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Abstract: This article describes an investigation to determine the optimal placement of 

accelerometers for the purpose of detecting a range of everyday activities. The paper 

investigates the effect of combining data from accelerometers placed at various bodily 

locations on the accuracy of activity detection. Eight healthy males participated within the 

study. Data were collected from six wireless tri-axial accelerometers placed at the chest, 

wrist, lower back, hip, thigh and foot. Activities included walking, running on a motorized 

treadmill, sitting, lying, standing and walking up and down stairs. The Support Vector 

Machine provided the most accurate detection of activities of all the machine learning 

algorithms investigated. Although data from all locations provided similar levels of 

accuracy, the hip was the best single location to record data for activity detection using a 

Support Vector Machine, providing small but significantly better accuracy than the other 

investigated locations. Increasing the number of sensing locations from one to two or more 

statistically increased the accuracy of classification. There was no significant difference in 

accuracy when using two or more sensors. It was noted, however, that the difference in 

activity detection using single or multiple accelerometers may be more pronounced when 
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trying to detect finer grain activities. Future work shall therefore investigate the effects of 

accelerometer placement on a larger range of these activities. 

Keywords: activity recognition; accelerometery; wearable technology; classification models 

 

1. Introduction 

The ability to recognize various everyday activities provides new opportunities for context aware 

applications within a number of areas including healthcare and wearable computing. Activity 

recognition is based on the continuous monitoring of physical activity in free living environments for 

prolonged periods. In recent years, much work has been carried out on human activity recognition 

using wearable sensors. In particular, machine-learning techniques have been utilized to provide 

recognition of everyday activities, such as walking and lying [1,2], from accelerometer data. Their 

small size, light weight, low power consumption and low cost make accelerometers well suited to 

wearable applications [3]. With the increased use of accelerometers for activity detection, it is 

important to consider the technological challenges and limitations associated with their inaccuracies, 

placement issues and usability concerns. 

The acceleration signal recorded from the body depends upon the location of the sensing device and 

the activity being performed [4]. Generally, acceleration signals are said to increase in magnitude from 

the head to the ankle. Vertical accelerations produced during level walking range from −2.9 m/s
2
 to 7.8 

m/s
2
 at the lower back, to 16.7 m/s

2
 to 32.4 m/s

2
 at the tibia [4]. Figure 1 presents an illustration of 

typical accelerometer signals from chest, back, wrist, hip, thigh and foot whilst walking. Although it is 

agreed that accelerometer placement has an effect on the measurement of bodily acceleration, there is 

still some debate over the ideal location of the sensor for particular applications [5].  

This paper reports an investigation into the optimal placement of accelerometers for the detection of 

everyday activities. Activities investigated within this study include walking, jogging on a motorized 

treadmill, sitting, lying, standing and walking up and down stairs. Data is collected from 6 locations on 

the body, namely the chest, left hip, left wrist, left thigh, left foot and lower back. Machine-learning 

techniques are utilized to identify which location is best to place accelerometers for the purpose of 

activity detection. In addition, the authors compare the activity detection accuracy when combining the 

acceleration data from different locations. This work aims to answer the following research questions: 

1. What is the best machine-learning model for classifying the investigated activities from the 

acceleration data? 

2. What is the optimal location of a single tri-axial accelerometer for detecting the selected range 

of everyday activities?  

3. How does combining tri-axial accelerometers located at different locations affect the accuracy 

of activity detection? 

The remainder of this article is organized as follows: Section 2 presents a review of related works 

which have investigated accelerometer placement for detecting everyday activities. In Section 3 the 

methods utilized within this work are discussed. The methods section includes data capture, processing 
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and analysis. The results from experimentation, with respect to each of the research questions, are then 

discussed in Section 4. Finally conclusions are drawn in Section 5. 

Figure 1. Five second recording of simultaneous vertical acceleration obtained from 

accelerometers placed on the chest, lower back, wrist, hip, thigh and foot. Acceleration 

data was sampled at 50 Hz using an accelerometer with a range of ±6 g.  

 

2. Related Work 

Accelerometers are widely integrated into wearable systems in order to identify various activities. 

Activity detection aims to identify activities based on data collected from ubiquitous sensors as they 

occur. The ability to provide accurate information on a user’s activity and context lends itself to 

numerous application areas including, activity monitoring/promotion, context aware information and 

content delivery. Previous studies investigating activity detection have reported accuracy levels of  

85% to 95% for recognition rates during ambulation, posture and activities of daily living (ADL).  

A summary of notable works is presented in Table 1. From the Table, it is worth noting that there is a 

large variety of placement locations utilized within these projects. Furthermore, the majority of these 

studies have incorporated multiple accelerometers attached at different locations on the body. Whilst 

this provides sufficient contextual information, placing accelerometers in multiple locations can 

become cumbersome for the wearer, which can impact on wearer compliance. Increasing the number 

of sensors also increases the complexity of the classification problem. For these reasons, a number of 

studies have investigated the use of a single accelerometer. However, doing so generally decreases the 

number of activities that can be recognized accurately [6]. In light of this, one of the major 
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considerations in using accelerometers for activity detection is to identify which location, or 

combination of locations, on the body provides the most relevant information to perform the detection. 

Bao and Intille [7] used features derived from both the time and frequency domain to classify  

20 different activities. Accelerometers were placed at the upper arm, lower arm, hip, thigh and ankle. 

Data generated from the accelerometers was used to train a number of classifiers including the C4.5 

Decision Tree, Decision Tables, Naive Bayes and Nearest Neighbor classifier. The Decision Tree 

classifier yielded the best performance achieving 86% accuracy. Further analysis showed a reduction 

in accuracy of just 3% when data from only the thigh and the wrist was considered. Although this work 

is seen as seminal in the area of activity recognition, it did not report on how the location of  

the accelerometer affected the accuracy of the classifier for each activity. Furthermore, all possible 

combinations of sensors were not investigated. 

A study by Olguin and Pentland [8], compared the activity recognition accuracy of four 

configurations of accelerometers from three placements. The mean and variance of the three axes were 

used as inputs to a Hidden Markov model (HMM). Validation was carried out using a 9-fold cross 

validation. The classifier achieved an accuracy of 65% using only one accelerometer placed at the 

chest. By combining data from accelerometers placed on the wrist and hip, this accuracy increased to 

87%. Additionally, using data from all three locations improved the classification accuracy to 92%.  

In agreement with the work by Bao and Intille, the authors suggested that reasonably accurate activity 

recognition (~80%) could be achieved using a system consisting of two accelerometers and highlighted 

that this could be made up of an electronic badge and a mobile phone. As with similar studies only a 

small subset of possible combinations of sensors where investigated. There is therefore a need to 

investigate all possible combinations of sensors. 

In addition to investigation of optimum placement of accelerometers for ambulatory activities and 

activities of daily living, a small number of studies have invetsigated the effects of placement on the 

detection of specific activities such as falls. Gjoreski et al. [9] studied the best location to place 

accelerometers for fall detection, based on the classification of postures. Four accelerometers were placed 

at the chest, waist, ankle and thigh. Statistical features were calculated for each axis of the accelerometer in 

addition to the magnitude. Results indicated that one accelerometer (chest or waist) by itself was not 

enough to sufficiently classify the activities (75%). There was, however, a significant improvement in 

classification accuracy achieved by combining the accelerometer at the chest or waist with one placed 

on the ankle (91%). In agreement with other studies, the authors found using sensors placed on both 

the upper and lower body improved the classification of the activity. One limitation to this study is that 

they did not investigate ambulatory activities (walking, running, stair climbing). Furthermore, the 

authors [9] did not report on the classification accuracy for all possible combinations of sensors. 

Other studies have looked to investigate which features, obtained from multiple accelerometers provide 

the most discriminative power. Preece et al. [10] addressed the area of dynamic activity recognition and 

the specific challenge of extracting relevant features from the accelerometer signal. Recognized 

activities included walking, going up and down the stairs, running, hopping on the left or right leg and 

jumping. Accelerometers were placed on the waist, ankle and thigh of the participants. Preece et al. 

analyzed various time-domain and frequency-domain features of accelerometer signals, in addition to 

multiple sets of features based on using a wavelet transform. In order to compare different feature sets, 

the authors used the k Nearest Neighbor (kNN) classifier with an Euclidean distance metric. The 



Sensors 2013, 13 9187 

 

 

highest activity recognition accuracy for a single sensor (97%) was achieved using data from an 

accelerometer placed at the ankle. Preece et al. noted surprisingly high levels of accuracy, compared to 

other works when using frequency-domain features derived from a single accelerometer. Furthermore, 

frequency domain features were shown to outperform both time-domain and Wavelet based feature 

sets. The creation of these frequency based features, derived by a fast Fourier transform is, however, 

extremely resource intensive.  

More recently, Atallah et al. [2] investigated the optimal placement of accelerometers for 

classifying groups of activities. Accelerometers were placed at seven locations including the chest,  

hip, upper arm, wrist, thigh, ankle and ear, this is the greatest number of locations to be investigated.  

They assessed how kNN and Bayesian classifiers performed on features obtained from each location. 

From this they made recommendations for choosing which location was best for different activity 

levels, e.g., very low, low, medium, high and transitional. Sensors on the wrist provided reasonably 

good rates of precision and recall for similar activities, e.g., preparing food and eating and drinking. 

An accelerometer placed at the waist performed best for low level activities, where the differences in 

body acceleration were more distinctive, e.g., walking and reading. This most recent study, however, 

did not assess any effect that combining accelerometers may have on the performance of the classifier. 

Many previous studies have assessed the effects of placement using conventional locations such as 

the hip and lower back. More recently, however, some studies have highlighted the need to consider 

convenient placement of sensors in order to improve compliance [11]. Indeed, compliance is a large 

source of data loss within free living studies. Nevertheless, best practices for the use of activity 

monitors still suggest that monitors should be worn in a comfortable, unobtrusive location and firmly 

attached to the body [12]. Other factors which are associated with user compliance include sensor size, 

weight, number and attachment method [12]. Bergmann et al. [11] investigated agreement in the 

accelerometer feature, median frequency, for sensors fixed at the lower back and placed within the 

front pocket. Twelve subjects were asked to complete four tasks including, standing, walking and 

climbing stairs. Only accelerations from the vertical axis showed moderate agreement. The authors 

suggested that the generalizability between traditional and convenient placements may therefore be 

limited. This study, however, only considers a small number of sensor placements and does not assess 

the effect that the difference in placement had on classification accuracy. 

This article describes an investigation into the optimal placement of accelerometers for the  

purpose of activity detection. Furthermore, the authors investigate the effect of combining data from 

accelerometers at multiple locations on the accuracy of activity detection. Although previous works 

have investigated the accuracy of activity detection from each of these locations, few have used data 

from more than five locations [2,7]. Of these studies, none have considered all possible combinations 

of sensor locations. This work shall therefore clarify which combination of sensors provides the 

greatest accuracy of detection of everyday activities. 
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Table 1. Summary of notable works involving activity detection using accelerometry. The table includes the type of activities which were 

investigated (total number of activities is given in brackets), the number of subjects (n), the features used and detection accuracy achieved.  

Reference 
Activities  

(Number Studied) 
n Accelerometer Placements Features Accuracy 

Bao and Intille [7] 

Walking, sitting, running, 

cycling, vacuuming,  

folding laundry (20) 

20 
Upper arm, lower arm, hip, 

thigh, foot 
Mean, entropy, energy 

Decision tree (84%),  

kNN (83%),  

Naive Bayes (52%) 

Karantonis [13] 

Sitting, Standing, walking, 

lying in various positions  

and falls (12) 

6 Waist 
Signal magnitude area, tilt angle,  

signal magnitude vector 
Decision tree (91%) 

Pirttikangas [14] 
Typing, watching TV, drinking, 

walking up and down stairs (17) 
13 

Both wrists, thigh  

and necklace 
Mean, standard deviation 

Neural network (93%)  

kNN (90%) 

Mathie [15] 
Fall, walking, transitional,  

sit, stand and lie (6) 
26 Waist Signal magnitude area, mean acceleration Decision tree (87%) 

Parkka [16] 
Lying sitting, walking,  

rowing, cycling (8) 
11 Chest and wrist 

Mean, variance, median, skewness, 

kurtosis, peak frequency, signal power 

Decision tree (86%) 

Hierarchical (82%)  

Neural network (82%) 

Olguin and Pentland [8] 
Sitting, Running, walking, 

standing, lying and crawling (7) 
3 Chest, hip, wrist  Mean and variance HMM (65%–92%) 

Ravi [17] 

Standing, walking,  

running, stairs up,  

stairs down, vacuuming (8) 

2 Waist 
Mean, Standard deviation,  

energy, correlation 

Naive bayes (64%)  

SVM (63%)  

Decision tree (57%)  

kNN (50%) 

Bonomi [18] 

Lying, sitting, standing, 

working on a computer, 

walking, running, cycling (7) 

20 Lower back 

Mean, Standard deviation, peak-to-peak 

distance, cross-correlation, spectral  

power, dominant frequency 

Decision tree (93%) 

Yeoh [19] 
Sitting, lying, standing and 

walking speed (4) 
5 Waist and thigh Accelerometer inclination Heuristic model (100%) 

Yang [1] 

Standing, sitting, walking, 

running, vacuuming, scrubbing 

brushing teeth (8) 

7 Wrist 
Mean, correlation, energy,  

interquartile range, RMS 

Neural network (95%)  

kNN (87%) 

Lyons [20] 
Sitting, standing,  

lying, moving (4) 
1 Trunk and Thigh Mean, standard deviation and inclination Thresh holding (93%) 

Gjoreski [9] 
Lying, sitting, standing,  

all fours, transitional (7) 
11 Chest, Waist, Ankle, Thigh 

Orientation, Mean, Root Mean Square, 

Standard Deviation and  

Movement detection 

Random Forest (75%–99%) 

Atallah [2] 
Lying, walking, running, 

cycling, sitting, transitional (15) 
11 

Chest, upper arm, wrist,  

hip thigh, ankle, ear 

Variance, RMS, mean, energy,  

entropy, skewness, kurtosis, covariance 
kNN (na), Bayesian (na) 
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3. Methods 

The following section describes the protocol for the collection of accelerometer data for the 

investigated activities. Following this, details of the features extracted from the raw data and the 

models used to carry out the activity recognition are described. 

3.1. Data Collection  

Eight male subjects were recruited to participate in the study. Subjects were members of staff and 

students of the University of Ulster. Subjects ranged in age from 24 to 33 (mean 26.25, sd ± 2.86).  

All subjects provided written informed consent prior to participating in the study. Subjects also completed a 

physical activity readiness questionnaire (PAR-Q) to assess their suitability to take part in the study. The 

study was approved by the Faculty of Computing and Engineering Research Governance Filter 

Committee at the University of Ulster. Subjects wore six tri-axial accelerometers at different locations 

on the body as shown in Figure 2. These locations were selected as they are typical sites from which to 

collect data for the purpose of activity recognition as shown by Table 1. Furthermore, these sites have 

been shown to provide accuracy rates of ~80% for whole-body ambulatory activates similar to those 

within this study. Accelerometers were fixed to the body using elasticized strapping and holsters. This 

is a common method of attachment in activity recognition studies [3]. 

Figure 2. Selected placement locations for the accelerometers. These include the chest, 

lower back, hip, thigh, wrist and foot. Accelerometers were fixed on top of clothing using 

elasticated strapping and holsters. 

 

Acceleration data was collected using six Shimmer wireless sensor platforms (Shimmer 2R, 

Realtime Technologies, Dublin, Ireland). These tri-axial accelerometers had a range of ±6 g and 

sampled data at 51.2 Hz. This sampling frequency is sufficient to capture most everyday activities  

(~20 Hz) [3]. Bodily acceleration amplitude can range up to ±12 g. Nonetheless, the literature suggests 



Sensors 2013, 13 9190 

 

 

that promising results can be obtained using ±2 g acceleration data during activity recognition [7]. 

Furthermore, although acceleration at body extremities can exhibit a 12 g range in acceleration,  

the majority of points near the torso and hip experience only a 6 g range in acceleration [3].  

Data were transmitted via Bluetooth to a notebook computer where it was saved for analysis offline. 

In order to achieve synchronization, data were recorded using Shimmer Sync software (Shimmer sync 

Version 1.0). This software synchronizes time stamp data from each of the 6 accelerometers. Prior to 

beginning the study, devices were calibrated using standard calibration techniques as described in [21]. 

Seven activities were studied. These consisted of whole body activities and postures including 

walking, jogging on a motorized treadmill, sitting, lying, standing and walking up and down stairs.  

All activities were maintained for a duration of two minutes with the exception of climbing stairs.  

The stair climbing activities were carried out on 10 flights of stairs (~80 steps). The climbing stairs 

task was repeated, after a one minute pause, in order to capture sufficient data for analysis. For 

treadmill based activities, users walked and jogged at a self-selected comfortable speed. The maximum 

jogging speed was capped at 10 km/h as speeds above this are considered as running [22]. Data were 

manually labeled offline by a human observer. A summary of average times to complete tasks along 

with walking and running speeds is presented in Table 2. 

Table 2. Summary of the time taken to complete walking and stair walking tasks and  

mean speed for walking and running on a treadmill. Figures presented are average and  

± standard deviation. 

Activity Mean Time to Complete (s)  ±Standard Deviation 

Stairs up 49.38 (±6.74) 

Stairs down 45.31 (±4.88) 

 Average Speed (km/h)  ± Standard Deviation 

Walking speed 4.63 (±0.34) 

Running speed 8.44 (±0.98) 

3.2. Feature Extraction  

The raw acceleration data were labeled based on the performed activity. There were approximately 

50,000 samples for each activity with a total number of 370,000 samples. Features were extracted from 

raw acceleration data using a window size of 512 samples with 256 samples overlapping between 

consecutive windows. Feature extraction on windows with a 50% overlap has demonstrated reasonable 

results in previous works [7]. This window size is capable of capturing complete cycles in repetitive 

action activities such as walking, jogging and stair walking, whilst allowing for fast computation of 

features. Eleven features were extracted from each window, giving a total of 26 attributes. A description 

of each feature is presented in Table 3. These features have been used within previous works and have 

achieved acceptable levels of accuracy (~80%) [7,17].  
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Table 3. Description of features extracted from each window of raw acceleration data.  

11 features were extracted from each window, giving a total of 26 attributes. 

No. Feature Description 

1 Mean value for each axis (x, y, and z) 

2 Average Mean over 3 axes 

3 Standard Deviation value for each axis (x, y, and z) 

4 Average Standard Deviation over 3 axes 

5 Skewness value for each axis (x, y, and z) 

6 Average Skewness over 3 axes 

7 Kurtosis value for each axis (x, y, and z) 

8 Average Kurtosis over 3 axes 

9 Energy value for each axis (x, y, and z) 

10 Average Energy over 3 axes 

11 Correlations: x_y, x_z, x_total, y_z, y_total, z_total 

Feature 1–8 are standard statistical metrics. Feature 9 (Energy) is the sum of the squared discrete 

FFT component magnitudes of the signal [23]. The sum is divided by the window length for the 

purposes of normalization (1). This feature has been shown to result in accurate detection of certain 

postures and activities [24]. For instance, the energy of a subject’s acceleration can discriminate low 

intensity activities such as lying from moderate intensity activities such as walking and high intensity 

activities such as jogging [25]. If ×1, ×2, ... are the FFT components of the window then the energy 

can be represented as presented in Equation (1): 

        
     

    
   

   
 (1) 

where    are the FFT components of the window for the x axis and w is the length of the window. 

Feature 11 (Correlation) has been shown to improve the detection of activities involving movements of 

multiple body parts [26]. It is helpful for differentiating among activities that involve translation in just 

one dimension [17]. For instance, with correlation between axes it is possible to differentiate walking 

and jogging from taking the stairs up and down. Correlation is calculated between each pair of axes as 

the ratio of the covariance and the product of the standard deviations [17], Equation (2): 

          
        

    
 (2) 

where cov(x,y) is the ratio of covariance between the x and y axis of acceleration and      is the 

product of the standard deviations. The features are used as input for WEKA data mining software 

(University of Waikato, Version 3.6.7) to build the classifiers. WEKA is a machine learning software 

environment which offers a collection of visualization tools and algorithms for data analysis and 

predictive modeling [27].  

3.3. Classification Models  

Many different classification models have been applied to the problem of activity detection. This is 

highlighted by the studies included in Table 1. There is no universally accepted method of detecting a 
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particular range of activities and all techniques have associated benefits and limitations. Common 

methods include data driven approaches such as Decision Trees (DT), k-nearest Neighbor, Neural 

Networks (NN), Naive Bayes (NB) and Support Vector Machine (SVM) [28]. An overview of 

techniques and their associated benefits and limitations is provided by Preece et al. [23]. In order to 

identify which machine learning algorithm provided the most accurate activity detection, the C4.5 DT 

(J48), NB, NN (Multilayer Perceptron) and SVM were applied to data. The parameters of each 

classification method were configured by identifying the set of parameters that correspond to 

maximum average accuracy over a 10-fold cross validation. A java application was developed to 

perform a grid search for optimal parameters. To further identify which machine learning algorithm 

achieved the best accuracy, a 10 fold cross validation with 10 iterations was performed using the 

WEKA Experimenter (University of Waikato, Version 3.6.7). A paired t-test was subsequently 

performed on the results to identify if the percentage of correctly classified instances was significantly 

different using the SVM when compared to the J48, NB or NN. SPSS (IBM, Version 20) was used for 

all statistical tests. The SVM was used as the baseline scheme, with the other three algorithms being 

compared to it. A value of less than p = 0.05 was considered statistically significant.  

4. Results and Discussion 

4.1. Accuracy of Classification Algorithms 

In order to identify which machine learning algorithm provided the most accurate activity detection, 

the Decision tree (J48), Naïve Bayes (NB), Neural Network (NN) (Multilayer Perceptron) and Support 

Vector Machine (SVM) where applied to the data. The parameters of each classification method were 

configured by identifying the set of parameters that correspond to maximum average accuracy over  

a 10-fold cross validation. A java application was developed to perform a grid search for optimal 

parameters. For the J48 algorithm, the application compared the performance of different confidence 

values (with a step of 1%) combined with the use of different values of minimum number of instances 

(in increments of one). For the J48 the best results were achieved using a confidence value of 5% and 

the minimum number of instances equal to 2. For the NN, the application analyzed the optimal number 

of layers and number of neurons per layer in the multilayer perceptron. A model with 70 neurons in a 

single hidden layer provided best average recognition accuracy. For the SVM, the application 

compared the performance of different kernels and different complexity values. The best performance 

was achieved with universal Pearson VII function based kernel [25] and complexity value of 100.  

For the NB method supervised discretization was used [26], which significantly increased the 

performance of the approach. Table 4 presents the percentage of the correctly classified instances for 

each location using the adopted machine learning methods. 
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Table 4. Percentage of correctly classified instances for each location using each of the 

four machine learning algorithms. Results show the average percentage correctly classified 

instances for the 10 fold 10 iteration test. P-values are presented in brackets. (*) denotes 

significantly less than percentage correctly classified instances, (+) denotes significantly 

more than percentage correctly classified instances and (-) denotes no significant difference 

in percentage correctly classified instances. The average percentage accuracy for all 

locations is also presented. 

Location SVM 
J48 NB NN 

% Correct (P-value) % Correct (P-value) % Correct (P-value) 

Chest 96.91 94.22 (<0.001) * 92.5 (<0.001) * 95.34 (<0.001) * 

Foot 95.63 96.48 (<0.001) + 97.42 (<0.001) + 93.94 (<0.001) * 

Left Hip 97.81 94.11 (<0.001) * 95.92 (<0.001) * 97.75 −0.57 - 

Lower back 96.59 92.8 (<0.001) * 94.91 (<0.001) * 95.77 (<0.001) * 

Left Thigh 96.81 94.6 (<0.001) * 96.35 −0.012 * 96.85 −0.751 - 

Left Wrist 95.88 92.87 (<0.001) * 91.52 (<0.001) * 94.81 (<0.001) * 

Average 96.67 94.18 (<0.001) * 94.77 (<0.001) * 95.74 (<0.001) * 

Results in Table 4 demonstrate that the SVM provided significantly better accuracy than the DT, 

NB and NN when using data from all locations, with the exception of data from the foot, where the DT 

and NB provided statistically better results. There was no significant difference in percentage 

classified instances between the SVM and NN when using data from the hip or thigh. The average 

percentage classified instances for all locations was used as a final metric to compare overall 

performance of the approaches. SVM provided a small, however, significantly greater accuracy of 

96.67% (p ≤ 0.001). SVM is a popular classification technique, which has previously been shown to 

provide accurate activity detection [29]. SVMs can be implemented in real time and work reliably on noisy 

data sets [23]. For these reasons the SVM was selected as the method of choice for subsequent testing. 

4.2. Optimal Location of Single Accelerometer  

Table 4 also provides details of which location provided data that achieved the most accurate 

activity detection. A one way ANOVA, with Tukey post hoc testing, was performed to assess 

statistical significance. From Table 4 it can be observed that the highest accuracy was achieved when 

using data from the Hip (97.81%, p ≤ 0.001). The lowest accuracy was achieved when using data from 

the Foot (95.63, p ≤ 0.001) and Wrist (95.88, p = 0.002). In this case, the Hip is therefore the best 

single location to place a tri-axial accelerometer for detecting the studied range of everyday activities. 

The F-measure was used as a performance index to evaluate the SVM's ability to classify each of 

the activities. The F-measure combines precision and recall as presented in Equation (3): 

F           
                

                
 (3) 

Precision is the fraction of retrieved instances that are relevant, while Recall is the fraction of 

relevant instances that are retrieved. A higher F-measure value indicates improved detection of the 

investigated activity. Table 5 presents the balanced F-measure calculated for each activity at each 
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location when using the SVM. Again a 10 fold cross validation was applied. A weighted average value 

was added to the Table to represent the average of the F-measure values for each location. 

Table 5. Balanced F-measure for each location, detailed by class, when using the Neural 

Network. A weighted average value was added to the Table to represent the average of the 

F-measure values for each location. 

Activity Chest Lower Back Left Foot Left Hip Left Thigh Left Wrist 

Lying 1 1 0.997 1 0.972 0.967 

Running 1 1 1 1 1 1 

Sitting 0.966 0.992 0.924 1 0.972 0.966 

Stairs down 0.94 0.92 0.915 0.935 0.925 0.926 

Stairs up 0.928 0.906 0.92 0.929 0.929 0.902 

Standing 0.969 0.993 0.929 1 1 1 

Walking 0.981 0.973 1 0.99 1 0.961 

Weighted 

Avg. 

0.9

69 
0.968 0.955 0.978 0.971 0.965 

Results show activity detection using data from the hip provided the highest F-measure with an 

average of 0.978, while data from the foot provided the lowest F-measure average of 0.955. It is 

hypothesized that the hip provided the best data, as the activities studied do not consist of arm or upper 

body movements and as data from the hip best represents total body movement. In addition to the 

weighted average value of F-measure, it is possible to identify the accuracy of detecting each activity 

separately. For example, sitting and standing activities were detected worst when using data from the 

left foot, the values are 0.924 and 0.929 respectively, which indicates some confusion of detecting 

those activities when attaching the accelerometer to the left foot. This is most likely due to little or no 

difference in the accelerometer signal recorded at the foot during these activities. Lying and jogging 

activities were the most accurately detected activities. Data from the wrist and lower back provided 

similarly low average F-measures. For the data from the wrist this lower accuracy may be due, in part, 

to arm movements unassociated with the measured activity. For example, some users sat with their 

arms folded while others gestured and talked with their hands. When using accelerometers placed at 

the lower back it was noticed that the accelerometer tended to twist and rotate on the elasticated 

strapping. This in turn may have caused irregularities within the data, which subsequently impacts 

negatively on the classification of activities when using data from this location. 

4.3. Optimal Location of Multiple Accelerometers 

All possible combinations of two, three, four, five and six locations were generated. Considering 

the total number of combinations for all six locations studied produces 64 possible permutations in 

total (2
6
 = 64). Removing from this, cases involving single or no sensors resulted in 57 (64–1–6 = 57) 

possible combinations. For reporting purposes these combinations were divided as follows: 15 possible 

combinations for two locations, 20 possible combinations for three locations, 15 possible combinations 

for four locations, six possible combinations for five locations and one possible combination for all six 

locations. After computing the features, files were used as input for the WEKA Experimenter.  
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The SVM classifier was then applied. A 10 fold cross-validation with 10 iterations was again applied. 

Tables 6 to 10 present the results, in terms of accuracy, for combinations of two to six locations, 

respectively. A one way ANOVA was performed in order to assess whether or not the location of the 

accelerometer had a statistically significant impact on the percentage of correctly classified instances. 

Table 6. Percentage correctly classified instances for 2 location combinations. 

C

hest 

Lower 

Back 

Left 

Foot 

Left 

Hip 

Left 

Thigh 

Left 

Wrist 

Accurac

y 

X X     97.30% 

X  X    97.71% 

X   X   97.65% 

X    X  97.84% 

X     X 97.79% 

 X X    97.31% 

 X  X   97.38% 

  X X   97.48% 

   X X  97.71% 

   X  X 97.48% 

 X   X  97.74% 

  X  X  97.61% 

 X    X 97.47% 

  X   X 97.61% 

    X X 97.30% 

Table 7. Percentage correctly classified instances for 3 location combinations. 

Chest Lower Back Left Foot Left Hip Left Thigh Left Wrist Accuracy 

X X X    97.68% 

X X  X   97.57% 

X  X X   97.57% 

X   X X  97.73% 

X   X  X 97.55% 

X X   X  97.91% 

X  X  X  97.85% 

X X    X 97.55% 

X  X   X 97.77% 

X    X X 97.85% 

 X X X   97.73% 

 X  X X  97.70% 

  X X X  97.64% 

 X  X  X 97.46% 

  X X  X 97.57% 

   X X X 97.54% 

 X X  X  97.74% 

 X X   X 97.48% 

 X   X X 97.65% 

  X  X X 97.62% 
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Table 8. Percentage correctly classified instances for 4 location combinations. 

Chest Lower Back Left Foot Left Hip Left Thigh Left Wrist Accuracy 

X X X X   97.66% 

X X  X X  97.78% 

X  X X X  97.59% 

X X  X  X 97.43% 

X  X X  X 97.66% 

X   X X X 97.62% 

X X X  X  97.73% 

X X X   X 97.53% 

X X   X X 97.68% 

X  X  X X 97.66% 

 X X X X  97.75% 

 X X X  X 97.52% 

 X  X X X 97.52% 

  X X X X 97.58% 

 X X  X X 97.54% 

Table 9. Percentage Correctly Classified Instances for 5 location combinations. 

Chest Lower Back Left Foot Left Hip Left Thigh Left Wrist Accuracy 

X X X X X  97.63% 

X X X X  X 97.42% 

X X  X X X 97.40% 

X  X X X X 97.43% 

X X X  X X 97.46% 

 X X X X X 97.46% 

Table 10. Percentage correctly classified instances for 6 location combinations. 

Chest Lower Back Left Foot Left Hip Left Thigh Left Wrist Accuracy 

X X X X X X 97.26% 

Results from Tables 6 to 9 demonstrated that there was no significant difference in accuracy, 

depending on the location of the sensors, when using combinations of two (p = 0.074), three  

(p = 0.409), four (p = 0.727) or five (p = 0.788) sensors. In order to investigate the effect of combining 

accelerometers from multiple locations on the accuracy of activity detection, the average accuracy 

when using each number of sensors was compared. Figure 3 presents the average accuracy for each 

number of sensors. Once again a one way ANOVA, with Tukey post hoc testing, was performed in 

order to assess the significance of the results.  
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Figure 3. Graph presents the average percentage of correctly classified instances for each 

number of sensor combinations. The average for each number of sensors is labeled.  

Error bars represent 95% confidence intervals. 

 

There was a small, however, significant increase in accuracy achieved by increasing the number of 

sensing locations from one to two or more sensors (p ≤ 0.001). No significant improvement in 

performance was noticed when combining data from more than two locations (p = 0.25). There was a 

small, however, significant decrease in classification accuracy when using data from five or more 

locations compared to that achieved using data from three (p = 0.012) or four (p = 0.07) locations. 

When investigating placement of wearable technology it is also important to consider issues of 

wearability and user comfort. Key considerations include where the device can be placed to allow it to 

function correctly while not impinging on a user's activity. Carrying multiple devices also impacts or 

usability as the wearer must charge and carry multiple devices ensuring they are worn correctly. This 

can reduce compliance acceptance of the technology. With these results in mind and considering the 

issues of wearability and usability, which would indicate the use of fewer sensors to be preferable, it 

can be concluded that the optimal number of sensors for detecting the range of activities investigated is 

two sensors. These sensors can, however, be placed at any of the investigated locations and will most 

likely depend upon the types of activities which are being investigated as illustrated by Table 5.  

There are a number of limitations which have come to light as a result of carrying out this study. 

Within the experimental protocol only whole body activities such as walking, standing and sitting are 

considered. Other finer grain activities, such as sitting reading or sitting eating, may rely on identifying 

further movements in order to distinguish between activites and are not represented by whole body 

movements. For this reason the variety of activities studied should be expanded to include these lower 

level actives. Furthermore, data used within this study was captured within a laboratory under 

controlled conditions. It may therefore not be representative of carrying out such activities in a free 

living environment. Future studies should therefore seek to carry out further experiments using data 

captured under free living conditions by utilizing mobile and pervasive computing technologies.  
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Lastly, this study considered activity classification using only data from accelerometers. Recent 

studies have shown that introducing data from a variety of sensor types can improve the classification 

accuracy of everyday activities [30]. Future work should therefore consider the effects of placement on 

the classification accuracy from sensors such as gyroscopes and magnetometers. 

5. Conclusions 

This paper presented an investigation into the accuracy of activity detection from accelerometer 

data recorded simultaneously from six bodily locations. Results have shown that the SVM provided the 

most accurate classification results of the investigated machine learning algorithms, when using data 

from a single location. Data from the hip was shown to be the best single location for providing data to 

detect the range of activities. Although, the differences in classification accuracy between locations 

were found to be significant, they are in fact reasonably close and therefore the practical implications 

of this are marginable. This study further investigated the effect of combining multiple accelerometers 

from various locations. In doing so, it was shown that reasonable activity detection can be achieved 

using only two accelerometers and that increasing the number of sensors had no significant impact on 

the accuracy of the classifier. This was in line with previous works, which have shown that an 

accelerometer placed on the upper and one on the lower part of the body can successfully detect  

a range of everyday activities [7]. Previous studies did not, however, investigate all possible 

combinations of sensors. 

Furthermore, results within the current study show that the difference in accuracy of activity 

detection for systems with using one and multiple accelerometers is less than previously reported. 

These results may, however, be due to the type of activity that was investigated in the current study. 

Activities within this study focused on high level activities, such as walking lying and sitting, which 

are grossly different from each other in terms of acceleration signals. If finer grain activities were to be 

studied which have more subtle differences in acceleration, such as for example sitting and sitting 

working at a computer, then these results may have shown greater differences between using a single 

or multiple accelerometers. Further work should therefore focus on identifying which combination of 

accelerometer positions provides the best accuracy for these finer grain activities. Additionally, the 

accuracy of such classifiers should be assessed under more free living conditions. 
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