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Abstract: Identification of robot kinematic errors during the calibration process often 

requires accurate full pose measurements (position and orientation) of robot end-effectors 

in Cartesian space. This paper proposes a new method of full pose measurement of robot 

end-effectors for calibration. This method is based on an analysis of the features of a set of 

target points (placed on a rotating end-effector) on a circular trajectory. The accurate 

measurement is validated by computational simulation results from the Puma robot. 

Moreover, experimental calibration and validation results for the Hyundai HA-06 robot 

prove the effectiveness, correctness, and reliability of the proposed method. This method 

can be applied to robots that have entirely revolute joints or to robots for which only the 

last joint is revolute. 

Keywords: full pose measurement; robotic manipulator; robot calibration 

 

1. Introduction 

Advanced applications such as off-line programming, robot-based measurement, and special  

robot-assisted surgery use highly accurate robotic manipulators. In order to satisfy the accuracy 

requirements of these applications, robots should undergo a calibration process, requiring practical full 

pose (position and orientation) measurements of robot end-effectors. The measurements are then used 
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to identify robot kinematic parameters (unknown or approximately known). To acquire a full pose 

measurement of a robot end-effector (particularly the orientation one), previous researchers have used 

appropriate measurement devices that are expensive, relatively slow, and difficult to set up. Therefore, 

the aim of this work was to build a new method of full pose measurement that is accurate, easy to 

apply, and less time consuming. 

Several authors have presented a non-contact full-pose measurement of robot end-effectors using 

visual systems [1–9] which utilize two cameras to capture 3D images [2,3,7], but the accuracy is low. 

In order to enhance identification speed and reliability, other researchers put markers, grids [4], or light 

tripe [5,6] on targets. Other systems involved cameras fixed on end-effectors to view targets more 

closely instead of zooming, which reduces a camera’s field of view [8,9]. These visual systems still 

have limitations for accurate measurement of position and orientation of robot end-effectors. 

Omodei et al. designed an optical device for full pose measurement with greater accuracy, and 

applied it in the calibration of a SCARA robot [10]; this device is specific and cannot be utilized for 

general robot types. Everett and Driels attached a special apparatus to the last robot link that has an 

arrangement of intermediate points, and end-effector full pose measurements are obtained based on 

these points [11,12]. Everett [11] utilized a single point sensor technique and an orientation fixture to 

collect the full pose (position and orientation) of robot end-effectors, while Driels used a coordinate 

measuring machine (CMM) to measure the center positions of five balls arranged on specially 

designed end-effectors [12]. Both the methods of Everett and those of Driels are reliable for robot 

calibration, but they have disadvantages due to the manufacturing costs of the special tools attached on 

the last robot link; the tools need to be pre-calibrated before use, making the measurement process 

slow, laborious, and time-consuming. Most recently, Nubiola et al. [13] proposed a full pose 

measurement method of robot end-effector using a single telescoping ball-bar and two planar fixtures, 

each fixture bears three magnetic cups which are located at the vertices of an equal triangle. This 

device has a hexapod geometry. This method [13] has some advantages such as highly accurate 

measurement, low cost and practical applications. However, it would be more perfect if one could 

enlarge the measurement range, reduce laborious involvement, eliminate the need for prior calibration 

of fixtures, and increase the number of measurable orientations. 

This research proposes a new method for full pose measurement of end-effectors for robot 

calibration. This method provides a robot’s full pose based on a set of discrete points on a circular 

trajectory, measured by a non-contact 3D coordinate measuring device (e.g., a laser tracker). Devices 

that utilize laser interferometry are widely used due to their high accuracy, fast measurement, large 

measuring range, and ease of use [14–17]. For robot configuration, the trajectory of a target fixed on a 

robot end-effector (tool) is measured when the end-effector is rotated uniquely; in this way one could 

obtain an arc of a circle and its center point O located on a rotation axis. An orthogonal vector of the 

rotation plane (which contains the arc of the circle) determines the z axis of the coordinate frame 

assigned to end-effector {E}. A vector connecting an initial point O with a terminal point P1 (Figure 1) 

determines the x axis of frame {E}, and axis y completes this orthogonal coordinate system. The 

proposed method benefits from the high accuracy of available 3D point measuring devices, and can be 

automated; therefore the application of the method is simple, relatively fast, and easy to set up. It also 

does not use any special tools that have additional manufacturing costs or need pre-calibration. The 

measurement accuracy of the method is evaluated by comparing deviation between two frames {E} 
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and {E’} that are fixed on the robot end-effector, where frame {E} is computed by the proposed 

method, while frame {E’} is obtained by robot forward kinematics. The accuracy of the proposed 

method is evaluated via simulation on a Puma robot, and is demonstrated via experimental calibration 

on a Hyundai HA-06 robot.  

Figure 1. Basic principle of the measurement method. 
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In Section 2, the principles of the measurement method are presented and the plane and center 

points of rotation are identified. Section 3 presents an evaluation of the measurement accuracy of the 

method via a simulation on Puma robot, while Section 4 presents experimental calibration results for 

an HA-06 robot with full-pose measurements obtained by the proposed method. Section 5 presents  

our conclusions. 

2. Principle of the Measurement Method  

The proposed measurement method needs to determine two features: the rotation axis of the last 

robot joint and rotation center for the acquired position, and an orientation of the robot end-effector 

(i.e., coordinate frame {E}) at every robot configuration. The basic principle of the measurement 

method is specified in three steps (Figure 1). In the first step, the measured trajectory of a target on a 

robot tool is a set of discrete points that lie on an arc of a circle when the last joint of the robot moves. 

In the second step, the rotation plane that contains the arc is identified. Finally, the center of the 

rotation situated on the last robot joint is also determined. The two features, which include the 

orthogonal vector of the rotation plane and the center of the rotation, determine the origin position and 

orientation of the coordinate frame {E} with respect to the sensor frame {S}. The two computation 

steps of the proposed method are identification of the plane and center point of rotation.  

2.1. Identification of Rotation Plane 

In order to establish a rotation plane, the last joint of an N degree of freedom (dof) robot is rotated 

while the other joints are locked. A target that is fixed on the robot end-effector generates an arc of a 

circle in Cartesian space; this arc contains the set of m positions of the target, which corresponds to the 

m angle positions of the last joint. A rotation plane that fits to this set of m points could be identified 

by applying a least squares algorithm.  
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A form of a rotation plane equation in Cartesian space can be presented as follows [18]:  

z Ex Fy G   , (1)  

where x, y, z are coordinates of points of the rotation plane, and E, F, G are coefficients of the rotation 

plane, which must be identified. 

A plane, which fits a set of measured points (xi, yi, zi), i = 1,…, m, is obtained by solving the 

minimization problem for which the objective function is: 

2
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z k
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J z z


  . (2)  

The solution for Equation (2) in terms of the coefficients E, F, G can be found as follows: 
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the average values of coordinates in the set of m points on the arc of circle along directions x, y, z are 

computed as follows:  
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The covariance values in Equation (3) can be found as follows: 
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where m is the number of measured target points corresponding to m positions of the last robot joint N. 

Figure 2. Point cloud transferring from frame Oxyz to frame O1x1y1z1. 
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The fitting plane is obtained by minimizing the objective function in Equation (2) in terms of the z 

coordinate of a sensor reference frame {S}. Therefore, in order to increase the accuracy of the fitting 

(or eliminate the systematic errors in the z axis), the measured points (point cloud) have to be 

transferred to another coordinate frame O1x1y1z1 such that the cloud of m points locates very closed to 

the plane O1x1y1 (the plane ψ in Figure 2) [19]. For simplicity, the frame O1x1y1z1 is going to be 
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constructed for a case m = 6 including measured points P1, P2, P3, P4, P5 and P6 as in Figure 2. First, 

the farthest three points (P1, P3 and P6) among the six points are selected. A plane ψ, which contains 

the three points, is obtained. A normal vector of the plane determines the axis z1. The axis x1 is defined 

by unit vector        
              

           , then the axis y1 completes the orthogonal coordinate frame O1x1y1z1 

by the cross product of the known vectors: y1 = z1 × x1.  

Note that the frame O1x1y1z1 is arbitrarily located with respect to the reference frame Oxyz (sensor 

frame {S}). The points P1 – P6 are transferred to the frame O1x1y1z1. A plane fitting these points is 

obtained. Then, a circle that is on the identified plane and contains the points is also determined (see 

Subsection 2.2). The equations of the plane and the circle, which are currently expressed with respect 

to the frame O1x1y1z1, are going to be transferred back to the reference frame Oxyz for further using in 

the next step (see Subsection 2.3). As a result, an approximation of 3D point cloud using a plane and a 

circle will eliminate systematic errors in terms of the z axis of the reference frame. 

2.2. Identification of Rotation Center  

Theoretically, the trajectory of a point on a rotating rigid body about a fixed axis is a circle. This 

circle is on an orthogonal plane of the fixed axis. However, in practice, due to some factors (for 

examples assembly tolerance between spindle and bearing, vibration, measurement noise and so on) 

the trajectory can be a general curve (for example, an ellipse, circle and so on). If we assume that the 

deviation between the curve (ellipse) trajectory and the theoretical circle trajectory is sufficiently 

small, the deviation is then considered as noise. Therefore, a circle trajectory model will be used to fit 

these points. 

After the above rotation plane is obtained, a least squares algorithm is applied to identify a circle 

that is on the identified rotation plane and contains the set of m measured points [18]. 

A standard form of a circle equation is as follows: 

2 2 2

c c( ) ( )x x y y r    , (7)  

where (xc, yc) and r are the center and radius of the arc of the circle, respectively.  

The circle Equation (7) can be rewritten in the following form: 

2 2w x y Ax By C     , (8)  

The circle, which contains the set of measured points (xi, yi, zi), i = 1,…, m, can be obtained by 

solving the minimization problem for which the objective function is: 
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(9)  

A solution of Equation (9) in terms of the coefficients A, B, C can be computed as follows: 

2

wx yy wy xy

xx yy xy

A
   

  






, 
2

xx wy xy wx

xx yy xy

B
   

  






, . .C w A x B y    
(10)  

where the average value w  and co-variances in Equation (10) are computed as follows: 
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and the values of         , σxx, σyy, σxy are obtained from Equations (4–6). m is the number of measured 

points of the target when rotating only the last robot joint N. 

In this step the rotation plane is identified. The center point of rotation can also then be identified 

after some basic manipulation from Equation (8) to Equation (7). The two features of the measured 

point set are then available for the next derivation step of full-pose measurements. 

2.3. Derivation of Full Pose Measurements 

A system consists of a robotic manipulator with N dof and a 3D point sensing device as shown in 

Figure 1. The measurement process is executed in the following steps: first, at a specific robot 

configuration, a set of m Cartesian positions of target on end-effector is captured in terms of the sensor 

frame {S}. Next, a rotation plane and the center of an arc of a circle that fits these points are identified 

(see Subsections 2.1 and 2.2). Finally, a full pose measurement of the end-effector is derived by the 

following procedure:  

-  The robot configures itself such that a target on the end-effector comes to specific position P1. 

-  All robot joints are kept fixed except the last one, N. Next, the last joint is rotated in a positive 

direction such that the target comes to points P2,…, Pm (m ≥ 3), and a set of these points are 

recorded. 

-  The set of points P1,…, Pm are fitted with a plane in Cartesian space (see Section 2.1). 

-  On the determined plane, the arc of the circle that fits the set of points is identified (see Section 

2.2), and its center O is also determined. 

-  An orthogonal vector of the rotation plane n , which has unit length (     ), defines the axis 

zE of coordinate frame {E}. A vector that connects center point O and point P1,      
            

           

defines the axis xE of the frame {E}, Finally, the axis yE completes the orthogonal coordinate 

frame {E} by the cross product of the known vectors: yE = zE × xE. 

-  The full pose of the end-effector (i.e., the pose of frame {E}) is described with respect to the 

sensor frame {S} as in the following transformation matrix: 

1

0 0 0 1

E E ES

E

 
  
 

x y z p
T , (13)  

where the relative position of frame {E} with respect to frame {S} is determined by a column 

vector of coordinates of point P1: p1 = [xP1 yP1 zP1]
T
. 

Transformation from the last link frame {N} to the tool frame {E} (Figure 1) requires the following 

basic transformations [20]: rotation about axis z with an angle φ; translation along axis x with distance 

aN; and translation along axis z with distance dN + 1 (refer to [20] for more details). 
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3. Evaluation for Measurement Accuracy 

The measurements acquired by the proposed method for the robot calibration process should have 

an accuracy level. Therefore, it is necessary to evaluate the accuracy of measurements before applying 

them in the calibration process. This evaluation is performed by comparing deviation (error) between 

two coordinate frames {E} and {E’}, where frame {E} is computed by the proposed method, and 

frame {E’} is computed by the direct forward kinematics of the robotic manipulator. Criteria for 

comparison are: average position errors computed by Equation (14); standard deviations of these 

position errors computed by Equation (15); average Euler angle errors (order x, y, z) computed by 

Equation (16); and standard deviations of these Euler angle errors computed by Equation (17): 
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where (xE, yE, zE) and (           ) are the relative coordinates of the origins of frames {E} and {E’} 

with respect to the sensor frame {S}, respectively. (αE, βE, γE) and (           ) are Euler angles of 

frames {E} and {E’} with respect to the sensor frame {S}, respectively [20]. x , y , z  are average 

position errors between the origins of frames {E} and {E’}. σx, σy, σz are standard deviations of these 

position errors between frames {E} and {E’}.  ,  ,   are average Euler angle errors of frames 

{E} and {E’}. σσ, σβ, σγ are standard deviations of these Euler angle errors between frames {E} and 

{E’}. g is the number of measured robot configurations. 

The accuracy of measurements acquired by this method can be evaluated via simulation for a 

specific robot. The typical Puma manipulator (Figure 3) was utilized in this evaluation process. The 

nominal model and corresponding Danevit Hartenberg (D-H) parameters of the Puma robot are 

presented in detail by Craig [20]. Applying the proposed method above, full pose measurements of 

robot Puma are obtained at a number of g = 30 robot configurations. The forward kinematic 

transformation determines the full pose of frame {E’} with respect to frame {S}. To compute the full 

pose of frame {E}, we rotate the last joint through m = 6 angle positions in positive angle increments 

of 20 degrees; a number of 6 target positions in Cartesian space can then be obtained, and full pose 

measurements of frame {E} with respect to frame {S} are then determined by the proposed method. 

Because measurement noise always exists in a practical measurement process and affects the accuracy 

of measurements, in this simulation Cartesian target positions should be corrupted by adding a (3 × 1) 

vector of random measurement noise values (Gauss distribution N[0,σ] with standard deviation  

σ = 0.01 [mm]).  
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Figure 3. Robot PUMA and fixed link frames. 
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Tables 1 and 2 present the computed comparison results. These results show that position and angle 

Euler errors are sufficiently small. Therefore, full pose measurements of the robot end-effector 

obtained by the proposed method are accurate enough for application in robot calibration. 

Table 1. Origin position errors between frames {E} and {E’} for 30 robot configurations.  

Position Error x  [mm] y  [mm] z  [mm] 

Average value  x  = 0.0024074 y  = 0.0012843 z  = 0.0036070 

Standard deviation 
x  = 0.0088443 

y  = 0.0117850 
z  = 0.0086101 

Table 2. Euler angle errors between frames {E} and {E’} for 30 robot configurations. 

Angle Error   [deg]   [deg]   [deg] 

Average value   = 0.0074211   = −3.315 × 10−5   = 0.0063015 

Standard deviation   = 0.0319170 
  = 0.005819 

  = 0.0345080 

4. Application of the Measurement Method in Practical Calibration  

In order to identify robot kinematic errors we must first measure the position and orientation of the 

robot end-effector. This study applied the proposed measurement method in an experimental 

calibration for a Hyundai HA-06 robot. The system consisted of a Hyundai HA-06 robot (six dof and 

repeatability ±0.05 mm), a 3D measuring device (Laser Tracker LTD800 with accuracy of  

±5 micron/m), and a laser reflector attached to the robot end-effector (Figure 4).  
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Figure 4. Experimental setup for calibration. 

 

4.1. Kinematic Model of the HA-06 Robot 

The nominal model of the HA-06 robot was established by using the D-H convention [21]. The 

frames are assigned from the robot base to the end-effector as in Figure 5. The according nominal D-H 

parameters are given in Table 3. A transformation from the base frame to the end-effector frame is 

computed as follows: 

0 0 1 2 3 4 5 6

1 2 3 4 5 6E ET T T T T T T T  
(18)  

where 
1i

i


T  is a transformation matrix between two consecutive link frames {i-1} and {i}, i = 2 ÷ 6, 

and it is computed as follows:  

1

1 1 1 1( , ). ( , ). ( , ). ( , )i

i i i i i i i i iRot x Tr x a Tr z d Rot z 

   T  (19)  

where link parameters are twist angles, link length, link offset and joint variables 
1i 
, 

1ia 
, 

id  and 
i , 

respectively; Rot(·) and Tr(·) are (4 × 4) transformation matrices of purely rotation and translation 

about and along an axis, respectively [20].  

The base transformation 0

1T  can be computed from six basic transforms as follows: 

0

1 0 0 0 0 1 1 0 0 0 0 1 1( , ). ( , ). ( , ). ( , ). ( , ). ( , )Tr x a Tr y b Tr z d Rot x Rot y Rot z  T  (20)  

where (x0, y0, z1) and (α0, β0, θ1) are translation and rotation parameters.  

The parameters y0 and β0 do not exist in the nominal robot model, however, y0 and β0 must be 

included in the calibration robot model. The tool transformation 
6

ET  (sees Figures 1 and 5) needs basic 

transforms: rotation about axis z with an angle φ, translation along axis x with distance a6, and 

translation along axis z with distance d7 as follows: 

6

6 7( , ). ( , ). ( , ).E Rot z Tr x a Tr z dT =  (21)  
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Figure 5. Schematic of robot HA-06 and attached link frames.  
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Table 3. D-H parameters of robot HA-06 (units: length [m], angle: [deg]; - : not exist,  

× : not select).  

i 1i 
 

1ia 
 

1i 
 

1ib 
 

id  
i  

1 0 0 0 0 0.36 θ1 

2 90 0.200 - - 0  θ2 

3 0 0.560 0 - 0 (×) θ3 

4 90 0.130 - - 0.620 θ4 

5 −90 0.0 - - 0.0 θ5 

6 90 0.0 - - 0.1 θ6 (×) 

7 - 0.2 - - 0.1 φ 

Because the robot model Equation (18) is used for calibration, this nominal model should be 

slightly modified for a case in which the link has two consecutively parallel axes [22]. Then, the 

individual transform in Equation (18) is modified to satisfy the properties of the model: complete, 

proportionality and continuous [23]. Specifically, the transformation 2

3T  is modified as follows: 

2

3 2 2 2 2 2 2 3 3( , ). ( , ). ( , ). ( , )Rot x Tr x a Rot y Rot z  T  (22) 

where β2 is parameter of the link twist about axis y2. 

Robot kinematic error sources can be classified into two types: link geometric errors and  

non-geometric errors (such as link, joint deformation, joint backlash and so on). Because the HA-06 

robot is a light weight manipulator, we assume that the robot has high link and joint stiffness, so the 

robot pose errors are only caused by link geometric errors. The number of identifiable kinematic 

parameters of the HA-06 robot is n = 27 (d2 and d3 are dependent, θ6 and φ are dependent). 

4.2. Mathematic Formulation for Identification 

Robot calibration aims to identify robot model parameters to describe the most correctly its 

kinematics, consequently the robot pose accuracy is enhanced. This section presents a formulation for 

the identification of the aforementioned kinematic parameters. 
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A mathematical formula for error identification is obtained by differentiating homogenous 

transformation 0

ET of Equation (18). This transformation describes a relationship between the robot’s 

kinematic errors and its end-effector pose errors as follows [24]: 

  x J p  (23)  

where x  is a (6 × 1) column vector of three differential position errors ( , , )x y z    and three 

differential orientation errors ( , , )x y  z    of the robot end-effector. p  is a (n × 1) column vector of 

kinematic errors (n = 27 is the number of identifiable robot kinematic parameters); particularly, 

0 5 0 5 1 6 1 6[ ...  ... ...  ... ]T= a a d d           p . J  is a (6 × n) Jacobian matrix that relates vectors x  

and p ; each column in matrix J  corresponds to each error parameter in vector p , and is computed 

by the following formulas [25] (i = 1 ÷ 6): 
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 (24) 

ix , 
iy , 

iz  are (3 × 1) directional vectors of the link frame {i}, 
ip  is a (3 × 1) vector of position of the  

end-point (origin of end-effector frame {E}) with respect to frame {i}, and 0 is a (3 × 1) zero vector. 

4.3. Experimental Results for HA-06 Robot Calibration  

Measurement for calibration is performed for 56 different robot configurations. For each 

configuration all robot joints are fixed except for the last joint, which rotates through m = 6 angle 

positions with positive angle increments of +20 [deg], and six positions of a target on an arc of a circle 

(m = 6) are recorded. Finally, the full pose (position and orientation) of the end-effector is derived by 

the proposed procedure (presented above in Section 2.3). As a result, a set Q1 of 56 full end-effector 

poses is obtained. By using all 56 full poses we can formulate an over-determined system of  

6 × 56 = 336 differential equations based on Equation (23). The solution of this system of equations in 

the sense of least squares is the robot kinematic errors [26] as follows: 

 
1

T T


  p J J J x  (25)  

Without calibration, the position accuracy of the HA-06 robot (which is computed over 56 

measured configurations) is 3.6573 [mm], and its orientation accuracy about axes x, y, z (which is 

represented by Euler angle errors) is 0.33022, 0.67187, 1.4004 [deg], respectively (more details are 

shown in Table 4). After calibration, the position and orientation accuracy of the robot is significantly 

improved; particularly, the position accuracy is now 0.12933 [mm]; orientation accuracy is 0.00864 

[deg] about axis x, 0.01658 [deg] about axis y, and 0.01286 [deg] about axis z (more details are also 

shown in Table 4). Figures 6 and 7 show the position accuracy of the robot for each configuration 

along directions x, y, z before and after calibration. The position accuracy along directions x, y, z is 

always in a range of [−0.3, +0.3] (mm). Figure 8 shows the absolute position accuracy at each 

measured pose before and after calibration. Figures 9 and 10 show the orientation accuracy of the robot 

for each configuration about axes x, y, z before and after calibration, respectively. The orientation 

accuracy about axes x, y, z is always in a range of [−0.05, +0.05] (deg). 
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Table 4. Absolute position and orientation accuracy of the robot over the set of 56 robot 

poses Q1.  

 Mean Value Std. Max. Value 

Absolute position accuracy [mm] 
Before cal. 3.6573 1.55090 7.0433 

After cal. 0.12933 0.06618 0.32229 

Absolute orientation accuracy about 

x axis: α Euler angle [deg] 

Before cal. 0.33022 0.18441 0.86927 

After cal. 0.00864 0.00593 0.02649 

Absolute orientation accuracy about 

y axis: β Euler angle [deg] 

Before cal. 0.67187 0.36829 1.4892 

After cal. 0.01658 0.01164 0.0470 

Absolute orientation accuracy about 

z axis: γ Euler angle [deg] 

Before cal. 1.4004 0.22133 1.7003 

After cal. 0.01286 0.00962 0.0452 

Figure 6. Robot position accuracy before calibration (pose set Q1). 

 

Figure 7. Robot position accuracy after calibration (pose set Q1). 

 

Figure 8. Robot’s absolute position accuracy before and after calibration (pose set Q1). 
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Figure 9. Robot orientation accuracy before calibration (pose set Q1).  

 

Figure 10. Robot orientation accuracy after calibration (pose set Q1). 

 

The experimental results for the HA-06 robot show that robot pose accuracy is enhanced 

significantly after calibration. The proposed measurement method supplied the accurate full-pose 

measurements for this calibration and had some properties of effectiveness, correctness and  

practical applicability. 

In many industrial applications, the robots have to operate over their full wide workspace. Therefore, 

a robot after calibration should have the same level of accuracy across its workspace. The pose 

accuracy of the HA-06 robot after calibration was validated with a set of 56 end-effector poses named 

Q2. The pose set Q2 was selected arbitrarily in whole robot workspace such that they were different 

from the set Q1. Note that the procedures for measuring both of the pose sets Q1 and Q2  

are similar. 

The validation results of robot pose accuracy after calibration are illustrated in Figures 11–13. 

Figure 11 shows the robot position accuracy along axes x, y, z. These values are in the range of  

[−0.3, +0.3] (mm). Figure 12 shows orientation accuracy about axes x, y, z. These values are in the 

range of [−0.05, +0.05] (deg). Figure 13 presents the robot’s absolute position accuracy at the 

validation poses Q2 (without calibration: mean value is 3.989 [mm], maximum value is 7.7028 [mm]; 

with calibration: mean value is 0.1544 [mm], maximum value is 0.3403 [mm]). The absolute position 

accuracy with the pose set Q1 and the pose set Q2 are display on the same graph as in Figure 14. These 

figures show that the absolute position accuracy is less than 0.4 [mm]. The results in Figures 11–14 

prove that the robot has the same level of pose accuracy over the workspace. After calibration, the 

absolute position and orientation accuracies robot HA-06 are better than 0.4 [mm] and 0.05 [deg], 

respectively. 
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Figure 11. Robot position accuracy (validation, pose set Q2). 

 

Figure 12. Robot orientation accuracy (validation, pose set Q2). 

 

Figure 13. Robot’s absolute position accuracy (validation, pose set Q2). 

 

Figure 14. Absolute position accuracy at calibration poses Q1 and validation poses Q2. 
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This paper proposes a new method for the full pose measurement of an end-effector for robot 
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devices. This method benefits from the accuracy of available point measurement devices, such as 

Laser Tracker. The measurement procedure is simple, fast, easy to set up, and can be automated. It also 

does not use any special apparatus with an arrangement of intermediate measured points; therefore, no 

additional manufacturing costs or pre-calibration steps are required. 

The measurement accuracy of this method was gauged as sufficient based upon computational 

simulation results from the Puma robot. Experimental calibration for an HA-06 robot was performed to 

prove the practical effectiveness and accuracy of this method. The experimental results show that after 

calibration the HA-06 robot had enhanced position accuracy of 0.12933 [mm] (before calibration: 

3.6573 [mm]), and increased orientation accuracy about axes x, y, and z of 0.00864 [deg], 0.01658 [deg], 

and 0.01286 [deg], respectively (before calibration: 0.33022 [deg], 0.67187 [deg] and 1.4004 [deg], 

respectively). These results provide evidence that the proposed method for full-pose measurement is 

accurate and reliable for practical robot calibration. The validation results also demonstrated that the 

HA-06 robot has the same level of pose accuracy over its full workspace. The new measurement 

method can be applied to robotic manipulators that have all joints or for which only the last joint is 

revolute. In the future we will evaluate the accuracy of this full pose-based calibration method on 

robots containing revolute and prismatic joints. 
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