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Abstract: The execution of scientific workflows is gaining importance as more computing 

resources are available in the form of grid environments. The Publish/Subscribe paradigm 

offers well-proven solutions for sustaining distributed scenarios while maintaining the high 

level of task decoupling required by scientific workflows. In this paper, we propose a new 

model for supporting scientific workflows that improves the dissemination of control 

events. The proposed solution is based on the mapping of workflow tasks to the underlying 

Pub/Sub event layer, and the definition of interfaces and procedures for execution on  

brokers. In this paper we also analyze the strengths and weaknesses of current solutions 

that are based on existing message exchange models for scientific workflows. Finally, we  

explain how our model improves the information dissemination, event filtering, task  

decoupling and the monitoring of scientific workflows. 

Keywords: scientific workflow; publish/subscribe; distributed execution models; brokers; 

logic gates; workflow patterns 

 

1. Introduction 

A workflow management system (WfMS) is a piece of software that provides the infrastructure to 

setup, execute, and monitor workflows. These systems enable the “extraction” of process management 

from the application software, in order to achieve communication, system integration, process  

optimization and control. Nowadays, WfMS are very popular in business environments where 
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workflows are well determined, ordered and tightly coupled with the computing resources that support 

them. WfMS are based on well-known business standards such as the Business Process Execution 

Language (BPEL) and Business Process Model and Notation (BPMN). These standards allow different 

entities to coordinate tasks by exchanging information in a simple and almost pervasive way—through 

web services.  

A Scientific Workflow (SWf) is a special type of workflow that solves a complex scientific problem 

that is supported by a special WfMS called Scientific WfMS. As business workflows, SWfs are 

composed of several tasks that are coordinated by a global task scheduling system running in the 

SWfMS. The SWf’s execution is divided into two layers. The data plane exchanges the execution 

information of an activity (e.g., a sensor output, the results of an image or weather analysis, or a  

cell-behavior). The control plane exchanges the activation or de-activation orders that allows the 

synchronization in the execution process of activities (e.g., to initialize a simulation). Thus, the control 

plane directly supports the global task scheduling as it decides where, when and how to execute tasks. 

Scientific workflows share some of the characteristics of business workflows [1] such as information 

filtering, process monitoring, and the necessity of a logical ordering of tasks that have to be carried 

out. Nevertheless, it has been proven that current business-oriented WfMS [2], and communication 

models barely support [3–5] the requirements of SWfs in terms of event dissemination, task 

decoupling, flexibility and scalability. SWfs are expected to be a more dynamic series of ordered tasks, 

changing inputs/outputs, and fluctuations of the logical relationships between participants. They also 

targets distributed environments with heterogeneous entities executing tasks with a high level of time, 

space and synchronization decoupling. As an example, initiatives such as DATAGRID [6], Open 

Science Grid [7], and XSEDE [8] provide systems and guidelines for executing SWfs and exploit the 

benefits of grid environments. 

As communication over grid environments involves many challenges [9,10], one of the key issues 

in SWf research is the coordination of distributed workflows for a more efficient message exchange 

Thus, in order to improve this exchange it is necessary to take into account the runtime communication 

needs of a workflow, the logical relationships between its participants, and the type of tasks they 

execute. In addition, there are still challenges regarding how to improve the execution of SWfs by 

taking advantage of all the knowledge obtained from previous business-workflow research, and 

communication models that target loosely coupled systems. Hence, it has been proven that large-scale 

SWfs require models capable of providing an improved set of communication capabilities not only in 

parties that execute tasks, but also in entities bounding them. As an example, SWf platforms such as 

Taverna [11] and Pegasus [12], make use of grid infrastructures where workflow participants are 

heterogeneous in terms of location, processing power and network capabilities; however, little effort 

has been put into research on how the logical relationships between workflows’ fragments influence 

the message exchange and the underlying protocols. Taverna also takes advantage of a Web Service  

Infrastructure [13] in order to improve its extensibility and compatibility with Web-based services. 

Besides the multiple open-issues [9] in the SWfs area, we tackle the problem of supporting SWfs 

over grid-based environment in order to improve the event dissemination in the control layer.  

Therefore, we define key elements that enable the execution of SWf over the Publish/Subscribe 

(Pub/Sub) event layer. In our model we take as inputs two aspects: the message exchange in the 

control plane and the logical relationships between tasks. Even if the message exchanging of SWfs has 
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been tackled with web-based technologies, it is has been proven that in highly distributed 

environments, using centralized solutions (at the event dissemination level) offers a low level of 

parallelism, communication decoupling and independence among participants.  

The solution proposed in this paper exploits the logical relationships between fragments of a SWf 

and exposes abstract solutions, instead of directly tackling the message exchange aspect in the data 

plane with new protocols [14] or middlewares [15]. For this purpose, we use the Publish/Subscribe 

paradigm as the core communication model of our proposals. In addition, as one of the main 

requirements of SWf is the monitoring and failure recovery [16], we also define self-healing 

mechanisms for the proposed models in runtime, so our solutions maintain loosely coupled 

communications and fulfill the level of abstraction and dynamism required by SWf. 

The structure of the paper is as follows: Section 2 describes the characteristics of scientific 

workflow models and presents the Pub/Sub-based model we use throughout the whole article. Section 

3 presents the initialization process of a SWf, the broker reference architecture we have defined in 

order to improve the message exchange in the control plane, and procedures for recovering bindings in 

SWfs. In Section 4 we justify the qualitative advantages of our model by firstly grouping existing 

models, systems and implementations, into common categories based their communication solutions; 

and then analyzing their trade-offs in terms of event dissemination, workflow patterns and other 

communication needs in runtime. In Section 5 we analyze related works and finally in Section 6, we 

end with conclusions and suggestions for future works. 

2. Scientific Workflow Modeling  

Scientific workflows management systems (SWfMS) consist of several long-running data 

transformation steps while processing large amounts of data, coordinating and controlling the global 

workflow scheduling and monitoring underlying sub-tasks. In this process of decoupling the control 

and data planes from the task execution, the details of its invocation are hidden from the scientist. The 

high degree of dynamism inherent to these systems is not easily modeled or scaled [17] by a business 

WfMS, which provides orchestration with a centralized scheduling environments which also usually 

implement centralized messages in the control plane. On the other hand, a simple choreography 

approach cannot be used as it is difficult to keep track of all the task instances and workflow activities 

at any given time [18]. Hence, in order to support the previous characteristics, we use a Pub/Sub model 

for delivering these control messages in the whole SWf execution. Pub/Sub systems are composed of 

three main components: publishers, which are the content producers, subscribers, that express their 

willingness to consume specific content; and finally brokers, that put publishers and subscribers in 

contact by storing and forwarding information.  

2.1. Overall SWf Scenario 

SWfs share the same well-known workflow design patterns [19] as business workflows, as they are 

also composed by a set of logically connected tasks, therefore, as a continuation of previous  

works [20,21], we extended our workflow modeling, from the message exchange perspective, provide 

abstract model for supporting six workflow patterns over a Pub/Sub broker and present their 

advantages in comparison with other approaches in terms of information delivery and task decoupling. 
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In this paper, we consider a SWf scenario with complex interactions between tasks (e.g., change the 

running conditions, stop and re-initialize) over a grid scenario and following a direct acyclic graph 

execution. In these interactions, processing and communication resources must be dynamically shared 

between task instances as nodes are working at full capacity and can go off-line due to changes in the 

network topology. We also consider that parallel tasks may fail, so failure handling and compensation 

mechanisms are needed. Usually, WfMS’ provide a single centralized workflow scheduler with a 

centralized networking model (e.g., web-server to clients), which is not the ideal solution for executing 

a scientific workflow as its network layer has to deal with a high rate of control messages. Thus, even 

if only control messages are exchanged, it can become a bottleneck and misuse the network 

capabilities offered by the grid. In our scenario, nodes exchange data by following a choreography 

perspective, whereas control flow is set up using a special component we call Coordinator. The use  

of this kind of solutions is already present in previous works [10], where Coordinators monitor  

the performance of the SWf and bind the inputs/outputs of tasks with the underlying Pub/Sub network 

and identifiers. 

2.2. Workflow Model of SWf  

We define a workflow model based on tasks and activities that are allocated in local or remote 

nodes and mapped to the underlying Pub/Sub event layer. This SWf model evolves from our previous 

work [20], its service foundations and concepts of tasks and activities. A workflow consists of the set 

of logical tasks and the communication channels between them, which are supported by a processing 

infrastructure on top of the event layer. Workflows are executed in a distributed way and logical 

relationships among tasks, which represent their internal behavior, are arranged in the fragmentation or 

partitioning process [22]. The fragmentation process covers the actions of computing, initializing and 

distributing a set of tasks. Tasks are logical fragments of the workflow executed in local or remote 

nodes. In the SWf execution aspects such as elastic scalability, lifecycle management, security must be 

considered, but they are beyond the scope of this paper. In order to focus on our models, we assume 

that mechanisms exist to place and create tasks instances, so tasks are executed by a module called 

Orchestrator [20], which is present in each node that participates in the SWf execution and an 

underlying middleware [15] that provides Pub/Sub protocol support. A task is composed of at least one 

Activity. An Activity is an atomic unit of a task that has inputs and outputs. It manages the 

communication with an object that can be physical or digital, in order to perform an operation. For 

example an activity can be the action of requesting a local database value, or a remote notification of a 

finished job. Activities can trigger control events (ev) and consume those ones produced by activities 

running over different tasks. Therefore, from the communication perspective they trigger the 

publish(ev), subscribe(ev), and un-subscribe(ev) primitives of the Pub/Sub network and are 

notified(ev) by brokers. We define Limit Activity (AL) as any activity that communicates with other 

activity contained in a remote task, so AL can act, in runtime, as a producer, consumer or both. A 

control event is the action of transmitting a control message (e.g., to start the AL execution); however, 

we use them as similar term when referring to our communication model. 
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We use logic gates to enable communication between tasks, in the control plane. These logic gates 

follow the patterns model, defined by Van Der Aalst et al. [19], corresponding to basic control flow 

patterns, advanced branching and merging. Thus, hereinafter we use workflow pattern and logic gate 

as the same concept. Figure 1 illustrates the two different planes that our model targets, from the global 

scheduling perspective of the SWf. It also shows how control messages are mapped to Pub/Sub 

primitives and events and later disseminated over a distributed broker scenario. Limit activities are 

linked by logic gates, which in turn trigger control messages that activate subsequent ones. 

Figure 1. Workflow-to-Pub/Sub mapping. 
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3. Supporting the Scientific Workflow 

The following sections explain the models we propose to support a decentralized SWf execution as 

well as the workflow messaging. Hence, our objective is to improve the workflow coordination, at the 

event level, by leveraging the complexity of the dissemination of control events to brokers, and transfer 

to them the interactions among remote ALs. At the end of this section, we provide an example regarding 

the support of our SWf model including the initialization and runtime over the Pub/Sub layer. 

3.1. Supporting the SWf  

The proposed model is composed of the definition of a task interoperability reference model, the 

mapping of workflow activities to Pub/Sub topics, the interfaces that allow setting up the Pub/Sub 

layer, the broker reference architecture, and finally the procedures for dealing with binding recovery 

between activities in runtime.  
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3.1.1. Task Interoperability 

Conceptually, tasks must agree on the control messages their ALs generate or require, and how they 

are mapped to control events in the Pub/Sub layer. Therefore, brokers have to filter and only deliver 

those ones that match subscription requests. To do this we use a topic-based Pub/Sub language [23]. 

Messages are published using “topics” that identify ALs’ outputs and subscriber ALs subscribe to topics 

representing their triggering condition or inputs.  

In order to define a common hierarchy of topics, we use a topic domain shared by all tasks and 

divided into namespaces. Topics are published in namespaces in order to receive control messages in 

the appropriate language and ensure that only compatible events are pushed by brokers. Each topic in a 

topic namespace (tns) can have zero or more child topics and a child topic can itself contain further 

child topics. A topic without a parent is termed a root topic. We use the forward slash (/) character to 

indicate a “child of” relationship. For example, the tns1:monitor/exception refers to the subtopic 

exception, subset of the parent topic monitor, in the namespace tns1.  

This approach supports transformation and aggregation of topics. It is possible to construct 

configurations (using intermediary brokers) where the topic, an interested “subscribes to” differs from 

the topic under an entity “publishes”. Thus, the broker, acting in line with administratively-defined 

rules, receives the control messages from the publisher, matches and notifies the corresponding 

subscriber. For example, a subscriber to the topic tns1:monitor also receives notifications from topic 

tns1:monitor/exception. It is possible for participants of the SWf to define additional topics based on 

existing topics without requiring coordination with the participant responsible of creating the topics 

that are being built on. Our solution is compatible with the WS-Topics OASIS standard [24], which 

presents a set of “items of interest for subscription” in Web service environments, and it has been 

extended to be aligned to a non-WS environment. 

An example of a topic hierarchy for a generic SWf is shown in Figure 2. This tns corresponds to the 

English language, to avoid language incompatibilities. To prevent correlation problems, a root node 

has been added, so it contains the identifiers of the task instances that are being executed. 

Figure 2. Topic Hierarchy. 
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3.1.2. SWf Initialization 

The workflow initialization over the Pub/Sub events requires an interface between the Coordinator 

and brokers. This interface implies the loading of Web Service Description Language (WSDL), which 

is defined in this section. Thus, prior to the execution of the SWf over participants, it is necessary to 

link the logical interest of an AL (input or output) to the communication primitive that will support it: 

subscribe(ev) or publish(ev). In other words, it is necessary to bind the SWf plane with the Pub/Sub 
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layer and comply with the logical gates that join tasks and their AL. The initialization process refers to 

mechanisms that support the binding of an action of a predecessor AL with a Pub/Sub event, the 

associated logic gate, and a subsequent reaction of a successor AL. Therefore, as the Orchestrator of 

each participant detects the AL s that makes up part of the task instance, the topics for each input and 

output AL must be designated. For this task, we use the Coordinator function. From here onwards, the 

Coordinator registers the references of predecessor and successor of every AL of the SWf and generates 

the topics identifiers by following the namespace previously proposed. In this process we assume that 

the Coordinator have already received the initial SWf structure and logical relationships between 

activities from a global SWf scheduler or a workflow composer (e.g., the database created by the 

Trident SWf composer [25]). Brokers inform the Coordinator about the network capabilities they 

support, such as supported protocols, and the set of logic gates they can instantiate. Hence, the 

coordinator can know, in advance, which of the brokers can instantiate a logic gate and link 

corresponding ALs. Then, as each AL has its own topic the Coordinator can group these activities using 

the initial SWf structure. The Coordinator sends to brokers the information regarding ALs that produce 

events (predecessors) and the AL that are triggered by these events (successors) over the same SWf 

instance. This information also includes the callback addresses of Orchestrators that are executing the 

corresponding tasks. Afterwards, brokers use this information to internally group subscriptions using 

the model explained in Section 3.3. In order to maintain a generic and flexible coordination interface 

between brokers and the Coordinator we define the WSDL shown in Figure 3, which follows the same 

concepts of current SWf systems such as Trident [25].  

The WSDL describes the logic gates (or patterns) types, and relationships between ALs they enclose. 

The SetCapability field is used by the Broker to express its capabilities to the Coordinator, whereas the 

Coordinator makes use of the corresponding response to set the predecessors and successor AL in the 

workflow initialization. SetNewCapability messages are sent, by the Coordinator, to brokers with the 

objective of grouping logic gates and ALs.  

The Coordinator groups activities depending on the predecessor and successor relationships 

between AL, so it puts them, by default, in the same broker. In the case this process is unfeasible (e.g., 

due a network constrain or a request of the SWf manager), the Coordinator can set a successor activity 

in a different broker than its predecessor. This one of the cases we show in Figure 1, where AL-4 and 

AL-9 are predecessor and successor, respectively, and are set in different brokers. In this situation, the 

Coordinator marks the predecessor callback string as “remote”. Then, it attaches in the predecessor 

field of the message specified by the WSDL, the network address of the broker that supports its  

predecessor AL followed by the topic that identifies it (e.g., remote,http://<x.x.x.x>,/task/activity1). 

Therefore, the broker of the successor AL subscribes to the broker of the predecessor AL., and gets 

ready for receiving control messages that target the successor AL. This type of recursive subscription 

has been well-proven over the Internet and many Pub/Sub protocols supports them (e.g., 

PubSubHubbub [26]), so our solution can be considered independent from any specific implementation 

and remains compatible with our previous research [21] focused on simple and scalable gossip-based  

interactions. Our model is also independent from the specific protocol used to communicate brokers 

and the Coordinator, as long as the WSDL interface is used.  
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Figure 3. WSDL interface. 

 

  

<message name="SetCapabilityRequest"> 

   <part name="networkparam" element="tns:brokerdefinition"/> 

   <part name="serviceparam" element="tns:brokerdefinition"/> 

   </message> 

   <message name="SetCapabilityResponse"> 

       <part name="serviceparamresponse" element="tns:coordinatordefinition"/> 

   </message> 

   <message name="SetNewCapabilityRequest"> 

       <part name="serviceparamresponse" element="tns:coordinatordefinition"/> 

   </message> 

   <message name="SetNewCapabilityResponse"> 

       <part name="serviceparamresponse" element="tns:coordinationdefinition"/> 

   </message> 

<portType name="SetCapability_PortType"> 

      <operation name="SetCapability"> 

         <input message="tns:SetCapabilityRequest" /> 

         <output message="tns:SetCapabilityResponse"/> 

      </operation> 

       … 

   </portType> 

   <binding name="ConfigService_Binding" type="tns:ConfigService_PortType"> 

   <soap:binding style="rpc"transport="http://schemas.xmlsoap.org/soap/http"/> 

   <operation name="SetCapability"> 

      <soap:operation soapAction="SetCapability"/> 

      <input> 

<definitions name="ConfigurationService" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

   <types> 

      <xsd:element name="brokerdefinition"> 

  <xsd:complexType> 

  <xsd:element name="brokertype" type="xsd:string"/> 

  <xsd:element name="address" type="xsd:string"/> 

  <xsd:element name="clientsupport" type="xsd:int"/> 

  <xsd:element name="protocol" type="xsd:string"/> 

… 

  </xsd:complexType> 

   </xsd:element> 

    <xsd:element name="servicedefinition"> 

  <xsd:complexType> 

  <xsd:sequence> 

  <xsd:element name="pattern" type="xsd:string"/> 

  </xsd:sequence> 

  </xsd:complexType> 

   </xsd:element> 

    <xsd:element name="subinfo"> 

  <xsd:complexType> 

  <xsd:sequence> 

  <xsd:element name="topicid" type="xsd:string"/> 

  <xsd:element name="callback" type="xsd:string"/> 

  </xsd:sequence> 

  <xsd:sequence> 

  <xsd:element name="topicid" type="xsd:string"/> 

  </xsd:sequence> 

  </xsd:complexType> 

   </xsd:element> 

   <xsd:element name="pattern"> 

  <xsd:element name="predecessor" type="xsd:subinfo"/> 

  <xsd:element name="sucessor" type="xsd:subinfo"/> 

   </xsd:element> 

   <xsd:element name="coordinationdefinition"> 

  <xsd:element name="serviceparams" type="xsd:pattern"/> 

  <xsd:element name="serviceresponse" type="xsd:string"/> 

   </xsd:element> 

   </types> 
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3.1.3. Binding Control Events in Brokers  

As previously mentioned, our objective is to delegate to brokers the complexity of communication 

between ALs and logic gates. The broker reference architecture used to support workflow patterns is 

similar to standard topic-based brokers. The broker registers subscriptions from clients, matches  

control events and disseminates these events to subscribers or other brokers. Workflows are supported 

using a pluggable matching model which works on top of standard broker processes. Hence, while 

standard topic-based brokers match incoming events and notify the right subscribers based on their 

interest, our broker firstly filters the control events that fulfill the logic gates and later notifies  

subscribers. So, even if successor ALs subscribe to a task and their predecessor subscriptions publish a 

control event, the broker dynamically holds the notification of this event until the logic gate is  

satisfied. The notification is dynamic because the broker can react to changes in the relationships 

between activities which were extracted from the WSDL as we explain in Section 3.1.4. Our broker 

enforces the patterns following the models described below. Having this architecture, our broker is 

capable of decoupling ALs, their role and actions they can trigger in other workflow branches or tasks 

executed in parallel (e.g., an activity that calibrates time). The matching model performs as a pluggable 

component as it only needs to internally receive all the published events from every AL of the WSDL, 

in order to correlate and notify the correct event. It can work on top of standard topic-matching 

functions without any disturbance or special synchronization. Figure 4 shows the reference broker 

architecture.  

We use the term internal binding (BI) to describe how we model the relationships between AL and 

logic gates inside the broker. LG represents the process of enforcing these gates in runtime. We  

consider our model a composite binding of two internal bindings. We apply the term external  

subscriptions (SE) to describe the relationship between a topic, which represents the interest on the LG 

fulfilling a control event, and a callback address of the Orchestrator that runs the AL. In our model, as 

the SE implicitly fulfill the two bindings a standard event notified to a subscriber is defined as: 

s.ev’=f(s.ev,SE). When we add the logic gate component, this event is defined as follows: 

' ( ( ), , )
k k

IPk ISk
i i

ev f B B LG    (1)  

where BIP and BIS define bindings with predecessor and successor (SE) respectively. Being BIPT and 

BIST the whole set of predecessor and successor subscriptions: IPk IPTB B  and ISk ISTB B , where 

BIPT and BIST are the binding spaces for a given task instance. Then, the difference between matching 

an event using standard matching and our matching model is enforced at this point. Whenever a AL  

generates a control message that is published to the brokers, in the case of standard matching, the  

evaluation and notification of the event is straightforward since the broker only ensures that the event’s 

topic corresponds with the existing SE. Nevertheless, in our model, whenever a similar control message 

arrives to the broker, it broker performs (depending on the pattern) the latter performs the steps  

described in the following paragraph. Figure 4 depicts the broker reference architecture. 
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Figure 4. Reference Broker Architecture. 

BIPk BISk
LG

Matching Model

Standard

Matching

Dissemination 

Algorithms

Event Routing 

& Notification

notify(s.ev’)

triggers(i.ev)

publish(ev)

notify(ev’)

publish(s.ev)

Subscription Manager

getSubscriptions()

 

In runtime, a predecessor binding is an instance, inside the broker, subscribed to a control event an 

AL triggers. In the case that this event fulfills this binding; the broker evaluates the Logic Gate (LG) 

where BIP belongs and triggers an internal event (i.ev). Then, the broker matches this event with the 

successor bindings which contain the real subscribers’ callbacks of the logic gate, and notifies(ev) 

them. Retaking Figure 1, the input of AL-9 is represented by a BIST, and the output of AL-4 by BIP; so in 

order to modify/activate the execution of AL-9, the broker evaluates if there is a BIP interested in the 

output event produced by AL-4. Next, as it is true and a Sequence flag is active, it generates an internal 

event captured by BIST, which represents the interest of AL-9; then, the broker pushes the control 

message to the callback address of the Orchestrator. As we already mentioned, in our model we 

support six workflow patterns, which are the basic control-flow patterns that are used to build 

workflows. The implementation mechanism proposed in this paper focuses on the six selected 

workflow patterns, as they are the most elementary of the entire existing workflow pattern and are used 

for building more complex SWF. Following this approach, now we explain how we support each case 

assuming that each of the activities we mention are limit ones. 

Sequence (SEQ): it is the pattern we used to explain our model right before. In this pattern, a single 

activity is enabled after the completion of the preceding activity. Thus, brokers establish a one-to-one 

relationship between BIP and BIS; so, BIP always triggers an i.ev that leads to the real subscriber and  

its activity.   

Parallel split (ANDs): in this pattern, a set of activities are enabled after the completion of the 

preceding activities. Brokers establish a one-to-many relationship with BIP and many BIS. Bindings that 

represent the successor activities are triggered by the same i.ev, however, unlike the sequence pattern; 

the broker matches the i.ev with the successor bindings they are interested in. This operating mode is 

due to BIP and BIS can be part of other patterns, so keeping an internal reference among them, allows 

decoupling the particular activation of the LG instance from other relationships or interests internal 

bindings can have. 

Exclusive choice (XORs): having a set of candidate activities to be enabled; only one is enabled  

after the completion of a prior activity. In this pattern, brokers also establish a one-to-many 

relationship with BIP and BISs. The pattern depends on the control event that defines which activity 
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must be enabled, so, we model this event as: c.ev = f(BLG, ev). As we are using a topic-based language, 

this event contains the topic of the BIS that follows the workflow. 

Simple merge (XORj): this pattern defines the convergence of two or more activities into a  

subsequent activity. The broker establishes a many-to-one relationship with BIPs and BIS respectively. 

Since no synchronization is needed, whenever the first BIP is matched with a control event, the LG lets 

this event reach the BIS as an i.ev. This process is available for any of the BIP. After each process, the 

LG is re-initialized in order to support new matched events arriving from the same BIP or new ones. 

Synchronization (ANDj): this pattern defines the convergence of two or more synchronized 

activities into a new activity. In other words, in order to enable the subsequent activity, all the previous 

activities must be enabled. This pattern is modeled as a many-to-one relationship with BIPs and BIS. In 

this pattern we do not take into consideration correlation issues [27], because we assume that brokers 

can implement buffers, timestamps or any other mechanism to address them. We start from the fact 

that brokers receive the correct events. Hence, every time the broker enforces the sync pattern, it links 

each predecessor activity to an open lock, so every time an event satisfies a BIP, the broker closes its 

lock. Next, in the case that all the activities are locked, the i.ev is triggered and the broker verifies the 

covered BIS, so then, it informs the corresponding task’s AL. 

Multi-choice (ORj): this pattern describes the divergence of an enabled activity into one or more 

activities, so the execution of the successive activities is enforced using a dynamic condition. The way 

LG supports a dynamic condition is through the same control event of the exclusive choice pattern. 

Thus, once the LG is enforced the broker triggers an i.ev that reaches the BIS and activates the 

corresponding activity. At this point, the challenge consists of how to allow different BIS to only 

consume i.ev under the conditions determined by the received control events. Assuming that these 

conditions include the identifiers of each subsequent activity, our solution consists of letting BIS to 

internally subscribe to their same instances. Then, i.ev messages targeting these identifiers will be 

created and the matching process will be ready to verify if the event satisfies only the enabled BIS. This 

strategy is feasible using topic-based languages (because the same topics can be used as identifiers) 

and non-distributed subscriptions (as the cost of producing events is lower).  

3.1.4. Workflow Recovery Support 

In our model brokers are capable of updating internal subscriptions in order to avoid unreachable 

states or inconsistences in the SWf execution. The sequential pattern is the most elementary supported 

logic gate. Remaining logic gates can be modeled as a sequential pattern in the case of having only one 

predecessor and one successor activity. A distributed workflow (using many different logic gates) can 

experience this kind of situation because of on-demand actions or due to runtime inconsistences. In 

order to support these actions and prevent inconsistences and deadlocks, we propose the pseudocode 

shown in Figure 5. It recovers and reconnects predecessors and successors bindings that trigger the real 

events pushed to limit activities. This method is feasible because brokers previously received all the 

relationships between activities with the WSDL. It is compatible with alternative limit activities that 

could appear in runtime because each time an un-subscription (unsub.event) occurs the broker recovers 

the same relationships that are employed in the matching. 
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Figure 5. Binding recovery pseudocode. 

 

As an example a SWf is composed of instances of tasks A, B and C which are linked by sequential 

activities in the same order. Hence, task C consumes events produced by task B and the latter from 

task A. The pseudocode uses as input, every un-subscription event received by the broker. This  

un-subscription represents a changing state in tasks and therefore in its ALs. The un-subscription can be 

triggered by on-demand actions of the SWf scheduler, or by an event of unexpected disconnections in 

implementations that are based on ping-based interactions (e.g., WebSockets ping). Step 2 checks if 

there are still successor bindings (in this case inputs targeting tasks B) interested on the events  

produced by task A’s activities. In the case the un-subscription event corresponds with the last 

remaining successor binding that is interested on events received from task A, the algorithm recovers 

(Step 3) the successor binding. Next, the algorithm iterates (Step 4) each of the existing predecessors 

bindings and then compares if the callback address of BIS corresponds with any callback address that 

has published under the identifier of BPi. In this process the topic can be used as this identifier, as we 

maintain a strict hierarchy, but it is still compatible with other mechanisms. Afterwards, Step 6 

searches for every successor binding, which represents in our case the input for the activity of task C, 

willing to consume the activation events (i.ev) resulting from the gate’s enforcing. This step can be 

compared with a membership test which is well-supported using fast matching techniques (e.g., 

through Bloom Filters [28]). At this point the remaining step consists on recovering (Step 7) each one 

of the successor bindings and set them with a new interest that will be at the end, the triggering input 

of the successor activity of tasks B. 

The algorithm targets subscriptions that are being supported in the same broker, nevertheless in the 

case the broker ends its execution and no new interests are set, being the distributed nature of the SWf, 

it can execute a mechanism [29,30] to disseminate these disconnection events. In the case of 

synchronizing patterns it contributes to the self-healing characteristics of a SWf as tasks depend on the 

correct scheduling of every one of the previous branches tasks and their ALs. As a final point, the 

pseudocode takes as triggering points the un-subscription actions that enclose successor binding 

instead of predecessor bindings and this characteristic is because it targets SWf based on directed 

acyclic graphs. 

  

1: procedure BINDING_RECOVERY (unsub.event) 

2:   if (checkLastSucessors(unsub.event)) 

3:      BIS   getLastSucessors(unsub.event) 

4:     for each BIPi ϵ BIPT. 

5: if (BIS.callback equals (BIPi..callback) 

6:        BIP group_temp  getAllSucessor(BIPi.) 

7:                   for each BISx .tmp ϵ BIP group_temp 

8:                  BISx.tmp  setNewInterest (BIS.topic) 

9:           endfor 

10:    endif 

11:     enfor 

12: endif 
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3.2. Workflow Messaging  

In this section we explain how our SWf model behaves in the Pub/Sub layer in initialization and 

runtime, as it requires some primitives in the event layer (publish,subscribe,notify,un-subscribe) in 

order to bind tasks and their limit activities. Figure 6 shows an overview of the workflow messaging 

message exchange among tasks A,B and C, one serving brokers and their Coordinator. In the global 

schedule model, these tasks carry on the ALs we showed in Figure 1. Tasks A, execute AL-5 and AL-10. 

Task B executes AL-7 and AL-8. Task C executes AL-6.  

Figure 6. Workflow messaging. 
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In the first step the broker that will support the SWf participants sends (a) to the Coordinator its  

capabilities using the WSDL description presented in Section 3.1.2 Workflows’ participants subscribe 

(b.1,2,3) to the broker and wait until topics corresponding inputs and outputs of AL are assigned. Once 

the Coordinator initializes the topic identifiers of each AL, it pushes this information to the broker (c), 

which matches the correct workflows participants using the client identifier it has received from the 

Coordinator. At this point the broker creates the internal bindings, by arranging predecessor and  

successor activities, and uses the callback information to notify (d.1,2,3) tasks A, B, and C with the  

topics identifiers that represent these ALs.  

The first step towards the global execution of the SWf is to inform each one of participants 

regarding the topic identifiers. Once tasks subscribe (e.1,2,3) to the broker, it registers these 

subscribers as successors and gets ready to notify control messages. We developed logic gate cases of 

the ANDs and the ANDj as they encompass, in terms of message exchange, the remaining gates. These 

two cases involve many-to-many communication and control messages that trigger activation of 

branches activities. In the ANDs case, AL-7 and AL-6 are the successors; so whenever tasks A reaches 

AL-5, it publishes an event (f.1), using tns:pattern/parallel/cevent, and the broker notifies (f.2,3) them. 

Following the SWF execution, activities AL-8 and AL-6 are the workflow predecessors and AL-10 the 



Sensors 2013, 13 10967 

 

 

successor. They are connected through an ANDj pattern, so it requires that all the predecessor activities 

must be completed before the execution of the successor one. Following the binding model of  

Section 3.1.3, the broker implements the LG and marks AL-6 and AL-8 as BIPs, and AL-10 as BIS, so the 

broker will only trigger the i.ev if both BIP are satisfied. After the execution of AL-6, it publishes an 

event (g.1) that matches the first BIP. At this point, the LG conditions are partially fulfilled as the 

broker retains the event that triggers the BIS and the activation of AL-10 until Participant AL-8 publishes 

(g.2) the corresponding remaining event that will match the remaining BIP. After any given time, if 

Task B disconnects from the broker (e.g., due to a planned action or an unexpected situation such as a 

network failure), the latter updates the predecessor binding registry for this LG. Hence, in the case  

AL-6 generates a new event; the broker directly matches the only existing successor binding and 

triggers the control event targeting AL-10, as there is no need to wait any other predecessor binding. 

Participants can also un-subscribe to topics, by issuing the primitive unsubscribe (topic) and the broker 

will enforce the process explained in Section 3.1.4. 

In the case of a broker failure the Orchestrators use a pre-configured backup broker and publish the 

network properties of the failing broker using the topic: monitor/exception/broker. Therefore, as the 

Coordinator is already subscribed to this topic, it will receive this information. Afterwards, it confirms 

the broker status by issuing the SOAP request shown in Figure 7. Both negative and positive responses 

will be informed to the overall SWf Scheduler. In the negative case, it will be caused by a connectivity 

issue between the participant and its broker. The second one represents a total failure of the broker, so 

the SWf will need a reallocation of participants to an available broker. Specific network recovery 

model and re-scheduling mechanisms are out of the scope of this paper, so we assume that Coordinator 

can always reinitialize the SWf using the process explained in Section 3.1.2.  

4. Communication Model and Application Scope 

As we stated, our model is based on the principle that workflow patterns are supported in brokers, 

rather than in nodes. Therefore, we have reviewed in the literature existing systems that support the 

execution of SWf, and then we have classified them into three communication solutions based on how 

they support the control message exchange. Then, the objective of this section is to analyze the 

expected requirements of SWf execution in the context of workflow patterns and in-runtime message 

exchange. Later, we use this analysis to extract the advantages of our proposal in comparison with the 

other three communication solutions. These requirements are: information dissemination, info 

dispatching and filtering, task decoupling through workflow patterns, flexibility over workflow 

changes, scalability of events and workflow monitoring and failure handling. 

In this section we demonstrate that offering workflow pattern support, at the message exchange 

level, offers more global advantages to SWf participants in terms of information delivery, task 

decoupling and so on. Afterwards, we provide a quantitative evaluation of the solutions. Figure 8 

shows the relationships between the workflow patterns, participants and control events.  
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Figure 7. Example of SOAP request and response. 

                      

The first solution is based on a semi-centralized messaging (SCM) in the SWf scheduling; in this 

solution, workflow patterns that connect tasks are supported over centralized schedulers or a pool [31] 

of decentralized ones under the same SWfMS. Therefore, we can assume that communication between 

different tasks is supported by establishing channels between tasks and schedulers, no matter the  

underlying characteristics of the dissemination layer (e.g., a tailored grid [6,7,11,32] or web-based 

messaging [33]); this characteristic is because the workflow scheduling of tasks is still linked to 

control events triggered by schedulers in response to the workflow patterns. Hence, from the 

underlying communication perspective, these control events are stored and forwarded by only one  

entity (e.g., a built-in or a remote message broker).  

  

POST /WebServiceSensors/Service1.asmx HTTP/1.1 

Host: 127.0.0.1 

Content-Type: application/soap+xml; charset=utf-8 

Content-Length: length 

 

<?xml version="1.0" encoding="utf-8"?> 

<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"> 

  <soap12:Body> 

    <ReturnState xmlns="http://tempuri.org/" /> 

  </soap12:Body> 

</soap12:Envelope> 

________________________________ 

HTTP/1.1 200 OK 

Content-Type: application/soap+xml; charset=utf-8 

Content-Length: length 

 

<?xml version="1.0" encoding="utf-8"?> 

<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"> 

  <soap12:Body> 

    <ReturnStateResponse xmlns="http://tempuri.org/"> 

      <ReturnStateResult>string</ReturnStateResult> 

    </ReturnStateResponse> 

  </soap12:Body> 

</soap12:Envelope> 
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Figure 8. Relationship between patterns, participants and events. 

Exc2

LG
LG

LG

ALAL

AL

Brokers

SWf 

fragments

SWfMS

Control 

events

Task

Exc1Scheduling

Control 

events

Task
Task

Participant Nodes

Pub/Sub 

communication

-LG are instances of 

workflow patterns

Monitoring

Data ManagementProvenance

 

The second solution is a distributed scheduling messaging (DM) between tasks. Tasks are  

scheduled [34] to run in a distributed table over a P2P-based scenario, which is shared among 

participants, rather than in a cluster or a pool of schedulers. Triggered events are decoupled from 

schedulers and the running conditions (which also depend on workflow patterns) reside in the same 

table in the form of states (pending, running and finished).  

We call the third solution Pub/Sub with channel optimization messaging (COM). It is based on our 

previous research [20] and inherits its mechanisms for establishing channels associated to task and the 

support of workflow pattern in the same nodes that execute these tasks. Therefore, nodes running tasks 

are loosely coupled from schedulers in execution, at expenses of dependency in space. Finally, we 

name our whole solution model as Bounded patterns over Pub/Sub (BPoPS). A summary of the 

comparison is depicted in Table 1. 

Table 1. SWf execution requirements and communication solutions. 
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4.1. Qualitative Comparison  

Information dissemination refers to the mechanisms that allow tasks to gain access to the branch 

conditions via control messages. In the SCM solution Orchestrators executing tasks are always coupled 

to other Orchestrators in terms of location of the target tasks (space coupling) and the flow interaction 

dependencies among them (synchronization decoupling). This fact is a disadvantage for the SWf as its 

execution is dependent to this coupling no matter the message exchange pattern: many-to-one (e.g., 

ANDj) and one-to-many (e.g., ANDs). The DM solution provides a well-proven information 

dissemination environment as tasks can be fully-decoupled from the scheduling systems. However, 

maintaining a shared, synchronized and consistent information space between a wide range of SWf 

participants, and their intermediary patterns [35], leads to networking overhead and complex 

scheduling datasets in comparison with the COM and BPoPS solutions.  

In BPoPS we leverage to brokers the scheduling order and the triggering conditions generated by 

activities bindings in runtime; so tasks remain agnostic of the other tasks with which they have no 

runtime relationship. Regarding sync decoupling, as brokers carry on the message storage and forward 

functions, participants are set to be straightforward and lightweight (from the dissemination stack 

perspective). Hence, this model offers better capabilities as tasks get control messages over a fully 

asynchronous and decoupled communication model, while the global SWf scheduling remains 

compatible with event dissemination mechanisms (e.g., Gossip-based [21]) targeting distributed 

networks and grids. 

Message dispatching and filtering refers to the mechanisms for creating, dispatching and later 

filtering of control messages. In the SCM messages directly reach the right participants’ Orchestrators. 

Whenever a scheduler jumps from one task to another, the Scheduler decides which of the task 

participants it needs to trigger based on the workflow patterns. The process of pushing messages is 

carried out at the Application Level, as the global scheduler is aware of the network location and 

information models of the successor activities. This mechanisms offer advantages for centralized 

SWfs, because no overlay or intermediary functions are needed, however, it is proven that a 

centralized information delivery is not the best method [17] for delivering messages in SWfs.  

In the DM solution, the overlay network filters workflow control conditions. Depending on the 

network topology (e.g., pure and hybrid P2P), the schedulers can directly coordinate the execution 

(point-to-point). Tasks are registered to predecessors and successors tasks using recursive P2P-based 

searches that act as message filters between them. These kinds of methods require [36] complex  

scheduling mechanisms in order to balance the load and delivery messages in contrast with our BPoPS 

solution were messages can be filtered at the nearest point such as the tasks’ broker.  

In the COM solution messages are filtered and forwarded to participants that execute tasks,  

however, it produces a high level of long-lived subscriptions between nodes and schedulers, which 

makes this solution unfeasible for complex and distributed SWfs. In the BPoPS solution, brokers 

maintain the forwarding and event filtering level because they filter the events using topics that 

represent bindings under administratively-defined rules. The BPoPS solution enhances the event 

interoperability with SWf task instances that could be added in runtime (e.g., a new set of optical 

sensors) as brokers enforce an Event-level filtering based only on topics which are independent from 

the information models used by activities.  
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Task decoupling through workflow patterns is a characteristic that allows SWf participants to 

maintain decoupled the relationships between tasks. Synchronized communication provides limited 

task decoupling, which is non-expected characteristics for distributed SWfs [3]. In the asynchronous 

SCM case the SWf execution is dependent on the blocking conditions and synchronization generated 

by scheduler as it is the only capable of retrieving successor activities in the whole SWfMS. This  

limitation applies no matter what state the task is in or the pattern that joints its activities.  

In the COM solution tasks acting as publishers and subscribers are partially decoupled. This is 

because the XORj and ANDj patterns obligate successor activities to subscribe to each one of the 

predecessor activities. In addition, as each one of the subscription to these activities establishes a single 

and tailored channel (that can be compared with a network address), this solution breaks the principle 

of Pub/Sub communication regarding space decoupling.  

The BPoPS solution is the most complete one, as it fully supports tasks decoupling since ALs can 

subscribe to other ones using the same topics, regardless of their binding pattern. Our proposal is also 

compatible with the process of adding and removing ALs (using the WSDL) by schedulers and allows 

other related tasks to continue their execution without disturbance in the case of SWf changes; for  

example by executing the pseudocode presented in Figure 6. It is not illustrated how the DM based 

model can afford the task decoupling thought workflows patterns. 

Flexibility is the ability to adapt to SWf changes. In the SCM case the flexibility is limited by the 

amount of activities-to-activities bindings; so schedulers must be capable of re-ordering the SWf  

execution in the case of changes in the execution order. In the SCM solution, schedulers must contact 

each one of the SWf tasks, so it limits the workflow to a centralized point of failure and decreases the 

SWf flexibility. The DM offers high flexibility over network changes as it depends on single links  

between schedulers and tasks participants. The COM solution embodies similar flaws than the  

SCM solution in the case of XORj and ANDj patterns since the successor activity must be aware of the 

state of its predecessor ALs. Therefore, this scenario obligates tasks to be subscribed to all of  

these outputs, which increases the messaging and the implementation complexity of the Orchestrator 

of the predecessor activity. In our solution as the entire branch conditions pass through brokers, t 

hey can implement mechanisms to recover the workflow bindings and dissemination protocols  

(e.g., gossip-based) that complement the network flexibility and participants’ simplicity. Depending on 

nodes, the workflow scheduling and the scenario where it runs (e.g., structured SWf topology and 

lightweight participants), our solution offer suits more qualitative advantages as we state in Section 4.2.   

In our context, scalability of events is the increase in the number of total connections among ALs, so 

the less connections the SWf execution requires the more scalable it will be. In the case of the SCM 

solution connections grow in proportion to the number of ALs added to the SWf, which makes this 

solution costly in terms of networking resources. In the DM solution tasks fetch the execution stages 

from shared information, so they can directly communicate with other tasks. Therefore, scalability 

depends on the number of participants being part of the SWf rather than the running conditions.  

As SWfs can be very dynamic in runtime the DM solution offer less advantages that our proposal in 

static networks. The COM case uses Pub/Sub communication, which has been proven its good  

scalability [3,37] delivering control messages in workflows. Nevertheless, in the case of having a SWf 

with a large number of events and joint-based patterns (e.g., XORj), as these brokers are agnostics in 

terms of patterns, the task (and its successor AL) must be subscribed to every one of predecessor AL. 
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So, unnecessary messages will reach tasks and decrease the scalability level of the whole SWfMS. In 

our solution connections grow with changes in the workflow running conditions, which required 

requires less messaging because no unnecessary control messages will be pushed to tasks.   

Workflow monitoring refers to the process of verifying that the workflow execution conveys with 

the messaging that leads to the correct ordering of AL execution and no errors, deadlocks or 

inconsistences occur. In the SCM solution if the number of participants increases, having a centralized 

communication (e.g., from tasks to schedulers) offers a lower decentralization level in comparison 

with other communication solutions [3], and bottlenecks may occur as well. This disadvantage is 

because schedulers have to keep track of every state the whole workflow has gone through, in order to 

handle a failure by for example informing the right successor AL, or re-scheduling tasks’ ALs. We 

consider that the DM solution offers higher monitoring capabilities as the state of task is distributed in 

a shared space and inconsistences are accessible by schedulers.  

The COM solution introduces the same limitation inherited by the scalability of events. The BPoPS 

solution allows the monitoring system to save network and processing resources. Brokers act as the 

monitoring entities of tasks, because they already serve them and control their bindings with other 

tasks’ AL. They can properly deal with failures (e.g., by applying the algorithm of Section 3.1.4.) and 

inform schedulers about the state of tasks using the topic hierarchy presented in Section 3.1.1.  

4.2. Evaluation of Communication Solutions   

In this section, we describe a validation scenario for the qualitative evaluation of communication 

solutions described in Section 4.1. This validation scenario presents a realistic situation of the  

implementations of the proposed solutions according to the use that is made today of the Internet  

applications and services. It has been designed for supporting the runtime behavior of the SWf  

described in Section 2.1. Building this scenario we provide an integral evaluation of the 

communication solutions including a quantitative comparison based on the performance of each 

communication solution this scenario. Henceforth, we use the same SWf showed in Figure 1 as the 

input for all the implementations. 

The validation scenario of this SWf consists on a set of AL deployed over the Internet in a  

distributed manner and well-defined and structured administrative domains where: IP multicast is not 

available, predecessor and successor ALs are supported by a Orchestrator node and communicate with 

the SWf Scheduler/Monitor (in our case the Trident Workflow Workbench) using a Virtual Private 

Network (VPN) channel, ALs bindings and their message exchange are maintained in a private domain 

and finally, ALs are set to be in a static local area network with low addressing movement. Brokers 

communicate with Orchestrators and the SWf Scheduler and Monitor. Figure 9 shows the network  

topology of the evaluation scenario. 

As we analyzed in Section 4.1, DM-based solutions are suitable for scenarios where SWfs have a 

high level of re-scheduling, parallelism and dynamic peer topologies. In the evaluation scenario, there 

are static relationships between peers, in terms of network addressing, and a low level of  

re-scheduling; therefore: (i) a DM-based solution offers qualitative characteristics that are barely  

applicable to the evaluation scenario but increase the complexity of SWf management and its  

implementation. In addition, (ii) the evaluation scenario comprehends administratively-defined and 
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controlled domains that are difficult to maintain and support using a purely distributed P2P approach in 

current SWf frameworks. Concerning the relationships between predecessor and successor AL,  

DM-based solutions concentrate on delivering data to peers (through P2P paths) and resolving 

connectivity issues in an unstructured network. The evaluation scenario is set to be in a private and 

structured network domain, in terms of exposed interfaces, addressing and notification of control 

events that realize the bindings among predecessor and successor AL. Therefore, (iii) even with secure 

path selection and routing mechanisms, a DM-based solution is less suitable for the evaluation scenario 

and overheads the communication stack of nodes supporting Orchestrators. In the context of the 

evaluation scenario and taking into account these three implementation drawbacks of a DM-based 

solution, we clearly state that its implementation offers disadvantageous qualitative aspects in 

comparison with the other solutions analyzed in this article: SCM, COM and BPoPS. Therefore, we 

have focused our efforts into providing a quantitative comparison among SCM, COM and BPoPS 

implementations, which share the same qualitative characteristics expected for this evaluation scenario.  

Figure 9. Network topology of the evaluation scenario. 
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In order to normalize the comparison and overcome the differences that can be originated by 

different implementations and communication models, we set up a common layer for the three 

implementations. This layer is based on SOAP-HTTP. As we analyze the runtime behavior, we assume 

that the SWf was previously initialized including the information regarding AL’ bindings, 

predecessor/successor AL, broker addresses and logic gates.  

We used the Trident Workflow Workbench [25] as the main framework to compose, schedule and 

monitor the SWf execution. It ran over a workstation with a Core i7 1.6 GHz CPU, with 4 GB of RAM, 

and the 64 bits Windows 7 OS. We started from the fact that ALs were already deployed over 

Orchestrators. We emulated their milestones in terms of inputs/outputs of control events. For this task, 

we used servers with these characteristics: Core i5 2.0 GHz CPU, 8 GB of RAM and 64 bits Windows 7. 

Activities’ interfaces were implemented in C#. Then, we converted them into Internet Information 

Service (IIS) Applications; so all the Activities’ inputs were bound to SOAP-HTTP bindings and 

implement the notify SOAP operation. Activities’ outputs triggered web actions in brokers. We 

developed brokers in C# and use similar bindings. Primitives publish, subscribe, un-subscribe were 

also implemented as SOAP operations.  
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The node running Trident was deployed over the Internet as well as brokers and nodes running 

activities. Brokers and ALs were grouped according to the SWf of Figure 1. For implementation 

purposes ALs under the same Local Area Network were executed by the same Orchestrator node, but 

they continued to use the Web interface to exchange control messages. Concerning the execution, in 

the SCM implementation, Trident started the execution of each one of the AL using the scheduling 

mechanisms offered by the framework; so there was no broker participation. In the COM 

implementation, LG were implemented just before the successor ALs, and the Trident node only started 

the execution of AL-1 as well as in our solution. In the BPoPS solution we used a recursive 

subscription to implement the message forwarding between brokers. It was also based on SOAP-HTTP 

bindings. Table 2 compares the tree SCM, COM and BPoPS implementations in terms of completion 

time of the SWf execution, message SOAP payload, memory footprint and CPU utilization. We 

contemplated in all the solutions the mean, median and standard deviation, except for the message 

SOAP payload field, because we were using a fixed payload for this test. 

Table 2. Quantitative evaluation of the evaluation scenario. 

 

Semi-Centralized 

Messaging  

(SCM) 

Pub/Sub with Channel 

Optimization Messaging  

(COM) 

Bounded Patterns over 

Pub/Sub  

(BPoPS) 

 Mean Median SD Mean Median SD Mean Median SD 

(1) Completion 

time of the SWf 

execution (ms) 

15,181 

 

10,537 

 

202 

 

15,182 

 

10,538 

 

202 

 

8,823 

 

8778 

 

162 

 

(2) Message SOAP 

payload (bytes) 
8,041 - - 16,510 - - 21982 - - 

(3) Memory 

footprint (MB) 
117.124 117.718 

3.234 

 

119.582 

 

119.652 

 

1.3976 

 

104.550 

 

104.773 

 

2.740 

 

(4) CPU utilization 

(%) 

15.069 

 

14.739 

 

3.941 

 

14.993 

 

14.965 

 

5.729 

 

15.538 

 

16.102 

 

3.978 

 

The Completion time of the SWF execution and the Message SOAP payload correspond with the 

term Information dissemination that we introduced in Section 4.1. In this section, we described the 

mechanisms that allowed task gaining access to the activation of an AL after a control message arrives 

to SWf participant. The message SOAP payload of line 2 represents the total message payload 

generated towards the complete execution of the SWf, including the subscription messages needed by 

COM and BPoPS. Trident is always taken as the reference point for all the measures. It starts the 

execution in AL-1 and receives the completion message from AL-11 in all the cases.  

We use the Memory and CPU consumption of the SWf, gathered from the Trident, as quantitative 

metrics. This metrics corresponds with the Workflow monitoring characteristic mentioned in Section 4.1 

From this table we extract the following conclusions:  

- Regarding the Completion time of the SWf execution, BPoPS gives an average of 88,234 

milliseconds, while the closer solution, the SCM, shows an average of 15,814 milliseconds. As 

we had different samples for this test, we applied the Mann-Whitney U test [38] for measuring 

the Completion time of the SWf execution. The results of this test supported the previous 
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finding (P < 0.01). The P-values indicate that the test result is significant, so we can conclude 

that BPoPS offers the best performance values for this evaluation scenario.   

- Concerning the Message SOAP Payload, even if BPoPS requires a higher quantity of messages, 

this indicator does not affect the overall SWf performance often carried out using local area 

networks, with low latency and stable MTU, and broadband Internet connections.   

- Regarding Memory and CPU, due to the simplicity of the connection between the Trident 

Workflow Monitor and brokers, the BPoPS solution offers a better Memory footprint in the 

Monitor, an average of 104.550 MB. In terms of CPU consumption our solutions show similar 

values than the other solutions. 

Summarizing, we analyzed the qualitative advantages of the BPoPS in comparison with the  

DM-based ones. In the evaluation scenario, we demonstrated that the BPoPS implementation offers 

similar CPU utilization than SCM and COM implementations and 10% improvement in the memory 

footprint. Finally, the test also determined that the BPoPS improves by 41% the completion time of 

the SWf execution.  

5. Related Works  

The problem of distributed execution of workflows is an open topic today. Some works [3] 

highlight the importance of SWfMS coordination models, not only by their nature (orchestration, 

choreography or mixed models) but also by the task distribution, delegation algorithms and 

optimizations over inter-task communication. Other works [39] compare existing SWf systems, extract 

the differences between the data and control planes and highly the importance of the control structures 

and their execution. These control structures are realized by workflow patterns. 

Related to the nature of the workflow, a centralized SWfMS is often not the best solution for  

executing workflows as large amounts of data are routed through a centralized point which makes the 

workflow difficult to scale. Some approaches propose decentralized SWfMS which optimize  

communication by placing each orchestration engine as close as possible to the component service it 

manages [18], so, our work targets these kinds of systems. 

For an efficient and scalable distribution of tasks some researches state that a SWf should be 

divided into different planes, so the participants of the workflow have to deal with different 

communication methods for data and control. Concerning optimization of distributed workflows, some 

authors [40] propose the application of data mining techniques, by carrying out a deep analysis of 

temporal behavior and then extracting the best way to fragment tasks depending on availability of 

resources. Other works [36] resolve task distribution from the perspective of workflow scheduling by 

elaborating P2P communication models between participants and then finding the efficient mapping of 

tasks. Our work differs from these approaches as it tackles the message exchange in runtime, rather 

than the fragmentation process while participants remain decoupled from each other. A hybrid 

approach for scheduling of workflows is proposed in [41], by deploying two phases. The first phase is 

based on clustering and grouping tasks according data links between tasks. The second phase applies a 

list-based heuristic to fit the allocation of task groups, according to the available resources. This 

approach reduces the inter-task communication costs and therefore improves the performance of the 
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workflow execution. Nevertheless, our work focuses on how to decouple the control messages 

depending on the workflow relationships between parties, as we assume that data messages will be 

delivered using other mechanisms.  

Most of the research marks grid environments as suitable scenarios for SWf execution [5], and 

addresses the importance of intermediate communication elements, which in our case are the brokers. 

Works such as [42] review the importance of the control plane of workflows and their realization using 

abstract languages. On this topic workflow patterns have been used [5] as the source for modeling and 

monitoring of workflows. Our works goes further and applies the same patterns to enhance the 

communication between tasks by not only monitoring, but also delivering control events.  

Failures in activities can create deadlocks in workflows, so dependence between activities requires 

recovery methods in WfMS. In this context of Web Services recovery [43], Issarny et al. proposed the 

concept of Web Service Composition Action, which allows multiple choices to be selected based on 

pre-established specifications. Other works such as [44] define transaction behaviors to compensate for 

failures based on the workflow skeleton. In our work we also defined recovering mechanisms based on 

the fact that brokers manage task relationships; so it could be possible to enhance our brokers with these 

mechanisms. Therefore, depending on the expected runtime conditions, the amount of participants and 

their communication needs of the SWf, these methods could be plugged-in into our brokers.  

Concerning the communication model, some works [33] develop web-based mechanisms adapted to 

SWfs, however, as we presented in previous sections, the communication layer can be improved by a 

close relationship between messaging and tasks bindings. Balis, et al. [10] propose a taxonomy for 

monitoring events, based on structured identifiers similar to our topic hierarchy. These events are 

managed over a Distributed Hash Table infrastructure. We consider our solution complementary [45] with 

this kind of infrastructure as our broker enhancements are independent from the underlying network.  

The Publish/Subscribe paradigm has been applied to many scenarios such as scientific workflow 

interoperability [46] and recently in M2M communications [28]. Regarding the event dissemination, 

Alqaoud et al. [47] demonstrated that a topic-based Pub/Sub model, together with Web-based 

protocols, improves the SWf interoperability while maintains the expected loosely coupled 

characteristic required by highly distributed tasks. Our model shares similar characteristics and 

enhances this interoperability by delegating the complexity of the patterns instantiations to brokers 

rather than nodes running tasks. 

6. Conclusions and Future Works 

In this paper, we have addressed the problem of disseminating control events in the context of 

scientific workflows. For this purpose, we have proposed a model that uses workflow patterns’ 

foundations and defined the key elements that are needed for the execution of SWf. Our model is 

complemented with a task interoperability reference model that allows the hierarchical organization of 

tasks’ inputs/output while maintaining the simplicity and portability of a topic-based Pub/Sub 

language. We have also presented a WSDL definition that allows the configuration of brokers’ 

interfaces, task bindings and the event layer that supports the SWf execution. A reference broker 

model is also provided as well as procedures brokers can carry out in order to recover relationships 

between tasks, inside the SWf. 
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The proposed model is qualitatively analyzed and compared with current SWf solutions in Section 4, 

where advantages of the new model are stated. Thus, existing implementation are categorized according 

to their communication mechanisms and interactions among tasks and schedulers. The qualitative areas 

were evaluated from the workflow pattern perspective, their triggering conditions and control events 

generated and disseminated. Therefore, we showed that our model offer the strongest qualitative 

advantages in terms of information dissemination, tasks decoupling and filtering of control events. We 

performed an evaluation of a realistic SWf scenario using the Trident Workflow Workbench and 

demonstrated that our model offered better quantitative advantages in terms of completion time of the 

SWf execution, maintained a lower memory footprint and similar CPU utilization.  

In future research we will be working on workflow fragmentation issues and mechanisms for 

supporting patterns that head to directed cyclic graphs. We will work on brokers capable of supporting 

patterns by employing auto-installable and auto-configurable libraries. Finally, we will also investigate 

the characterization of workflow internal structures and their optimal instantiation and execution using 

adapted gossip algorithms and protocols. 
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