
Sensors 2013, 13, 10954-10980; doi:10.3390/s130810954

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

On the Support of Scientific Workflows over Pub/Sub Brokers

Augusto Morales *, Tomas Robles, Ramon Alcarria and Edwin Cedeño

Department of Telematics Engineering, Technical University of Madrid, Av. Complutense 30,

Ciudad Universitaria, 28040 Madrid, Spain; E-Mails: trobles@dit.upm.es (T.R.);

ralcarria@dit.upm.es (R.A.); edwinc@dit.upm.es (E.C.)

* Author to whom correspondence should be addressed; E-Mail: amorales@dit.upm.es;

Tel.: +34-915-495-700 (ext. 3035). Fax: +34-915-439-652.

Received: 9 July 2013; in revised form: 7 August 2013 / Accepted: 14 August 2013 /

Published: 20 August 2013

Abstract: The execution of scientific workflows is gaining importance as more computing

resources are available in the form of grid environments. The Publish/Subscribe paradigm

offers well-proven solutions for sustaining distributed scenarios while maintaining the high

level of task decoupling required by scientific workflows. In this paper, we propose a new

model for supporting scientific workflows that improves the dissemination of control

events. The proposed solution is based on the mapping of workflow tasks to the underlying

Pub/Sub event layer, and the definition of interfaces and procedures for execution on

brokers. In this paper we also analyze the strengths and weaknesses of current solutions

that are based on existing message exchange models for scientific workflows. Finally, we

explain how our model improves the information dissemination, event filtering, task

decoupling and the monitoring of scientific workflows.

Keywords: scientific workflow; publish/subscribe; distributed execution models; brokers;

logic gates; workflow patterns

1. Introduction

A workflow management system (WfMS) is a piece of software that provides the infrastructure to

setup, execute, and monitor workflows. These systems enable the “extraction” of process management

from the application software, in order to achieve communication, system integration, process

optimization and control. Nowadays, WfMS are very popular in business environments where

OPEN ACCESS

Sensors 2013, 13 10955

workflows are well determined, ordered and tightly coupled with the computing resources that support

them. WfMS are based on well-known business standards such as the Business Process Execution

Language (BPEL) and Business Process Model and Notation (BPMN). These standards allow different

entities to coordinate tasks by exchanging information in a simple and almost pervasive way—through

web services.

A Scientific Workflow (SWf) is a special type of workflow that solves a complex scientific problem

that is supported by a special WfMS called Scientific WfMS. As business workflows, SWfs are

composed of several tasks that are coordinated by a global task scheduling system running in the

SWfMS. The SWf’s execution is divided into two layers. The data plane exchanges the execution

information of an activity (e.g., a sensor output, the results of an image or weather analysis, or a

cell-behavior). The control plane exchanges the activation or de-activation orders that allows the

synchronization in the execution process of activities (e.g., to initialize a simulation). Thus, the control

plane directly supports the global task scheduling as it decides where, when and how to execute tasks.

Scientific workflows share some of the characteristics of business workflows [1] such as information

filtering, process monitoring, and the necessity of a logical ordering of tasks that have to be carried

out. Nevertheless, it has been proven that current business-oriented WfMS [2], and communication

models barely support [3–5] the requirements of SWfs in terms of event dissemination, task

decoupling, flexibility and scalability. SWfs are expected to be a more dynamic series of ordered tasks,

changing inputs/outputs, and fluctuations of the logical relationships between participants. They also

targets distributed environments with heterogeneous entities executing tasks with a high level of time,

space and synchronization decoupling. As an example, initiatives such as DATAGRID [6], Open

Science Grid [7], and XSEDE [8] provide systems and guidelines for executing SWfs and exploit the

benefits of grid environments.

As communication over grid environments involves many challenges [9,10], one of the key issues

in SWf research is the coordination of distributed workflows for a more efficient message exchange

Thus, in order to improve this exchange it is necessary to take into account the runtime communication

needs of a workflow, the logical relationships between its participants, and the type of tasks they

execute. In addition, there are still challenges regarding how to improve the execution of SWfs by

taking advantage of all the knowledge obtained from previous business-workflow research, and

communication models that target loosely coupled systems. Hence, it has been proven that large-scale

SWfs require models capable of providing an improved set of communication capabilities not only in

parties that execute tasks, but also in entities bounding them. As an example, SWf platforms such as

Taverna [11] and Pegasus [12], make use of grid infrastructures where workflow participants are

heterogeneous in terms of location, processing power and network capabilities; however, little effort

has been put into research on how the logical relationships between workflows’ fragments influence

the message exchange and the underlying protocols. Taverna also takes advantage of a Web Service

Infrastructure [13] in order to improve its extensibility and compatibility with Web-based services.

Besides the multiple open-issues [9] in the SWfs area, we tackle the problem of supporting SWfs

over grid-based environment in order to improve the event dissemination in the control layer.

Therefore, we define key elements that enable the execution of SWf over the Publish/Subscribe

(Pub/Sub) event layer. In our model we take as inputs two aspects: the message exchange in the

control plane and the logical relationships between tasks. Even if the message exchanging of SWfs has

Sensors 2013, 13 10956

been tackled with web-based technologies, it is has been proven that in highly distributed

environments, using centralized solutions (at the event dissemination level) offers a low level of

parallelism, communication decoupling and independence among participants.

The solution proposed in this paper exploits the logical relationships between fragments of a SWf

and exposes abstract solutions, instead of directly tackling the message exchange aspect in the data

plane with new protocols [14] or middlewares [15]. For this purpose, we use the Publish/Subscribe

paradigm as the core communication model of our proposals. In addition, as one of the main

requirements of SWf is the monitoring and failure recovery [16], we also define self-healing

mechanisms for the proposed models in runtime, so our solutions maintain loosely coupled

communications and fulfill the level of abstraction and dynamism required by SWf.

The structure of the paper is as follows: Section 2 describes the characteristics of scientific

workflow models and presents the Pub/Sub-based model we use throughout the whole article. Section

3 presents the initialization process of a SWf, the broker reference architecture we have defined in

order to improve the message exchange in the control plane, and procedures for recovering bindings in

SWfs. In Section 4 we justify the qualitative advantages of our model by firstly grouping existing

models, systems and implementations, into common categories based their communication solutions;

and then analyzing their trade-offs in terms of event dissemination, workflow patterns and other

communication needs in runtime. In Section 5 we analyze related works and finally in Section 6, we

end with conclusions and suggestions for future works.

2. Scientific Workflow Modeling

Scientific workflows management systems (SWfMS) consist of several long-running data

transformation steps while processing large amounts of data, coordinating and controlling the global

workflow scheduling and monitoring underlying sub-tasks. In this process of decoupling the control

and data planes from the task execution, the details of its invocation are hidden from the scientist. The

high degree of dynamism inherent to these systems is not easily modeled or scaled [17] by a business

WfMS, which provides orchestration with a centralized scheduling environments which also usually

implement centralized messages in the control plane. On the other hand, a simple choreography

approach cannot be used as it is difficult to keep track of all the task instances and workflow activities

at any given time [18]. Hence, in order to support the previous characteristics, we use a Pub/Sub model

for delivering these control messages in the whole SWf execution. Pub/Sub systems are composed of

three main components: publishers, which are the content producers, subscribers, that express their

willingness to consume specific content; and finally brokers, that put publishers and subscribers in

contact by storing and forwarding information.

2.1. Overall SWf Scenario

SWfs share the same well-known workflow design patterns [19] as business workflows, as they are

also composed by a set of logically connected tasks, therefore, as a continuation of previous

works [20,21], we extended our workflow modeling, from the message exchange perspective, provide

abstract model for supporting six workflow patterns over a Pub/Sub broker and present their

advantages in comparison with other approaches in terms of information delivery and task decoupling.

Sensors 2013, 13 10957

In this paper, we consider a SWf scenario with complex interactions between tasks (e.g., change the

running conditions, stop and re-initialize) over a grid scenario and following a direct acyclic graph

execution. In these interactions, processing and communication resources must be dynamically shared

between task instances as nodes are working at full capacity and can go off-line due to changes in the

network topology. We also consider that parallel tasks may fail, so failure handling and compensation

mechanisms are needed. Usually, WfMS’ provide a single centralized workflow scheduler with a

centralized networking model (e.g., web-server to clients), which is not the ideal solution for executing

a scientific workflow as its network layer has to deal with a high rate of control messages. Thus, even

if only control messages are exchanged, it can become a bottleneck and misuse the network

capabilities offered by the grid. In our scenario, nodes exchange data by following a choreography

perspective, whereas control flow is set up using a special component we call Coordinator. The use

of this kind of solutions is already present in previous works [10], where Coordinators monitor

the performance of the SWf and bind the inputs/outputs of tasks with the underlying Pub/Sub network

and identifiers.

2.2. Workflow Model of SWf

We define a workflow model based on tasks and activities that are allocated in local or remote

nodes and mapped to the underlying Pub/Sub event layer. This SWf model evolves from our previous

work [20], its service foundations and concepts of tasks and activities. A workflow consists of the set

of logical tasks and the communication channels between them, which are supported by a processing

infrastructure on top of the event layer. Workflows are executed in a distributed way and logical

relationships among tasks, which represent their internal behavior, are arranged in the fragmentation or

partitioning process [22]. The fragmentation process covers the actions of computing, initializing and

distributing a set of tasks. Tasks are logical fragments of the workflow executed in local or remote

nodes. In the SWf execution aspects such as elastic scalability, lifecycle management, security must be

considered, but they are beyond the scope of this paper. In order to focus on our models, we assume

that mechanisms exist to place and create tasks instances, so tasks are executed by a module called

Orchestrator [20], which is present in each node that participates in the SWf execution and an

underlying middleware [15] that provides Pub/Sub protocol support. A task is composed of at least one

Activity. An Activity is an atomic unit of a task that has inputs and outputs. It manages the

communication with an object that can be physical or digital, in order to perform an operation. For

example an activity can be the action of requesting a local database value, or a remote notification of a

finished job. Activities can trigger control events (ev) and consume those ones produced by activities

running over different tasks. Therefore, from the communication perspective they trigger the

publish(ev), subscribe(ev), and un-subscribe(ev) primitives of the Pub/Sub network and are

notified(ev) by brokers. We define Limit Activity (AL) as any activity that communicates with other

activity contained in a remote task, so AL can act, in runtime, as a producer, consumer or both. A

control event is the action of transmitting a control message (e.g., to start the AL execution); however,

we use them as similar term when referring to our communication model.

Sensors 2013, 13 10958

We use logic gates to enable communication between tasks, in the control plane. These logic gates

follow the patterns model, defined by Van Der Aalst et al. [19], corresponding to basic control flow

patterns, advanced branching and merging. Thus, hereinafter we use workflow pattern and logic gate

as the same concept. Figure 1 illustrates the two different planes that our model targets, from the global

scheduling perspective of the SWf. It also shows how control messages are mapped to Pub/Sub

primitives and events and later disseminated over a distributed broker scenario. Limit activities are

linked by logic gates, which in turn trigger control messages that activate subsequent ones.

Figure 1. Workflow-to-Pub/Sub mapping.

Broker

Broker Broker

1 ANDs

2

4

5

3

SEQ

ANDs ANDj6

7 8

9

10

XORj 11

5

4

8

10

9
3 6

Coordinator

7

Output

End

groups(limit_activities)

Workflow

Coordination Plane

Pub/Sub Plane

publish(ev) subscribe(ev)

disseminate(ev)

2

Control

Event

(ev)

in runtime

pub/sub/unsub (ev)

1 11

notify(ev)

X Limit Activities

X logic gates

Global Workflow Scheduling

 Control event: ev = {topic, paylod}

Begin

Input

SEQ

 {to start AL execution}

3. Supporting the Scientific Workflow

The following sections explain the models we propose to support a decentralized SWf execution as

well as the workflow messaging. Hence, our objective is to improve the workflow coordination, at the

event level, by leveraging the complexity of the dissemination of control events to brokers, and transfer

to them the interactions among remote ALs. At the end of this section, we provide an example regarding

the support of our SWf model including the initialization and runtime over the Pub/Sub layer.

3.1. Supporting the SWf

The proposed model is composed of the definition of a task interoperability reference model, the

mapping of workflow activities to Pub/Sub topics, the interfaces that allow setting up the Pub/Sub

layer, the broker reference architecture, and finally the procedures for dealing with binding recovery

between activities in runtime.

Sensors 2013, 13 10959

3.1.1. Task Interoperability

Conceptually, tasks must agree on the control messages their ALs generate or require, and how they

are mapped to control events in the Pub/Sub layer. Therefore, brokers have to filter and only deliver

those ones that match subscription requests. To do this we use a topic-based Pub/Sub language [23].

Messages are published using “topics” that identify ALs’ outputs and subscriber ALs subscribe to topics

representing their triggering condition or inputs.

In order to define a common hierarchy of topics, we use a topic domain shared by all tasks and

divided into namespaces. Topics are published in namespaces in order to receive control messages in

the appropriate language and ensure that only compatible events are pushed by brokers. Each topic in a

topic namespace (tns) can have zero or more child topics and a child topic can itself contain further

child topics. A topic without a parent is termed a root topic. We use the forward slash (/) character to

indicate a “child of” relationship. For example, the tns1:monitor/exception refers to the subtopic

exception, subset of the parent topic monitor, in the namespace tns1.

This approach supports transformation and aggregation of topics. It is possible to construct

configurations (using intermediary brokers) where the topic, an interested “subscribes to” differs from

the topic under an entity “publishes”. Thus, the broker, acting in line with administratively-defined

rules, receives the control messages from the publisher, matches and notifies the corresponding

subscriber. For example, a subscriber to the topic tns1:monitor also receives notifications from topic

tns1:monitor/exception. It is possible for participants of the SWf to define additional topics based on

existing topics without requiring coordination with the participant responsible of creating the topics

that are being built on. Our solution is compatible with the WS-Topics OASIS standard [24], which

presents a set of “items of interest for subscription” in Web service environments, and it has been

extended to be aligned to a non-WS environment.

An example of a topic hierarchy for a generic SWf is shown in Figure 2. This tns corresponds to the

English language, to avoid language incompatibilities. To prevent correlation problems, a root node

has been added, so it contains the identifiers of the task instances that are being executed.

Figure 2. Topic Hierarchy.

english ...

monitor reallocation pattern

exception capability sequential merge

...Namespaces

Root topics

Child topics

task

l_activityId1

3.1.2. SWf Initialization

The workflow initialization over the Pub/Sub events requires an interface between the Coordinator

and brokers. This interface implies the loading of Web Service Description Language (WSDL), which

is defined in this section. Thus, prior to the execution of the SWf over participants, it is necessary to

link the logical interest of an AL (input or output) to the communication primitive that will support it:

subscribe(ev) or publish(ev). In other words, it is necessary to bind the SWf plane with the Pub/Sub

Sensors 2013, 13 10960

layer and comply with the logical gates that join tasks and their AL. The initialization process refers to

mechanisms that support the binding of an action of a predecessor AL with a Pub/Sub event, the

associated logic gate, and a subsequent reaction of a successor AL. Therefore, as the Orchestrator of

each participant detects the AL s that makes up part of the task instance, the topics for each input and

output AL must be designated. For this task, we use the Coordinator function. From here onwards, the

Coordinator registers the references of predecessor and successor of every AL of the SWf and generates

the topics identifiers by following the namespace previously proposed. In this process we assume that

the Coordinator have already received the initial SWf structure and logical relationships between

activities from a global SWf scheduler or a workflow composer (e.g., the database created by the

Trident SWf composer [25]). Brokers inform the Coordinator about the network capabilities they

support, such as supported protocols, and the set of logic gates they can instantiate. Hence, the

coordinator can know, in advance, which of the brokers can instantiate a logic gate and link

corresponding ALs. Then, as each AL has its own topic the Coordinator can group these activities using

the initial SWf structure. The Coordinator sends to brokers the information regarding ALs that produce

events (predecessors) and the AL that are triggered by these events (successors) over the same SWf

instance. This information also includes the callback addresses of Orchestrators that are executing the

corresponding tasks. Afterwards, brokers use this information to internally group subscriptions using

the model explained in Section 3.3. In order to maintain a generic and flexible coordination interface

between brokers and the Coordinator we define the WSDL shown in Figure 3, which follows the same

concepts of current SWf systems such as Trident [25].

The WSDL describes the logic gates (or patterns) types, and relationships between ALs they enclose.

The SetCapability field is used by the Broker to express its capabilities to the Coordinator, whereas the

Coordinator makes use of the corresponding response to set the predecessors and successor AL in the

workflow initialization. SetNewCapability messages are sent, by the Coordinator, to brokers with the

objective of grouping logic gates and ALs.

The Coordinator groups activities depending on the predecessor and successor relationships

between AL, so it puts them, by default, in the same broker. In the case this process is unfeasible (e.g.,

due a network constrain or a request of the SWf manager), the Coordinator can set a successor activity

in a different broker than its predecessor. This one of the cases we show in Figure 1, where AL-4 and

AL-9 are predecessor and successor, respectively, and are set in different brokers. In this situation, the

Coordinator marks the predecessor callback string as “remote”. Then, it attaches in the predecessor

field of the message specified by the WSDL, the network address of the broker that supports its

predecessor AL followed by the topic that identifies it (e.g., remote,http://<x.x.x.x>,/task/activity1).

Therefore, the broker of the successor AL subscribes to the broker of the predecessor AL., and gets

ready for receiving control messages that target the successor AL. This type of recursive subscription

has been well-proven over the Internet and many Pub/Sub protocols supports them (e.g.,

PubSubHubbub [26]), so our solution can be considered independent from any specific implementation

and remains compatible with our previous research [21] focused on simple and scalable gossip-based

interactions. Our model is also independent from the specific protocol used to communicate brokers

and the Coordinator, as long as the WSDL interface is used.

Sensors 2013, 13 10961

Figure 3. WSDL interface.

<message name="SetCapabilityRequest">

 <part name="networkparam" element="tns:brokerdefinition"/>

 <part name="serviceparam" element="tns:brokerdefinition"/>

 </message>

 <message name="SetCapabilityResponse">

 <part name="serviceparamresponse" element="tns:coordinatordefinition"/>

 </message>

 <message name="SetNewCapabilityRequest">

 <part name="serviceparamresponse" element="tns:coordinatordefinition"/>

 </message>

 <message name="SetNewCapabilityResponse">

 <part name="serviceparamresponse" element="tns:coordinationdefinition"/>

 </message>

<portType name="SetCapability_PortType">

 <operation name="SetCapability">

 <input message="tns:SetCapabilityRequest" />

 <output message="tns:SetCapabilityResponse"/>

 </operation>

 …

 </portType>

 <binding name="ConfigService_Binding" type="tns:ConfigService_PortType">

 <soap:binding style="rpc"transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="SetCapability">

 <soap:operation soapAction="SetCapability"/>

 <input>

<definitions name="ConfigurationService"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>

 <xsd:element name="brokerdefinition">

 <xsd:complexType>

 <xsd:element name="brokertype" type="xsd:string"/>

 <xsd:element name="address" type="xsd:string"/>

 <xsd:element name="clientsupport" type="xsd:int"/>

 <xsd:element name="protocol" type="xsd:string"/>

…

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="servicedefinition">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="pattern" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="subinfo">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="topicid" type="xsd:string"/>

 <xsd:element name="callback" type="xsd:string"/>

 </xsd:sequence>

 <xsd:sequence>

 <xsd:element name="topicid" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="pattern">

 <xsd:element name="predecessor" type="xsd:subinfo"/>

 <xsd:element name="sucessor" type="xsd:subinfo"/>

 </xsd:element>

 <xsd:element name="coordinationdefinition">

 <xsd:element name="serviceparams" type="xsd:pattern"/>

 <xsd:element name="serviceresponse" type="xsd:string"/>

 </xsd:element>

 </types>

Sensors 2013, 13 10962

3.1.3. Binding Control Events in Brokers

As previously mentioned, our objective is to delegate to brokers the complexity of communication

between ALs and logic gates. The broker reference architecture used to support workflow patterns is

similar to standard topic-based brokers. The broker registers subscriptions from clients, matches

control events and disseminates these events to subscribers or other brokers. Workflows are supported

using a pluggable matching model which works on top of standard broker processes. Hence, while

standard topic-based brokers match incoming events and notify the right subscribers based on their

interest, our broker firstly filters the control events that fulfill the logic gates and later notifies

subscribers. So, even if successor ALs subscribe to a task and their predecessor subscriptions publish a

control event, the broker dynamically holds the notification of this event until the logic gate is

satisfied. The notification is dynamic because the broker can react to changes in the relationships

between activities which were extracted from the WSDL as we explain in Section 3.1.4. Our broker

enforces the patterns following the models described below. Having this architecture, our broker is

capable of decoupling ALs, their role and actions they can trigger in other workflow branches or tasks

executed in parallel (e.g., an activity that calibrates time). The matching model performs as a pluggable

component as it only needs to internally receive all the published events from every AL of the WSDL,

in order to correlate and notify the correct event. It can work on top of standard topic-matching

functions without any disturbance or special synchronization. Figure 4 shows the reference broker

architecture.

We use the term internal binding (BI) to describe how we model the relationships between AL and

logic gates inside the broker. LG represents the process of enforcing these gates in runtime. We

consider our model a composite binding of two internal bindings. We apply the term external

subscriptions (SE) to describe the relationship between a topic, which represents the interest on the LG

fulfilling a control event, and a callback address of the Orchestrator that runs the AL. In our model, as

the SE implicitly fulfill the two bindings a standard event notified to a subscriber is defined as:

s.ev’=f(s.ev,SE). When we add the logic gate component, this event is defined as follows:

' ((), ,)
k k

IPk ISk
i i

ev f B B LG (1)

where BIP and BIS define bindings with predecessor and successor (SE) respectively. Being BIPT and

BIST the whole set of predecessor and successor subscriptions: IPk IPTB B and ISk ISTB B , where

BIPT and BIST are the binding spaces for a given task instance. Then, the difference between matching

an event using standard matching and our matching model is enforced at this point. Whenever a AL

generates a control message that is published to the brokers, in the case of standard matching, the

evaluation and notification of the event is straightforward since the broker only ensures that the event’s

topic corresponds with the existing SE. Nevertheless, in our model, whenever a similar control message

arrives to the broker, it broker performs (depending on the pattern) the latter performs the steps

described in the following paragraph. Figure 4 depicts the broker reference architecture.

Sensors 2013, 13 10963

Figure 4. Reference Broker Architecture.

BIPk BISk
LG

Matching Model

Standard

Matching

Dissemination

Algorithms

Event Routing

& Notification

notify(s.ev’)

triggers(i.ev)

publish(ev)

notify(ev’)

publish(s.ev)

Subscription Manager

getSubscriptions()

In runtime, a predecessor binding is an instance, inside the broker, subscribed to a control event an

AL triggers. In the case that this event fulfills this binding; the broker evaluates the Logic Gate (LG)

where BIP belongs and triggers an internal event (i.ev). Then, the broker matches this event with the

successor bindings which contain the real subscribers’ callbacks of the logic gate, and notifies(ev)

them. Retaking Figure 1, the input of AL-9 is represented by a BIST, and the output of AL-4 by BIP; so in

order to modify/activate the execution of AL-9, the broker evaluates if there is a BIP interested in the

output event produced by AL-4. Next, as it is true and a Sequence flag is active, it generates an internal

event captured by BIST, which represents the interest of AL-9; then, the broker pushes the control

message to the callback address of the Orchestrator. As we already mentioned, in our model we

support six workflow patterns, which are the basic control-flow patterns that are used to build

workflows. The implementation mechanism proposed in this paper focuses on the six selected

workflow patterns, as they are the most elementary of the entire existing workflow pattern and are used

for building more complex SWF. Following this approach, now we explain how we support each case

assuming that each of the activities we mention are limit ones.

Sequence (SEQ): it is the pattern we used to explain our model right before. In this pattern, a single

activity is enabled after the completion of the preceding activity. Thus, brokers establish a one-to-one

relationship between BIP and BIS; so, BIP always triggers an i.ev that leads to the real subscriber and

its activity.

Parallel split (ANDs): in this pattern, a set of activities are enabled after the completion of the

preceding activities. Brokers establish a one-to-many relationship with BIP and many BIS. Bindings that

represent the successor activities are triggered by the same i.ev, however, unlike the sequence pattern;

the broker matches the i.ev with the successor bindings they are interested in. This operating mode is

due to BIP and BIS can be part of other patterns, so keeping an internal reference among them, allows

decoupling the particular activation of the LG instance from other relationships or interests internal

bindings can have.

Exclusive choice (XORs): having a set of candidate activities to be enabled; only one is enabled

after the completion of a prior activity. In this pattern, brokers also establish a one-to-many

relationship with BIP and BISs. The pattern depends on the control event that defines which activity

Sensors 2013, 13 10964

must be enabled, so, we model this event as: c.ev = f(BLG, ev). As we are using a topic-based language,

this event contains the topic of the BIS that follows the workflow.

Simple merge (XORj): this pattern defines the convergence of two or more activities into a

subsequent activity. The broker establishes a many-to-one relationship with BIPs and BIS respectively.

Since no synchronization is needed, whenever the first BIP is matched with a control event, the LG lets

this event reach the BIS as an i.ev. This process is available for any of the BIP. After each process, the

LG is re-initialized in order to support new matched events arriving from the same BIP or new ones.

Synchronization (ANDj): this pattern defines the convergence of two or more synchronized

activities into a new activity. In other words, in order to enable the subsequent activity, all the previous

activities must be enabled. This pattern is modeled as a many-to-one relationship with BIPs and BIS. In

this pattern we do not take into consideration correlation issues [27], because we assume that brokers

can implement buffers, timestamps or any other mechanism to address them. We start from the fact

that brokers receive the correct events. Hence, every time the broker enforces the sync pattern, it links

each predecessor activity to an open lock, so every time an event satisfies a BIP, the broker closes its

lock. Next, in the case that all the activities are locked, the i.ev is triggered and the broker verifies the

covered BIS, so then, it informs the corresponding task’s AL.

Multi-choice (ORj): this pattern describes the divergence of an enabled activity into one or more

activities, so the execution of the successive activities is enforced using a dynamic condition. The way

LG supports a dynamic condition is through the same control event of the exclusive choice pattern.

Thus, once the LG is enforced the broker triggers an i.ev that reaches the BIS and activates the

corresponding activity. At this point, the challenge consists of how to allow different BIS to only

consume i.ev under the conditions determined by the received control events. Assuming that these

conditions include the identifiers of each subsequent activity, our solution consists of letting BIS to

internally subscribe to their same instances. Then, i.ev messages targeting these identifiers will be

created and the matching process will be ready to verify if the event satisfies only the enabled BIS. This

strategy is feasible using topic-based languages (because the same topics can be used as identifiers)

and non-distributed subscriptions (as the cost of producing events is lower).

3.1.4. Workflow Recovery Support

In our model brokers are capable of updating internal subscriptions in order to avoid unreachable

states or inconsistences in the SWf execution. The sequential pattern is the most elementary supported

logic gate. Remaining logic gates can be modeled as a sequential pattern in the case of having only one

predecessor and one successor activity. A distributed workflow (using many different logic gates) can

experience this kind of situation because of on-demand actions or due to runtime inconsistences. In

order to support these actions and prevent inconsistences and deadlocks, we propose the pseudocode

shown in Figure 5. It recovers and reconnects predecessors and successors bindings that trigger the real

events pushed to limit activities. This method is feasible because brokers previously received all the

relationships between activities with the WSDL. It is compatible with alternative limit activities that

could appear in runtime because each time an un-subscription (unsub.event) occurs the broker recovers

the same relationships that are employed in the matching.

Sensors 2013, 13 10965

Figure 5. Binding recovery pseudocode.

As an example a SWf is composed of instances of tasks A, B and C which are linked by sequential

activities in the same order. Hence, task C consumes events produced by task B and the latter from

task A. The pseudocode uses as input, every un-subscription event received by the broker. This

un-subscription represents a changing state in tasks and therefore in its ALs. The un-subscription can be

triggered by on-demand actions of the SWf scheduler, or by an event of unexpected disconnections in

implementations that are based on ping-based interactions (e.g., WebSockets ping). Step 2 checks if

there are still successor bindings (in this case inputs targeting tasks B) interested on the events

produced by task A’s activities. In the case the un-subscription event corresponds with the last

remaining successor binding that is interested on events received from task A, the algorithm recovers

(Step 3) the successor binding. Next, the algorithm iterates (Step 4) each of the existing predecessors

bindings and then compares if the callback address of BIS corresponds with any callback address that

has published under the identifier of BPi. In this process the topic can be used as this identifier, as we

maintain a strict hierarchy, but it is still compatible with other mechanisms. Afterwards, Step 6

searches for every successor binding, which represents in our case the input for the activity of task C,

willing to consume the activation events (i.ev) resulting from the gate’s enforcing. This step can be

compared with a membership test which is well-supported using fast matching techniques (e.g.,

through Bloom Filters [28]). At this point the remaining step consists on recovering (Step 7) each one

of the successor bindings and set them with a new interest that will be at the end, the triggering input

of the successor activity of tasks B.

The algorithm targets subscriptions that are being supported in the same broker, nevertheless in the

case the broker ends its execution and no new interests are set, being the distributed nature of the SWf,

it can execute a mechanism [29,30] to disseminate these disconnection events. In the case of

synchronizing patterns it contributes to the self-healing characteristics of a SWf as tasks depend on the

correct scheduling of every one of the previous branches tasks and their ALs. As a final point, the

pseudocode takes as triggering points the un-subscription actions that enclose successor binding

instead of predecessor bindings and this characteristic is because it targets SWf based on directed

acyclic graphs.

1: procedure BINDING_RECOVERY (unsub.event)

2: if (checkLastSucessors(unsub.event))

3: BIS getLastSucessors(unsub.event)

4: for each BIPi ϵ BIPT.

5: if (BIS.callback equals (BIPi..callback)

6: BIP group_temp getAllSucessor(BIPi.)

7: for each BISx .tmp ϵ BIP group_temp

8: BISx.tmp setNewInterest (BIS.topic)

9: endfor

10: endif

11: enfor

12: endif

Sensors 2013, 13 10966

3.2. Workflow Messaging

In this section we explain how our SWf model behaves in the Pub/Sub layer in initialization and

runtime, as it requires some primitives in the event layer (publish,subscribe,notify,un-subscribe) in

order to bind tasks and their limit activities. Figure 6 shows an overview of the workflow messaging

message exchange among tasks A,B and C, one serving brokers and their Coordinator. In the global

schedule model, these tasks carry on the ALs we showed in Figure 1. Tasks A, execute AL-5 and AL-10.

Task B executes AL-7 and AL-8. Task C executes AL-6.

Figure 6. Workflow messaging.

Broker Coordinator
Workflow

Task C

Workflow

Tasks B

Register LGs

Update LG

Workflow

Task A

Worflow

bootstrapping

a)

b.1)

c)

d.1)

e.1)

f.1)

f.2)
f.3)

g.1)

g.2)
g.3)

h)

g.1)
g.2)

Create LG

Control Events

Subscriptions

Wf management

b.2)b.3)

d.2)
d.3)

e.2)

subscribe()

notify()

subscribe()

e.3)

notify()
notify()

publish()

notify()

notify()

publish()

publish()

disconnects()

In the first step the broker that will support the SWf participants sends (a) to the Coordinator its

capabilities using the WSDL description presented in Section 3.1.2 Workflows’ participants subscribe

(b.1,2,3) to the broker and wait until topics corresponding inputs and outputs of AL are assigned. Once

the Coordinator initializes the topic identifiers of each AL, it pushes this information to the broker (c),

which matches the correct workflows participants using the client identifier it has received from the

Coordinator. At this point the broker creates the internal bindings, by arranging predecessor and

successor activities, and uses the callback information to notify (d.1,2,3) tasks A, B, and C with the

topics identifiers that represent these ALs.

The first step towards the global execution of the SWf is to inform each one of participants

regarding the topic identifiers. Once tasks subscribe (e.1,2,3) to the broker, it registers these

subscribers as successors and gets ready to notify control messages. We developed logic gate cases of

the ANDs and the ANDj as they encompass, in terms of message exchange, the remaining gates. These

two cases involve many-to-many communication and control messages that trigger activation of

branches activities. In the ANDs case, AL-7 and AL-6 are the successors; so whenever tasks A reaches

AL-5, it publishes an event (f.1), using tns:pattern/parallel/cevent, and the broker notifies (f.2,3) them.

Following the SWF execution, activities AL-8 and AL-6 are the workflow predecessors and AL-10 the

Sensors 2013, 13 10967

successor. They are connected through an ANDj pattern, so it requires that all the predecessor activities

must be completed before the execution of the successor one. Following the binding model of

Section 3.1.3, the broker implements the LG and marks AL-6 and AL-8 as BIPs, and AL-10 as BIS, so the

broker will only trigger the i.ev if both BIP are satisfied. After the execution of AL-6, it publishes an

event (g.1) that matches the first BIP. At this point, the LG conditions are partially fulfilled as the

broker retains the event that triggers the BIS and the activation of AL-10 until Participant AL-8 publishes

(g.2) the corresponding remaining event that will match the remaining BIP. After any given time, if

Task B disconnects from the broker (e.g., due to a planned action or an unexpected situation such as a

network failure), the latter updates the predecessor binding registry for this LG. Hence, in the case

AL-6 generates a new event; the broker directly matches the only existing successor binding and

triggers the control event targeting AL-10, as there is no need to wait any other predecessor binding.

Participants can also un-subscribe to topics, by issuing the primitive unsubscribe (topic) and the broker

will enforce the process explained in Section 3.1.4.

In the case of a broker failure the Orchestrators use a pre-configured backup broker and publish the

network properties of the failing broker using the topic: monitor/exception/broker. Therefore, as the

Coordinator is already subscribed to this topic, it will receive this information. Afterwards, it confirms

the broker status by issuing the SOAP request shown in Figure 7. Both negative and positive responses

will be informed to the overall SWf Scheduler. In the negative case, it will be caused by a connectivity

issue between the participant and its broker. The second one represents a total failure of the broker, so

the SWf will need a reallocation of participants to an available broker. Specific network recovery

model and re-scheduling mechanisms are out of the scope of this paper, so we assume that Coordinator

can always reinitialize the SWf using the process explained in Section 3.1.2.

4. Communication Model and Application Scope

As we stated, our model is based on the principle that workflow patterns are supported in brokers,

rather than in nodes. Therefore, we have reviewed in the literature existing systems that support the

execution of SWf, and then we have classified them into three communication solutions based on how

they support the control message exchange. Then, the objective of this section is to analyze the

expected requirements of SWf execution in the context of workflow patterns and in-runtime message

exchange. Later, we use this analysis to extract the advantages of our proposal in comparison with the

other three communication solutions. These requirements are: information dissemination, info

dispatching and filtering, task decoupling through workflow patterns, flexibility over workflow

changes, scalability of events and workflow monitoring and failure handling.

In this section we demonstrate that offering workflow pattern support, at the message exchange

level, offers more global advantages to SWf participants in terms of information delivery, task

decoupling and so on. Afterwards, we provide a quantitative evaluation of the solutions. Figure 8

shows the relationships between the workflow patterns, participants and control events.

Sensors 2013, 13 10968

Figure 7. Example of SOAP request and response.

The first solution is based on a semi-centralized messaging (SCM) in the SWf scheduling; in this

solution, workflow patterns that connect tasks are supported over centralized schedulers or a pool [31]

of decentralized ones under the same SWfMS. Therefore, we can assume that communication between

different tasks is supported by establishing channels between tasks and schedulers, no matter the

underlying characteristics of the dissemination layer (e.g., a tailored grid [6,7,11,32] or web-based

messaging [33]); this characteristic is because the workflow scheduling of tasks is still linked to

control events triggered by schedulers in response to the workflow patterns. Hence, from the

underlying communication perspective, these control events are stored and forwarded by only one

entity (e.g., a built-in or a remote message broker).

POST /WebServiceSensors/Service1.asmx HTTP/1.1

Host: 127.0.0.1

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">

 <soap12:Body>

 <ReturnState xmlns="http://tempuri.org/" />

 </soap12:Body>

</soap12:Envelope>

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">

 <soap12:Body>

 <ReturnStateResponse xmlns="http://tempuri.org/">

 <ReturnStateResult>string</ReturnStateResult>

 </ReturnStateResponse>

 </soap12:Body>

</soap12:Envelope>

Sensors 2013, 13 10969

Figure 8. Relationship between patterns, participants and events.

Exc2

LG
LG

LG

ALAL

AL

Brokers

SWf

fragments

SWfMS

Control

events

Task

Exc1Scheduling

Control

events

Task
Task

Participant Nodes

Pub/Sub

communication

-LG are instances of

workflow patterns

Monitoring

Data ManagementProvenance

The second solution is a distributed scheduling messaging (DM) between tasks. Tasks are

scheduled [34] to run in a distributed table over a P2P-based scenario, which is shared among

participants, rather than in a cluster or a pool of schedulers. Triggered events are decoupled from

schedulers and the running conditions (which also depend on workflow patterns) reside in the same

table in the form of states (pending, running and finished).

We call the third solution Pub/Sub with channel optimization messaging (COM). It is based on our

previous research [20] and inherits its mechanisms for establishing channels associated to task and the

support of workflow pattern in the same nodes that execute these tasks. Therefore, nodes running tasks

are loosely coupled from schedulers in execution, at expenses of dependency in space. Finally, we

name our whole solution model as Bounded patterns over Pub/Sub (BPoPS). A summary of the

comparison is depicted in Table 1.

Table 1. SWf execution requirements and communication solutions.

 Semi-Centralized

MesSaging (SCM)

Distributed

Messaging

ExChange (DM)

Pub/Sub with

Channel

Optimization

Messaging (COM)

Bounded Patterns

over Pub/Sub

(BPoPS)

Information

dissemination

Sync messaging

Async Messaging

Request-response

Async Messaging

Partial Asynchronous Fully Asynchronous

Information

dispatching and

filtering

Application Level Application Level Event level Event Level

Tasks decoupling

through workflow

patterns

Partial Partial Partial Complete

Flexibility over

workflow changes

Depending on activity-

to-activity links

Depending on

Single links

Depending on number

of activities

Workflow dependent

Scalability of events Depending on number of

activities

Node dependent Pattern dependent Topology dependent

Workflow monitoring

and failure handling

Semi-centralized Shared space Distributed – task

level

Distributed – broker

level

Sensors 2013, 13 10970

4.1. Qualitative Comparison

Information dissemination refers to the mechanisms that allow tasks to gain access to the branch

conditions via control messages. In the SCM solution Orchestrators executing tasks are always coupled

to other Orchestrators in terms of location of the target tasks (space coupling) and the flow interaction

dependencies among them (synchronization decoupling). This fact is a disadvantage for the SWf as its

execution is dependent to this coupling no matter the message exchange pattern: many-to-one (e.g.,

ANDj) and one-to-many (e.g., ANDs). The DM solution provides a well-proven information

dissemination environment as tasks can be fully-decoupled from the scheduling systems. However,

maintaining a shared, synchronized and consistent information space between a wide range of SWf

participants, and their intermediary patterns [35], leads to networking overhead and complex

scheduling datasets in comparison with the COM and BPoPS solutions.

In BPoPS we leverage to brokers the scheduling order and the triggering conditions generated by

activities bindings in runtime; so tasks remain agnostic of the other tasks with which they have no

runtime relationship. Regarding sync decoupling, as brokers carry on the message storage and forward

functions, participants are set to be straightforward and lightweight (from the dissemination stack

perspective). Hence, this model offers better capabilities as tasks get control messages over a fully

asynchronous and decoupled communication model, while the global SWf scheduling remains

compatible with event dissemination mechanisms (e.g., Gossip-based [21]) targeting distributed

networks and grids.

Message dispatching and filtering refers to the mechanisms for creating, dispatching and later

filtering of control messages. In the SCM messages directly reach the right participants’ Orchestrators.

Whenever a scheduler jumps from one task to another, the Scheduler decides which of the task

participants it needs to trigger based on the workflow patterns. The process of pushing messages is

carried out at the Application Level, as the global scheduler is aware of the network location and

information models of the successor activities. This mechanisms offer advantages for centralized

SWfs, because no overlay or intermediary functions are needed, however, it is proven that a

centralized information delivery is not the best method [17] for delivering messages in SWfs.

In the DM solution, the overlay network filters workflow control conditions. Depending on the

network topology (e.g., pure and hybrid P2P), the schedulers can directly coordinate the execution

(point-to-point). Tasks are registered to predecessors and successors tasks using recursive P2P-based

searches that act as message filters between them. These kinds of methods require [36] complex

scheduling mechanisms in order to balance the load and delivery messages in contrast with our BPoPS

solution were messages can be filtered at the nearest point such as the tasks’ broker.

In the COM solution messages are filtered and forwarded to participants that execute tasks,

however, it produces a high level of long-lived subscriptions between nodes and schedulers, which

makes this solution unfeasible for complex and distributed SWfs. In the BPoPS solution, brokers

maintain the forwarding and event filtering level because they filter the events using topics that

represent bindings under administratively-defined rules. The BPoPS solution enhances the event

interoperability with SWf task instances that could be added in runtime (e.g., a new set of optical

sensors) as brokers enforce an Event-level filtering based only on topics which are independent from

the information models used by activities.

Sensors 2013, 13 10971

Task decoupling through workflow patterns is a characteristic that allows SWf participants to

maintain decoupled the relationships between tasks. Synchronized communication provides limited

task decoupling, which is non-expected characteristics for distributed SWfs [3]. In the asynchronous

SCM case the SWf execution is dependent on the blocking conditions and synchronization generated

by scheduler as it is the only capable of retrieving successor activities in the whole SWfMS. This

limitation applies no matter what state the task is in or the pattern that joints its activities.

In the COM solution tasks acting as publishers and subscribers are partially decoupled. This is

because the XORj and ANDj patterns obligate successor activities to subscribe to each one of the

predecessor activities. In addition, as each one of the subscription to these activities establishes a single

and tailored channel (that can be compared with a network address), this solution breaks the principle

of Pub/Sub communication regarding space decoupling.

The BPoPS solution is the most complete one, as it fully supports tasks decoupling since ALs can

subscribe to other ones using the same topics, regardless of their binding pattern. Our proposal is also

compatible with the process of adding and removing ALs (using the WSDL) by schedulers and allows

other related tasks to continue their execution without disturbance in the case of SWf changes; for

example by executing the pseudocode presented in Figure 6. It is not illustrated how the DM based

model can afford the task decoupling thought workflows patterns.

Flexibility is the ability to adapt to SWf changes. In the SCM case the flexibility is limited by the

amount of activities-to-activities bindings; so schedulers must be capable of re-ordering the SWf

execution in the case of changes in the execution order. In the SCM solution, schedulers must contact

each one of the SWf tasks, so it limits the workflow to a centralized point of failure and decreases the

SWf flexibility. The DM offers high flexibility over network changes as it depends on single links

between schedulers and tasks participants. The COM solution embodies similar flaws than the

SCM solution in the case of XORj and ANDj patterns since the successor activity must be aware of the

state of its predecessor ALs. Therefore, this scenario obligates tasks to be subscribed to all of

these outputs, which increases the messaging and the implementation complexity of the Orchestrator

of the predecessor activity. In our solution as the entire branch conditions pass through brokers, t

hey can implement mechanisms to recover the workflow bindings and dissemination protocols

(e.g., gossip-based) that complement the network flexibility and participants’ simplicity. Depending on

nodes, the workflow scheduling and the scenario where it runs (e.g., structured SWf topology and

lightweight participants), our solution offer suits more qualitative advantages as we state in Section 4.2.

In our context, scalability of events is the increase in the number of total connections among ALs, so

the less connections the SWf execution requires the more scalable it will be. In the case of the SCM

solution connections grow in proportion to the number of ALs added to the SWf, which makes this

solution costly in terms of networking resources. In the DM solution tasks fetch the execution stages

from shared information, so they can directly communicate with other tasks. Therefore, scalability

depends on the number of participants being part of the SWf rather than the running conditions.

As SWfs can be very dynamic in runtime the DM solution offer less advantages that our proposal in

static networks. The COM case uses Pub/Sub communication, which has been proven its good

scalability [3,37] delivering control messages in workflows. Nevertheless, in the case of having a SWf

with a large number of events and joint-based patterns (e.g., XORj), as these brokers are agnostics in

terms of patterns, the task (and its successor AL) must be subscribed to every one of predecessor AL.

Sensors 2013, 13 10972

So, unnecessary messages will reach tasks and decrease the scalability level of the whole SWfMS. In

our solution connections grow with changes in the workflow running conditions, which required

requires less messaging because no unnecessary control messages will be pushed to tasks.

Workflow monitoring refers to the process of verifying that the workflow execution conveys with

the messaging that leads to the correct ordering of AL execution and no errors, deadlocks or

inconsistences occur. In the SCM solution if the number of participants increases, having a centralized

communication (e.g., from tasks to schedulers) offers a lower decentralization level in comparison

with other communication solutions [3], and bottlenecks may occur as well. This disadvantage is

because schedulers have to keep track of every state the whole workflow has gone through, in order to

handle a failure by for example informing the right successor AL, or re-scheduling tasks’ ALs. We

consider that the DM solution offers higher monitoring capabilities as the state of task is distributed in

a shared space and inconsistences are accessible by schedulers.

The COM solution introduces the same limitation inherited by the scalability of events. The BPoPS

solution allows the monitoring system to save network and processing resources. Brokers act as the

monitoring entities of tasks, because they already serve them and control their bindings with other

tasks’ AL. They can properly deal with failures (e.g., by applying the algorithm of Section 3.1.4.) and

inform schedulers about the state of tasks using the topic hierarchy presented in Section 3.1.1.

4.2. Evaluation of Communication Solutions

In this section, we describe a validation scenario for the qualitative evaluation of communication

solutions described in Section 4.1. This validation scenario presents a realistic situation of the

implementations of the proposed solutions according to the use that is made today of the Internet

applications and services. It has been designed for supporting the runtime behavior of the SWf

described in Section 2.1. Building this scenario we provide an integral evaluation of the

communication solutions including a quantitative comparison based on the performance of each

communication solution this scenario. Henceforth, we use the same SWf showed in Figure 1 as the

input for all the implementations.

The validation scenario of this SWf consists on a set of AL deployed over the Internet in a

distributed manner and well-defined and structured administrative domains where: IP multicast is not

available, predecessor and successor ALs are supported by a Orchestrator node and communicate with

the SWf Scheduler/Monitor (in our case the Trident Workflow Workbench) using a Virtual Private

Network (VPN) channel, ALs bindings and their message exchange are maintained in a private domain

and finally, ALs are set to be in a static local area network with low addressing movement. Brokers

communicate with Orchestrators and the SWf Scheduler and Monitor. Figure 9 shows the network

topology of the evaluation scenario.

As we analyzed in Section 4.1, DM-based solutions are suitable for scenarios where SWfs have a

high level of re-scheduling, parallelism and dynamic peer topologies. In the evaluation scenario, there

are static relationships between peers, in terms of network addressing, and a low level of

re-scheduling; therefore: (i) a DM-based solution offers qualitative characteristics that are barely

applicable to the evaluation scenario but increase the complexity of SWf management and its

implementation. In addition, (ii) the evaluation scenario comprehends administratively-defined and

Sensors 2013, 13 10973

controlled domains that are difficult to maintain and support using a purely distributed P2P approach in

current SWf frameworks. Concerning the relationships between predecessor and successor AL,

DM-based solutions concentrate on delivering data to peers (through P2P paths) and resolving

connectivity issues in an unstructured network. The evaluation scenario is set to be in a private and

structured network domain, in terms of exposed interfaces, addressing and notification of control

events that realize the bindings among predecessor and successor AL. Therefore, (iii) even with secure

path selection and routing mechanisms, a DM-based solution is less suitable for the evaluation scenario

and overheads the communication stack of nodes supporting Orchestrators. In the context of the

evaluation scenario and taking into account these three implementation drawbacks of a DM-based

solution, we clearly state that its implementation offers disadvantageous qualitative aspects in

comparison with the other solutions analyzed in this article: SCM, COM and BPoPS. Therefore, we

have focused our efforts into providing a quantitative comparison among SCM, COM and BPoPS

implementations, which share the same qualitative characteristics expected for this evaluation scenario.

Figure 9. Network topology of the evaluation scenario.

SWf Scheduler and

Monitor

Internet

Activities: 10,9,3

ALs : 1,5,2,4 ALs : 11,6,7,8

VPN Link

Broker

Orchestrator node

 is a Local Area

Network

In order to normalize the comparison and overcome the differences that can be originated by

different implementations and communication models, we set up a common layer for the three

implementations. This layer is based on SOAP-HTTP. As we analyze the runtime behavior, we assume

that the SWf was previously initialized including the information regarding AL’ bindings,

predecessor/successor AL, broker addresses and logic gates.

We used the Trident Workflow Workbench [25] as the main framework to compose, schedule and

monitor the SWf execution. It ran over a workstation with a Core i7 1.6 GHz CPU, with 4 GB of RAM,

and the 64 bits Windows 7 OS. We started from the fact that ALs were already deployed over

Orchestrators. We emulated their milestones in terms of inputs/outputs of control events. For this task,

we used servers with these characteristics: Core i5 2.0 GHz CPU, 8 GB of RAM and 64 bits Windows 7.

Activities’ interfaces were implemented in C#. Then, we converted them into Internet Information

Service (IIS) Applications; so all the Activities’ inputs were bound to SOAP-HTTP bindings and

implement the notify SOAP operation. Activities’ outputs triggered web actions in brokers. We

developed brokers in C# and use similar bindings. Primitives publish, subscribe, un-subscribe were

also implemented as SOAP operations.

Sensors 2013, 13 10974

The node running Trident was deployed over the Internet as well as brokers and nodes running

activities. Brokers and ALs were grouped according to the SWf of Figure 1. For implementation

purposes ALs under the same Local Area Network were executed by the same Orchestrator node, but

they continued to use the Web interface to exchange control messages. Concerning the execution, in

the SCM implementation, Trident started the execution of each one of the AL using the scheduling

mechanisms offered by the framework; so there was no broker participation. In the COM

implementation, LG were implemented just before the successor ALs, and the Trident node only started

the execution of AL-1 as well as in our solution. In the BPoPS solution we used a recursive

subscription to implement the message forwarding between brokers. It was also based on SOAP-HTTP

bindings. Table 2 compares the tree SCM, COM and BPoPS implementations in terms of completion

time of the SWf execution, message SOAP payload, memory footprint and CPU utilization. We

contemplated in all the solutions the mean, median and standard deviation, except for the message

SOAP payload field, because we were using a fixed payload for this test.

Table 2. Quantitative evaluation of the evaluation scenario.

Semi-Centralized

Messaging

(SCM)

Pub/Sub with Channel

Optimization Messaging

(COM)

Bounded Patterns over

Pub/Sub

(BPoPS)

 Mean Median SD Mean Median SD Mean Median SD

(1) Completion

time of the SWf

execution (ms)

15,181

10,537

202

15,182

10,538

202

8,823

8778

162

(2) Message SOAP

payload (bytes)
8,041 - - 16,510 - - 21982 - -

(3) Memory

footprint (MB)
117.124 117.718

3.234

119.582

119.652

1.3976

104.550

104.773

2.740

(4) CPU utilization

(%)

15.069

14.739

3.941

14.993

14.965

5.729

15.538

16.102

3.978

The Completion time of the SWF execution and the Message SOAP payload correspond with the

term Information dissemination that we introduced in Section 4.1. In this section, we described the

mechanisms that allowed task gaining access to the activation of an AL after a control message arrives

to SWf participant. The message SOAP payload of line 2 represents the total message payload

generated towards the complete execution of the SWf, including the subscription messages needed by

COM and BPoPS. Trident is always taken as the reference point for all the measures. It starts the

execution in AL-1 and receives the completion message from AL-11 in all the cases.

We use the Memory and CPU consumption of the SWf, gathered from the Trident, as quantitative

metrics. This metrics corresponds with the Workflow monitoring characteristic mentioned in Section 4.1

From this table we extract the following conclusions:

- Regarding the Completion time of the SWf execution, BPoPS gives an average of 88,234

milliseconds, while the closer solution, the SCM, shows an average of 15,814 milliseconds. As

we had different samples for this test, we applied the Mann-Whitney U test [38] for measuring

the Completion time of the SWf execution. The results of this test supported the previous

Sensors 2013, 13 10975

finding (P < 0.01). The P-values indicate that the test result is significant, so we can conclude

that BPoPS offers the best performance values for this evaluation scenario.

- Concerning the Message SOAP Payload, even if BPoPS requires a higher quantity of messages,

this indicator does not affect the overall SWf performance often carried out using local area

networks, with low latency and stable MTU, and broadband Internet connections.

- Regarding Memory and CPU, due to the simplicity of the connection between the Trident

Workflow Monitor and brokers, the BPoPS solution offers a better Memory footprint in the

Monitor, an average of 104.550 MB. In terms of CPU consumption our solutions show similar

values than the other solutions.

Summarizing, we analyzed the qualitative advantages of the BPoPS in comparison with the

DM-based ones. In the evaluation scenario, we demonstrated that the BPoPS implementation offers

similar CPU utilization than SCM and COM implementations and 10% improvement in the memory

footprint. Finally, the test also determined that the BPoPS improves by 41% the completion time of

the SWf execution.

5. Related Works

The problem of distributed execution of workflows is an open topic today. Some works [3]

highlight the importance of SWfMS coordination models, not only by their nature (orchestration,

choreography or mixed models) but also by the task distribution, delegation algorithms and

optimizations over inter-task communication. Other works [39] compare existing SWf systems, extract

the differences between the data and control planes and highly the importance of the control structures

and their execution. These control structures are realized by workflow patterns.

Related to the nature of the workflow, a centralized SWfMS is often not the best solution for

executing workflows as large amounts of data are routed through a centralized point which makes the

workflow difficult to scale. Some approaches propose decentralized SWfMS which optimize

communication by placing each orchestration engine as close as possible to the component service it

manages [18], so, our work targets these kinds of systems.

For an efficient and scalable distribution of tasks some researches state that a SWf should be

divided into different planes, so the participants of the workflow have to deal with different

communication methods for data and control. Concerning optimization of distributed workflows, some

authors [40] propose the application of data mining techniques, by carrying out a deep analysis of

temporal behavior and then extracting the best way to fragment tasks depending on availability of

resources. Other works [36] resolve task distribution from the perspective of workflow scheduling by

elaborating P2P communication models between participants and then finding the efficient mapping of

tasks. Our work differs from these approaches as it tackles the message exchange in runtime, rather

than the fragmentation process while participants remain decoupled from each other. A hybrid

approach for scheduling of workflows is proposed in [41], by deploying two phases. The first phase is

based on clustering and grouping tasks according data links between tasks. The second phase applies a

list-based heuristic to fit the allocation of task groups, according to the available resources. This

approach reduces the inter-task communication costs and therefore improves the performance of the

Sensors 2013, 13 10976

workflow execution. Nevertheless, our work focuses on how to decouple the control messages

depending on the workflow relationships between parties, as we assume that data messages will be

delivered using other mechanisms.

Most of the research marks grid environments as suitable scenarios for SWf execution [5], and

addresses the importance of intermediate communication elements, which in our case are the brokers.

Works such as [42] review the importance of the control plane of workflows and their realization using

abstract languages. On this topic workflow patterns have been used [5] as the source for modeling and

monitoring of workflows. Our works goes further and applies the same patterns to enhance the

communication between tasks by not only monitoring, but also delivering control events.

Failures in activities can create deadlocks in workflows, so dependence between activities requires

recovery methods in WfMS. In this context of Web Services recovery [43], Issarny et al. proposed the

concept of Web Service Composition Action, which allows multiple choices to be selected based on

pre-established specifications. Other works such as [44] define transaction behaviors to compensate for

failures based on the workflow skeleton. In our work we also defined recovering mechanisms based on

the fact that brokers manage task relationships; so it could be possible to enhance our brokers with these

mechanisms. Therefore, depending on the expected runtime conditions, the amount of participants and

their communication needs of the SWf, these methods could be plugged-in into our brokers.

Concerning the communication model, some works [33] develop web-based mechanisms adapted to

SWfs, however, as we presented in previous sections, the communication layer can be improved by a

close relationship between messaging and tasks bindings. Balis, et al. [10] propose a taxonomy for

monitoring events, based on structured identifiers similar to our topic hierarchy. These events are

managed over a Distributed Hash Table infrastructure. We consider our solution complementary [45] with

this kind of infrastructure as our broker enhancements are independent from the underlying network.

The Publish/Subscribe paradigm has been applied to many scenarios such as scientific workflow

interoperability [46] and recently in M2M communications [28]. Regarding the event dissemination,

Alqaoud et al. [47] demonstrated that a topic-based Pub/Sub model, together with Web-based

protocols, improves the SWf interoperability while maintains the expected loosely coupled

characteristic required by highly distributed tasks. Our model shares similar characteristics and

enhances this interoperability by delegating the complexity of the patterns instantiations to brokers

rather than nodes running tasks.

6. Conclusions and Future Works

In this paper, we have addressed the problem of disseminating control events in the context of

scientific workflows. For this purpose, we have proposed a model that uses workflow patterns’

foundations and defined the key elements that are needed for the execution of SWf. Our model is

complemented with a task interoperability reference model that allows the hierarchical organization of

tasks’ inputs/output while maintaining the simplicity and portability of a topic-based Pub/Sub

language. We have also presented a WSDL definition that allows the configuration of brokers’

interfaces, task bindings and the event layer that supports the SWf execution. A reference broker

model is also provided as well as procedures brokers can carry out in order to recover relationships

between tasks, inside the SWf.

Sensors 2013, 13 10977

The proposed model is qualitatively analyzed and compared with current SWf solutions in Section 4,

where advantages of the new model are stated. Thus, existing implementation are categorized according

to their communication mechanisms and interactions among tasks and schedulers. The qualitative areas

were evaluated from the workflow pattern perspective, their triggering conditions and control events

generated and disseminated. Therefore, we showed that our model offer the strongest qualitative

advantages in terms of information dissemination, tasks decoupling and filtering of control events. We

performed an evaluation of a realistic SWf scenario using the Trident Workflow Workbench and

demonstrated that our model offered better quantitative advantages in terms of completion time of the

SWf execution, maintained a lower memory footprint and similar CPU utilization.

In future research we will be working on workflow fragmentation issues and mechanisms for

supporting patterns that head to directed cyclic graphs. We will work on brokers capable of supporting

patterns by employing auto-installable and auto-configurable libraries. Finally, we will also investigate

the characterization of workflow internal structures and their optimal instantiation and execution using

adapted gossip algorithms and protocols.

Acknowledgments

This work is support by the Ministry of Economy and Competitiveness of Spain, project CALISTA

TEC2012-32457. We would like to thank to Diego Martin de Andres for his statistical advice.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Barker, A.; Van Hemert, J. Scientific Workflow: A Survey and Research Directions. In

Proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics,

PPAM'07, Gdansk, Poland, 9–12 September 2007; pp. 746–753.

2. Grefen, P.; de Vries, R. A reference architecture for workflow management systems. J. Data

Knowledge Eng.1998, 27, 31–57.

3. Lin, C.; Lu, S.; Fei, X.; Chebotko, A.; Pai, D.; Lai, Z.; Fotouhi, F.; Hua, J. A reference

architecture for scientific workflow management systems and the VIEW SOA solution.

IEEE Trans. Serv. Comput. 2009, 2, 79–92.

4. Yildiz, U.; Guabtni, A.; Ngu, A. Business versus Scientific Workflows: A Comparative Study. In

Proceedings of the Congress on Services–I, (SERVICES'09), Bangalore, India, 21–25 September

2009; pp. 340–343.

5. Liu, X.; Dou, W.; Fan, S.; Cai, S. The Problem-Based Scientific Workflow Design and

Performance in Grid Environments. In Proceedings of the Fifth International Conference on Grid

and Cooperative Computing Workshops (GCCW'06), Washington, DC, USA, 21–23 October

2006; pp. 267–274.

6. Data Grid Project. Available online: http://eu-datagrid.web.cern.ch/eu-datagrid/ (accessed on 10

March 2013).

Sensors 2013, 13 10978

7. The Open Science Grid. Available online: https://www.opensciencegrid.org (accessed on 19

March 2013).

8. Extreme Science and Engineering Discovery Environment. Available online:

https://www.xsede.org/ (accessed on 12 March 2013).

9. Ludasher, B.; Altintas, I.; Berkley, C.; Higgins, D.; Jaeger, E.; Jones, M.; Lee, E.; Tao, J.;

Zhao, Z. Scientific workflow management and the Kepler system: Research Articles. Concurr.

Comp. Pract. E 2006, 18, 1039–1065.

10. Balis, B.; Bubak, M., Monitoring infrastructure for Grid scientific workflows. In Proceedings of

Third Workshop on Workflows in Support of Large-Scale Science (WORKS 2008), Austin, TX,

USA, 17 November 2008; pp. 1–10.

11. Taverna WfMS. Available online: http://www.taverna.org.uk/ (accessed on 14 March 2013).

12. Deelman, E.; Blythe, J.; Gil, Y.; Kesselman, C.; Mehta, G.; Patil, S.; Su, M.-H.; Vahi, K.;

Livny, M. Pegasus: Mapping scientific workflows onto the grid. Lect. Notes Comput. Sci. 2004,

3165, 11–20.

13. Missier, P.; Soiland-Reyes, S.; Owen, S.; Tan, W.; Nenadic, A.; Dunlop, I.; Williams, A.;

Oinn, T.; Goble C. Taverna, Reloaded. In Proceedings of the 22nd International Conference on

Scientific and Statistical Database Management, (SSDBM'10), Crete, Greece, 30 June–2 July

2010; pp. 471–481.

14. Bethel, E.W.; Shalf, J. Grid-distributed visualizations using connectionless protocols.

IEEE Comput. Graphic. Appl. 2003, 23, 51–59.

15. Johnson, D.; Meacham, K.; Kornmayer, H. A Middleware Independent Grid Workflow Builder

for Scientific Applications. In Proceedings of the 5th IEEE International Conference on E-Science

Workshops, Oxford, UK, 9–11 December 2009, pp. 86–91.

16. Li, G.; Muthusamy, V.; Jacobsen, H.-A. A distributed service-oriented architecture for business

process execution. ACM Trans. Web 2010, 4, 1–33.

17. Yu, J.; Buyya, R. A taxonomy of workflow management systems for grid computing. J. Grid

Comput. 2005, 3, 171–200.

18. Fleuren, T.; Gotze, J.; Muller, P. Workflow Skeletons: Increasing Scalability of Scientific

Workflows by Combining Orchestration and Choreography. In Proceedings of the Ninth IEEE

European Conference on Web Services (ECOWS), Lugano, Switzerland, 14–16 September 2011;

pp. 99–106.

19. Van Der Aalst, W.; Ter Hofstede, A.; Kiepuszewski, B.; Barros, A. Workflow patterns. J. Distrib.

Parallel. Datab. 2003, 14, 5–51.

20. Alcarria, R.; Robles, T.; Dominguez, A.; Cedeño, E. Resolving Coordination Challenges in

Cooperative Mobile Services. In Proceedings of the Sixth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), Palermo, Italy, 4–6 July 2012,

pp. 823–828.

21. Morales, A.; Alcarria, R; Robles, T; Cedeño, E. Improving Cooperativity in a

Workflow Coordination Model over a Pub/Sub Network. In Proceedings of the 6th International

Conference on Ubiquitous Computing and Ambient Intelligence, (UCAmI’12), 3–5 December

2012; pp. 216–223.

Sensors 2013, 13 10979

22. Ranjan, R.; Rahman, M.; Buyya, R. A Decentralized and Cooperative Workflow Scheduling

Algorithm. In Proceedings of the Eighth IEEE International Symposium on Cluster Computing

and the Grid (CCGRID), Lyon, France, 19–22 May 2008; pp. 1–8.

23. Eugster, P.; Felber, P.; Guerraqui, R.; Kermarrec, A-M. The many faces of publish/subscribe.

ACM Comput. Survey (CSUR) 2003, 35, 114–131.

24. WS-Topics 1.3 OASIS Standard. Available online: http://docs.oasis-open.org/wsn/wsn-

ws_topics-1.3-spec-os.pdf (accessed on 15 March 2013).

25. Project Trident. A Scientific Workflow Workbench. Available online: http://tridentworkflow./

codeplex.com/documentation (accessed on 15 June 2013).

26. Pubsubhubbub. Available online: https://code.google.com/p/pubsubhubbub/ (accessed on 15 June

2013).

27. Pérez-Castillo, R.; Weber, B.; García-Rodríguez de Guzmán, I.; Piattini, M.; Pinggera, J.

Assessing event correlation in non-process-aware information systems. Soft. Syst. Model. 2012,

doi:10.1007/s10270-012-0285-5.

28. Morales Dominguez, A.; Robles, T.; Alcarria, R.; Cedeño, E. A Rendezvous Mobile Broker for

Pub/Sub Networks. In Proceedings of LNICST, Second International Conference (GreeNets

2012), Gandia, Spain, 25–26 October 2012; pp. 16–27.

29. Campos, F.; Pereira, J. Gossip-Based Service Coordination for Scalability and Resilience. In

Proceedings of the ACM Workshop on Middleware for Service Oriented Computing,

(MW4SOC), New York, NY, USA, 1–5 December 2008; pp. 55–60.

30. Song, W.; Jiang, D.; Chi, C-H; Jia, P.; Zhou, X.; Zou, G. Gossip-Based Workload Prediction and

Process Model for Composite Workflow Service. In Proceedings of World Conference on

Services-I, Los Angeles, CA, USA, 6–10 July 2009; pp. 607–614.

31. Bradley, D.; Sfiligoi, I.; Padhi, S.; Frey, J.; Tannenbaum, T. Scalability and interoperability within

glide in WMS. J. Phys. Conf. Ser. 2009, 219, 062036.

32. Cao, J.; Javis, S.A.; Saini, S.; Nudd, G. GridFlow: WorkFlow Management for Grid Computing.

In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGRID’03), Tokyo, Japan 12–15 May 2003; pp. 198–205.

33. Perera, S.; Gannon, D. Enabling Web Service Extensions for Scientific Workflows.

In Proceedings of Workshop on Workflows in Support of Large-Scale Science, (WORKS'06),

Paris, France, 19–23 June 2006; pp. 1–10.

34. Ogasawara, E.; Dias, J.; Oliveira, D.; Rodrigues, C.; Pivotto, C.; Antas, R.; Braganholo, V.;

Valduriez, P.; Mattoso, M. A P2P Approach to Many Tasks Computing for Scientific Workflows.

In Proceedings of the 9th International Conference on High Performance Computing for

Computational Science, (VECPAR'10), Berkeley, CA, USA, 22–15 June 2010; pp. 331–339.

35. Hu, Y.; Bhuyan, L.N.; Feng, M.; Maintaining data consistency in structured P2P systems.

IEEE Trans. Paral. Distribut. Syst. 2012, 23, 2125–2137.

36. Yang, Y.; Liu, K.; Chen, J.; Lignier, J.; Jin, H. Peer-to-Peer Based Grid Workflow Runtime

Environment of SwinDeW-G. In Proceedings of IEEE International Conference on e-Science and

Grid Computing, Bangalore, India, 10–13 December 2007; pp. 51–58.

37. Medjahed, B. Dissemination protocols for event-based service-oriented architectures. IEEE Trans.

Serv. Comput. 2008, 1, 155–168.

Sensors 2013, 13 10980

38. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically

larger than the other. Ann. Math. Stat. 1947, 18, 50–60.

39. Curcin, V.; Ghanem, M. Scientific Workflow Systems—Can One Size Fit all? In Proceedings of

Cairo International Biomedical Engineering Conference, (CIBEC 2008), Cairo, Egypt, 16–18

December 2008; pp. 1–9.

40. Sun, S.X.; Zeng, Q.; Wang, H. Process-mining-based workflow model fragmentation for

distributed execution. IEEE Trans. Syst. Man Cyber. Part A: Syst. Human. 2011, 41, 294–310.

41. Tsai, Y.; Huang, K.; Chang, H.; Ko, J.; Wang, E.; Hsu, C. Scheduling Multiple Scientific and

Engineering Workflows through Task Clustering and Best-Fit Allocation. In Proceedings of the

IEEE Eighth World Congress on Services, Honolulu, HI, USA, 24–29 June 2012; pp. 1–8.

42. Wang, X.; Kuster, U.; Resch, M. A Low-level SDL-based Framework for Efficient Executions of

Large-scale Scientific Workflows. In Proceedings of the 14th IEEE International Conference on

Computational Science and Engineering, Dalian, China, 24–26 August 2011; pp. 639–644.

43. Issarny, V.; Tartanoglu, F.; Romanovsky, A.; Levy, N. Coordinated Forward Error Recovery for

Composite Web Services. In Proceedings of the 22nd International Symposium on Reliable

Distributed Systems, Florence, Italy, 6–18 October 2003; pp. 167–176.

44. Bhiri, S.; Perrin, O.; Godart, C. Ensuring required failure atomicity of composite Web services.

In Proceedings of the 14th International Conference on World Wide Web, (WWW'05), Chiba,

Japan, 10–15 May 2005; pp. 138–147.

45. Li, W.; Vuong, S. Towards a Scalable Content-Based Publish/Subscribe Service over DHT.

In Proceedings of IEEE Global Telecommunications Conference, (GLOBECOM 2010), Miami,

FL, USA, 6–10 December 2010; pp. 1–6.

46. Li, G.; Muthusamy, V.; Jacobsen, H.-A.; Mankovsky, S. Decentralized Execution of

Event-Driven Scientific Workflows. In Proceedings of IEEE Services Computing Workshops

(SCW'06), Washington, DC, USA, 18–22 September 2006; pp. 73–82.

47. Alqaoud, A.; Taylor, I.; Jones, A. Publish/Subscribe as a Model for Scientific Workflow

Interoperability. In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale

Science, (WORKS'09), Portland, OR, USA, 16 November 2009.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

