of reliable matches (inliers) for every single matching process. An average correlation   is 

calculated for all the matched (reliable) points produced by one matching (one H is generated). If    

is close to 1, the estimated homography model H is very accurate and the two images are a  

correctly matched pair; the reverse would also apply. The threshold for   is set to 0.75 in the system.  
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In Figure 11 the score is higher than the threshold, which indicates it is a correct matched pair; while in 

Figure 12 the score shows the inverse situation. It can be easily observed that reference image No. 17 

indeed shares no common view with the query image, and it will be deleted from the reference list. If 

all the reference images in the current image space have been deleted, the procedure goes back to 

previous step (3.1) to recalculate. Therefore in this way the candidate image space is further filtered, so 

that it contains only the reference images with corresponding views in the query image. It narrows 

down reference images to four in the example: 

Figure 11. SIFT based matching between query image and the 2nd ranked reference image 

No. 15 with mismatches removed by RANSAC; Average correlation coefficient score 

  = 0.84. 

 

Figure 12. SIFT based matching between query image and 5th ranked reference image  

No. 17; Average correlation coefficient score   = −0.10. 

 

3.3. Outdoor Positioning 

In this section, we introduce a hybrid technique that uses the GPS as well as the digital compass 

measurements, and image-based positioning technology for outdoor positioning. In fact it deals 

specifically with urban environments with artificial landmarks. 

        
                

         
    

 
    

             
  

    
 
          

         
  

    
 
    

 
(11) 
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After reference images have been identified in the previous step, positioning is carried out based on 

the matching between the query image and identified geo-referenced images. Since the outdoor 

reference images are geo-referenced through the corner features, to ensure corners to be matched in the 

query image as well as to strengthen the robustness of matching, we apply a combined use of the 

Harris corner detector and the SIFT descriptor (referred by Harris/SIFT method). Firstly, the Harris 

corner detector is used to extract corner features from the query image and SIFT descriptors are 

computed at the positions detected by Harris detector on the query image. In the meantime, SIFT 

descriptors are also generated for geo-located corner features on the reference image that to be 

matched. Then feature matching is carried out between the two images based on SIFT descriptor 

matching. RANSAC is used to remove mismatches. As shown in Figure 13, 15 pairs of correct 

matches are found, among which four are geo-located corner points (No. 4, 8, 13, 15) that are 

identified in Figure 1 and Table 1. Therefore, the 3D geo-locations of these points are transferred from 

reference image No. 15 to the query image, which can be then used as PGCPs for positioning 

resolution. More PGCPs can be generated by matching the query image with all the corresponding 

reference images selected by previous step. The given query image obtained 6 PGCPs as illustrated in 

Figure 14. 

Figure 13. Query image matching with reference image No. 15 using Harris/SIFT method; 

Harris corner features are tagged by blue and red crosses respectively, and matched corner 

features using SIFT descriptor matching are shown by lines. 

 

After enough PGCPs have been generated, the methodology introduced in Section 2.2 is used to 

resolve the user position and orientation of the query image. Although space resection based on a least 

squares solution can provide a relatively accurate result, it requires a good initial value for the least 

squares adjustment to converge. This is where the raw GPS and digital compass measurements come 
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into play. Normally standalone GPS or AGPS is used on mobile devices, which can only provide either 

low accurate positioning or unstable performance in dense urban area. Therefore, the GPS provides the 

initial positions and compass chip on mobile devices registers magnetism in three dimensions, which 

gives initial orientation values. By using image-based positioning, user position and camera orientation 

in 6DoF can be achieved. For the query image, the computed result is shown in Figure 15. 

Figure 14. PGCPs generated for the query image No. 3, which are shown with yellow dots. 

 

Figure 15. Positioning result for the query image shown with green dot. The red dot 

indicates the location determined by the GPS, with the black circles show the process to 

enlarge the search space (1–3 times of its horizontal precision). 

 

4. Indoor Positioning 

Since the target building has been identified in Section 3.3, when a user walks into the building, the 

geo-referenced images of its indoor environment are loaded. Then real time images are taken, another 

image matching based on SIFT is carried out between the real-time query image and the  

geo-referenced images for position resolution (e.g., Figure 16). The RANSAC approach and the cross 

correlation information are used to ensure the correctness of matching. When any of the SIFT feature 

points from the geo-referenced image(s) are found to correspond with the ones on the query image, the 
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geo-information it carried can be transferred to its counterpart. Therefore, matched SIFT features on 

the query image obtain both image coordinates from matching process and 3D coordinates from the 

geo-referenced images. These coordinates can later define the positions of pseudo ground control 

points (PGCPs) for space resection based positioning in the final stage (e.g., Figure 17).  

Figure 16. Matching between real time query image No. 64 and geo-referenced map image. 

 

Figure 17. PGCPs (yellow dots) on real time query image No. 64. 

 

However, one major difference between outdoor positioning and indoor positioning is that the 3D 

object space coordinates of PGCPs are photogrammetrically determined, which are not accurate 

enough to be used as error-free reference or held fixed. Therefore they are introduced into the system 

as observed unknowns (pseudo observations) with a corresponding weight. We introduced modified 

space resection for indoor positioning resolution. The Gauss-Markov Model for with stochastic 

constraints is as follows: 

              ,         
   

    (12) 

              ,          
   

    (13) 

Combine Equations (12) with (13): 

 
  
  

  
 
 
   

  
  

   
  

  
     

      

       
  (14) 

in which   is a matrix containing partial derivatives with respect to the exterior orientation parameters;   

with respect to the three coordinates of the PGCPs;   contains the incremental changes to the initial 

values of external orientation parameters; and   contains the incremental changes to the initial values of 

ground coordinates of PGCP;    denotes the observation, image measurement of reference points in this 



Sensors 2013, 13 9062 

 

 

case,    is its corresponding weight;    denotes the pseudo observation, object space coordinates of 

PGCPs in this case,    is its corresponding weight;    and    denotes the residues. From Equation (14) 

we deduce that:  

                          
           (15) 

From Equation (15) we can clearly observe that the final positioning precision for indoors using a 

modified space resection model is affected by two major elements:   and  , which determined geometry 

(Equation (4)), and the accuracy of measurements: image measurement (  
    and 3D object space 

coordinates of Pseudo Ground Control Points (  
  ). The stochastic model is built based two main 

factors: SIFT feature extraction accuracy, and the geo-referencing accuracy during the 3D mapping process.  

5. Experiments 

In the experiment, a seamless positioning and navigation test from outdoors to indoors was carried 

out. We chose a path on the UNSW campus and entered a building then went back to the path. It has 

seven pre-surveyed GPS ground control points (GCPs) on the way, as well as buildings on both sides, 

which can simulate the situation of urban area. Images of the building facades as well as indoor 

environment (test scene) were recorded in the database and geo-referenced 3D maps were generated 

for positioning. Then a user walked along the path and entered a nearby building. The position of each 

epoch when images were taken and the trajectory are resolved based on the image-based system 

developed. The data is post-processed using Matlab 2011a and an orthophoto of the UNSW campus. 

5.1. Outdoor Navigation and Analysis 

During the outdoor test, a user holding a mobile handset walked along the path and took (query) 

images for self-localisation. The device for experiment was an iPhone 4 smart mobile phone, which 

integrates a backside-illuminated 5 megapixel rear-facing camera with a 3.85 mm f/2.8 lens, and 

employ an assisted GPS system (A-GPS) and a specialized integrated circuit chip as the iPhone’s 

digital compass for navigation. The 'user' passed by each of the 7 GPS GCPs and took images of the 

environments on the seven sites, and randomly took another 11 images along the path. Totally 18 

epochs were resolved. 

Firstly, the performance of outdoor image-based positioning with its accuracy was investigated by 

calculating the user positions and orientations at the 7 GPS GCPs through the proposed method and 

compared them with surveyed true values. The accuracy of image-based method and standalone GPS 

is also compared. The 6DoF results are shown in Table 2 and the accuracy revealed by RMSE in  

Table 3. It can be seen that the GPS measurements in the urban environment are poor, around 20 m in 

our experiments. By using the proposed method, the accuracy has been improved to around 10 m 

revealed in the test.  

Secondly, the overall trajectory, including 18 epochs, is calculated and shown in Figure 18 

(horizontal) and Figure 19 (vertical). It can be easily observed that horizontally the GPS measurements 

present a few jumps (e.g., epoch No. 2) and intersected track, which are not true; while the image-

based method provides a trajectory closer to the true trajectory. Meanwhile, the height information 

provided from GPS deviate largely from true values, while the system results are much improved. 
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Table 2. System calculated positioning results in 6DoF for the 7 GCPs. 

Epoch ID Easting(m) Northing(m) Height(m) 
Omega 

(degree) 

Phi 

(degree) 

Kappa 

(degree) 

1  336269.08  6245563.38  26.67  −89.30  1.44  71.35  

2 336291.39  6245554.18  23.78  −119.22  −1.25  96.66  

8  336435.40  6245546.05  30.97  −123.64  −5.74  117.53  

11  336478.50  6245533.39  36.99  −103.93  −159.27  −64.17  

12  336522.79  6245543.21  49.73  −139.19  173.80  −136.67  

13  336562.16  6245522.26  44.43  −92.81  −12.54  −80.99  

18  336511.91  6245409.58  48.33  58.16  153.63  12.12  
 

Table 3. RMSE of GPS measurements and system calculated positions using surveyed 

values as true values. 

RMSE  Easting(m) Northing(m) Height(m) 

GPS measurements 20.37 19.59 21.00 

Calculated  8.43 10.31 7.20 

Figure 18. Red dash line shows the trajectory obtained from the build-in GPS receiver, 

while green dash line shows the calculated results; blue triangles represent the true GCPs 

that user passed by. 

 

Figure 19. Height: blue icons represent true values; red ones are altitude measured by the 

device; green ones indicate the calculated results. 
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Thirdly, we investigate the theoretical precision for the image-based position resolution in 6DoF by 

using their estimated standard deviation, as shown in Figures 20 and 21. It can be observed that most 

of the epochs have a 0–5 m standard deviation on each direction, while the orientation standard 

deviation mostly between 0–10 degrees. The theoretical precision is consistent with the accuracy 

evaluated by the seven check points. Moreover, it is noticed that certain epochs have very low 

precision (large standard deviation) compared with other epochs (e.g., Epoch No. 1, 2, 10, 13). The 

reason behind is poor geometric distribution of PGCPs on query images. Such a phenomenon has also 

been found and further investigated in the indoor experiment. The main contributing factors that 

determine the PGCPs geometry are the geo-referenced 3D feature density of the reference images, the 

quality of image matching and most importantly the covered scene of the query image. Therefore one 

possible way to improve the outdoor positioning performance is to include greater number of corner 

features with better distribution when taking the query image. In other words, such image-based 

method performs the best in areas where artificial landmarks are sufficient (like deep urban canyons), 

which is a complementary character for satellite-based navigation system. 

Figure 20. Position precision for the 18 epochs. 

 

Figure 21. Orientation precision for the 18 epochs. 
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In conclusion, for SPP used on people’s mobile devices in urban canyons, the accuracy can be 10 s 

meters or worse, and varies significantly depending on the signal. Image-based methods, on the 

contrary, can provide stable results with relatively better accuracy as long as enough visual features are 

covered by the query image. 

5.2. Indoor Navigation and Analysis  

The outdoor navigation passed by Building No. 8, and related indoor reference images were loaded. 

Image-based positioning was carried out in the mapped indoor area of Building No. 8. The motivation 

of the paper is to design a system that can be easily applied to mobile platforms such as smartphones 

and moving vehicles. Besides, in the limited space of the indoor environment, we need to evaluate the 

performance based on a clear trajectory, which means higher sampling rate is required. Therefore in 

the second experiment, a calibrated video camera (Logitech Webcam Pro2000) was mounted on a 

moving vehicle with sampling rate of 1 Hz. Its relative position to the vehicle was fixed, which means 

the experiment was partially controlled: camera height Z:−0.725 m. We did the positioning by 

extracting image frames from the video and match with the geo-referenced images frame by frame. 

Each frame is an epoch; a position in 6 degree of freedom (6DOF) was calculated. This experiment 

aims at evaluating the indoor positioning accuracy as well as the main factors that determine 

positioning accuracy of the system in general. 

Figure 22. PGCPs on epoch No. 79, which failed to give a position result. 

 

From the video, a total 83 epochs (frames) were generated and calculated, 20 epochs failed to 

determine the camera position, which is failure rate at 24.1%. It is observed that the failed results all 

come from insufficient PGCPs (e.g., Figure 22), and a normal resolution need more PGCPs that are 

evenly distributed in the scene (e.g., Figure 23). It is noted that with greater number of PGCPs are 

required for indoor positioning than that of outdoor because of the modification of function model. 

As GPS GCPs are not available in indoor areas, we use commercial software Photomodeller to 

determine camera positions and then use them as references to evaluate the system produced results. 

Within 10 m distance, the software can normally achieve centimeter level accuracy. From 

Photomodeller 60 reference epochs were generated and the two systems have 55 epochs in common. 

The trajectory of indoor navigation is shown in Figure 24 (horizontal) and Figure 25 (vertical). The 

RMSE of the calculated positions is shown in Table 4. 
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Figure 23. PGCPs on epoch No. 2, which gave a position result. 

 

Table 4. RMSE for indoor positioning. 

RMSE X(m) Y(m) Z(m) 

Calculated 0.126 0.281 0.137 

Figure 24. Two dimensional trajectory of indoor navigation recovered by the image-based 

system (blue line) with reference to the Photomodeller results (red line). 

 

Figure 25. Z positions of indoor navigation calculated by the system (blue dots) with 

reference to the controlled value (red line). 

 

It can be observed that the accuracy of indoor positioning is round 20 cm level. From Figure 25 it is 

easy to discover that the positioning accuracy in Z varies largely on the first few epochs, so we hope to 

find the reason behind the accuracy fluctuation. From Equations (4) and (15), it is identified that the 
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major factor that influences the positioning accuracy is the PGCP geometry. To test the correctness of 

the theory, ZDOP (Equation (6)) of epochs 1–20 is calculated and shown in Figure 26. By comparing 

Figure 26 with Figure 25, it can be discovered that big DOP values, which means low precision, is the 

main contributing factor to the inaccurate results (e.g., epochs No. 5 and 14). And unevenly distributed 

texture leads to such an occasion. A possible solution is to set up artificial marks in areas where no 

texture can be found, such as blank walls. 

Figure 26. ZDOP of epoch 1–20. 

 

6. Conclusions  

In this paper, we have presented a comprehensive system that adopts a hybrid image-based method 

with combined use of onboard sensors (GPS, camera and digital compass) to achieve a seamless 

positioning solution for both indoor and outdoor environments. The main contribution of this paper is 

the use of geo-referenced images as 3D maps for image-based positioning, and the adoption of 

multiple sensors to assist the position resolution. Various image matching methods are used for 

different scenarios. Experiments have demonstrated that such a system can largely improve the 

position accuracy for areas where GPS signal is degraded (such as in urban canyons). The system also 

provides excellent position accuracy (20 cm) for indoor environments. 

The nature of such system has also been studied. The final position accuracy is mainly determined 

by the geometry (number and distribution) of the identified geo-referenced features (PGCPs). 

Therefore, the geo-referenced 3D feature density of the reference images, the quality of image 

matching and most importantly the covered scene of the query image become the essential elements of 

the solution. The paper also reveals the major challenge for such system, that is, it largely depends on 

the texture of the view. For outdoor environments, the shortage of texture because of poor lighting 

conditions may pose tremendous challenges to the system. In the case of changed landscape, which is 

more likely for indoor environments, such as change of posters or movement of furniture, such an 

approach will suffer from incorrect results due to mismatches. It is noted that for indoor positioning, 

another limitation is that a GPS signal is not available. The current approach is to use the previous GPS 

data to identify the building and load all the map images of the interior of the building for indoor 

navigation. For further investigation, we intend to incorporate WiFi signal and used it in the same way 

GPS has been used: provide rough location to help narrow down the search space of map images and 

initial value for space resection. Besides, the use of WiFi can also reduce the chance of misidentified 

locations. Future work will focus on such aspects. 



Sensors 2013, 13 9068 

 

 

We believe that the system has potential to overcome a deficiency of the satellite based  

solution, since it targets GPS-challenged environments and works especially well for places with 

buildings/artificial landmarks and indoors. The required hardware, a single camera integrated with a 

GPS receiver and digital compass, can be easily found on people’s mobile devices (smart phones, etc.). 

With the boom in LBS and growing attention to geo-spatial techniques for everyday life  

(e.g., GPS-tagged image), we hope such technologies can bring vision-based techniques for position 

and navigation to a new level and finally achieve ubiquitous positioning. 
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