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Abstract: Sensor network simulations require high fidelity and timing accuracy to be used 

as an implementation and evaluation tool. The cycle-accurate and instruction-level 

simulator is the known solution for these purposes. However, this type of simulation incurs 

a high computation cost since it has to model not only the instruction level behavior but 

also the synchronization between multiple sensors for their causality. This paper presents a 

novel technique that exploits asynchronous simulations of interrupt service routines (ISR). 

We can avoid the synchronization overheads when the interrupt service routines are 

simulated without preemption. If the causality errors occur, we devise a rollback procedure 

to restore the original synchronized simulation. This concept can be extended to any 

instruction-level sensor network simulator. Evaluation results show our method can 

enhance the simulation speed up to 52% in the case of our experiments. For applications 

with longer interrupt service routines and smaller number of preemptions, the speedup 

becomes greater. In addition, our simulator is 2 to 11 times faster than the well-known 

sensor network simulator.  

Keywords: networked sensors; sensor networks; optimistic simulation; synchronization; 

asynchronous simulation; simulation speedup; interrupt service routine 
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1. Introduction 

Since scalable networked sensors are deployed over wide geographical areas, once they are 

installed, it is difficult to maintain them. Wireless sensor network simulators are very attractive and 

useful tools to the developers. They allow users to simulate their software under various operating 

conditions such as radio interference, geographical effects and functional behaviors. 

Network simulators such as NS-2 [1], SensorSim [2], GloMosim [3] and QualNet [4] are used in 

classical sensor network simulations. They validate modeled communication protocols, but they cannot 

debug and verify the source codes of sensor network applications.  

High fidelity of the models within simulators is needed to provide more accurate and realistic 

simulation results. Cycle-accurate and instruction-level simulators have been proposed for this 

purpose. However, these simulators have difficulties in achieving scalability as the number of the 

sensors increases.  

In particular, ATEMU [5], the first instruction-level sensor network simulator, uses the  

cycle-by-cycle synchronization strategy. It simulates every event by a cycle-by-cycle strategy. Each 

sensor node is automatically synchronized with each other in a cycle. The cycle-by-cycle strategy can 

make synchronization for free but it has poor scalability. Even if some sensor nodes are asleep, all 

sensor nodes should be simulated in every clock cycle. On the other hand, NQEM [6] and Avrora [7] 

reduce the number of simulation events using discrete-event simulation. Sensor network applications 

generally have low duty cycles, so that simulators can skip many cycles with the method while sensor 

nodes are sleeping. 

Another major cause of slow simulation speed is the synchronization overhead. In discrete-event 

simulation, each event carries a timestamp which determines the simulation time at which it is 

scheduled to occur. All events are processed in timestamp order to ensure causality. Virtual sensor 

nodes should also synchronize with each other to avoid the causality errors. Conservative [8] or 

optimistic approach [9] are general solutions to manage synchronization. Conservative approach 

demands sensor nodes to coordinate to guarantee that no causality errors can occur. In contrast, 

optimistic simulation enforces no explicit synchronizations. However, if a causality error is detected, a 

rollback procedure undoes the simulated result to the time. Every conventional sensor network 

simulator uses various conservative approaches to maintain the causality, even though they generate 

synchronization overheads. For example, NQEM manages a shared queue, and Avrora applies the 

lock-step technique between virtual sensor nodes. 

PolarLite [10] and SnapSim [11] are extensions of Avrora to reduce the number of synchronization 

points because if synchronizations between sensor nodes can be avoided during simulation, the 

scalability can be improved. They focus on the interval for synchronization by network transmission 

protocols. However, sensor nodes in actual applications are usually in the sleep state, so sensor nodes 

do not communicate each other frequently. When sensing data is acquired or transferred, they are 

awakened by the events. The mentioned research did not consider these characteristics. Moreover, the 

solutions are dependent on the sensor network protocols and communication layers. 

In this paper, we propose a novel technique for enhancing the speed of the sensor network 

simulations. The technique is based on the optimistic simulation approach in ISRs instead of the 

conservative approach. The asynchronous simulation means the sensor nodes are independently 
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simulated regardless of other sensor nodes’ status. The technique within application codes can greatly 

reduce the synchronization events. If there are no interrupts and any exception over a period of 

execution, the program execution sequence of applications is prefixed. However, interrupts can occur 

frequently since applications of networked sensors follow event-driven programming practices. Sensor 

nodes stay most of the time in the sleep mode and they are awakened when events are triggered by 

external interrupts such as a radio controller, sensors and actuators. Hence, the simulation of ISRs 

costs computation time for a large part of the code simulations. This is the main reason and motivation 

why the target for improvement is the interrupt service routine. 

If interrupts are not preempted by other interrupts, they can be simulated asynchronously during the 

period of ISRs. We observed in experiments that there are only a few preemptions during ISRs in 

sensor node operations. For the cases in which preemptions occur afterwards during the ISR, the 

simulator uses an efficient rollback mechanism to restore the original synchronized simulation to 

maintain timing causality. The proposed method can be implemented on any instruction-level 

simulator by avoiding the synchronizations during simulation of ISRs. Therefore, this method can be 

the effective general approach for improving simulation speed. The speedup is determined by the 

length of the ISR and number of invoked interrupts because our technique shows better performance 

when the ISR is long. If the behavior of applications, network protocols or operating systems is related 

with an interrupts-intensive activity, our technique can be much more suitable. Therefore, we claim our 

technique is a good candidate for the simulation of scalable networked event-driven systems. 

In this paper, we validated our technique by implementing it with NQEM, a cycle-accurate  

discrete-event simulator. Experimental results show that our technique can improve simulation speed. 

We also compared our technique with AvroraZ [12]. The NQEM_Speedup is 2 to 11 times faster  

than AvroraZ. This paper is organized as follows: in Section 2, we describe the motivation of this 

study and how we reduce the overheads. The implementation details are explained in Section 3, and 

performance evaluations are discussed in Section 4. Related works are described in Section 5, and we 

present our conclusions in Section 6.  

2. Enhancing the Speed of Simulation 

2.1. Problem Definitions  

Sensor network simulation requires high-fidelity and scalability. Previous studies on sensor network 

simulators have applied instruction-level and discrete-event simulation. Instruction-level simulation 

can maintain cycle-accurate simulation for high-fidelity and the discrete-event method can reduce the 

computation overheads during sleep states of virtual sensor nodes for scalability. However, they have 

same problems concerning the synchronization overhead between virtual sensor nodes and peripherals. 

Virtual sensor nodes have to be synchronized to ensure the causality when the nodes and peripherals 

communicate with each other. There are various synchronization methods to maintain the causality in 

the conservative approach such as the lock-step and shared queue techniques. However, according to 

our experimental observations, both these techniques also have synchronization overhead. In this 

section, we consider the problems in both techniques, and then our proposed method is explained. 
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2.1.1. Lock-Step Technique 

In the lock-step technique, since all of the simulated virtual sensor nodes have their own thread, 

every virtual sensor node has to wait for others to arrive at the lock-step point which is predetermined 

in time. However, that leads to a simulation with all of them delayed. This delay time and  

context-switching of every thread incur significant synchronization overheads. We identified the 

synchronization overhead between virtual sensor nodes by lock-step via experiments. Table 1 shows the 

average utilization of quad cores during the simulations of MoteWorks [13] CountSend/CountReceive 

applications. The configuration was 1-sender and N-receivers on AvroraZ. According to increase of 

virtual sensor nodes, the utilization of the processor cores is getting lower. The virtual sensor nodes 

spend most of their time waiting for other sensor nodes at lock-step points. That means the processors 

consume lots of time for context-switching rather than in computation. The synchronization overhead 

in this type of simulators occurs due to the lock-steps points. Therefore, by reducing these points, the 

simulation speed can be improved in this type of simulators. 

Table 1. The average utilization of quad cores during AvororaZ simulation via lock-step 

technique for synchronization (CountSend / CountReceive, 1-to-N). 

# of Nodes 4 8 16 32 64 128 256 512 1,024 

Avg Utilization (%) 39 37 32 29 27 27 27 26 26 

2.1.2. Shared Queue Technique 

Classically, the shared queue approach is used for discrete-event simulation engines. When this 

approach is applied to network simulations, each node is identified using a shared event queue. 

Because every event generated during a simulation enters into the event queue according to its arrival 

time synchronized with other events, the event queue management incurs synchronization overhead. 

The simulation controller extracts events from the queue head since they are ordered by their arrival 

time. There are no delays, context-switching overheads or process blockings involved for the 

synchronization like in the lock-step technique. However, as the number of virtual sensor nodes is 

increased, the length of the event queue is also increased. As the result, the event queue management 

leads to larger synchronization overheads. 

Figure 1 shows the profiling result of simulation overheads in NQEM while simulating 

CntToRfm/RfmToLeds with 1-to-N configuration. The simulation engine of NQEM is SMPL [14] 

which is a discrete-event simulation language with the shared queue approach. We have measured the 

execution time of each function within the simulator. As NQEM is an instruction-level simulator, we 

expected the micro controller unit (MCU) model to take the largest computation resource. However, 

we found that the event queue management was the largest. The queue overhead increased as we 

increased the number of simulated nodes. The event queue management is the synchronization 

overhead in this case. Thus, the simulation speed can be enhanced by cutting the event  

queue consumption. 
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Figure 1. Profiling result of NQEM simulator. 

 

2.2. Optimistic Simulation of Interrupt Service Routines 

The applications of networked sensors follow event-driven programming practices. Most of the 

time sensor nodes stay in the sleep state. When an event occurs by interrupts, they wake up. The 

interrupts are from its I/O devices such as a radio controller, sensors and actuators. The simulation of 

ISRs costs computation time for a large part of the code simulation in that environment.  

Interrupt service routines usually execute time-critical codes. They are written efficiently to avoid 

potential preemptions by other interrupts. If no interrupts occur over a period of execution, the 

program execution sequence of each node is prefixed. However, each sensor node should communicate 

with sensors, actuators and a radio controller. Thus, most sensor network simulators exploit 

conservative approaches for their timing causality.  

In this research, we propose an asynchronous simulation technique in order to reduce the 

synchronization overheads. The proposed technique is based on the optimistic simulation approach in 

ISRs instead of the conservative approach. The optimistic approach is not concerned with the causality 

between simulated events or sensor nodes. We assume the synchronization process for the sensor 

nodes is not necessary while an ISR of any sensor node is being simulated. If we can identify a code 

segment that is executed without any exceptional control flow, simulating the code can be 

asynchronous because the invoked events must be temporally executed. However, the exceptional 

control flows usually occur when sensor network applications are event-driven by communication 

controllers, sensors and actuators. According to experiments, we have observed only a few interrupt 

preemptions during execution of ISRs in our experiments. This means we have many opportunities to 

try the asynchronous simulation to avoid synchronizations between sensor nodes. Thus, we expect the 

ISRs within applications to be simulated asynchronously with only limited exceptions. This is the key 

point in improving simulation speed. However, when preemptions occur during this asynchronous 

simulation of ISRs, a causality error occurs and a recovery procedure is needed at that time. 

Figure 2 shows the overall processing flow of the asynchronous simulation of an ISR. When the 

asynchronous simulation is started, the data structure for the virtual sensor should be saved. The data 
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structure consists of virtual program counter, registers, flash memory, SRAM, external memory and 

simulation setting values. They are needed for the recovery procedure. Then the asynchronous 

simulation of the ISR for the sensor node is started. After the ISR is completed, the sensor node should 

wait for the carried timestamp of the simulation engine until the original synchronized simulation time 

reflecting the ISR’s simulation time. If another interrupt which should have occurred during the ISR of 

the sensor node occurs before the simulation time, while the asynchronous ISR has been already 

completed, the simulator detects the causality error. At this point, the rollback recovery for the sensor 

node is performed. The saved data structure of the sensor node at the start of the ISR is restored, and 

then the sensor node is re-simulated to the ISR asynchronously until the point where the preemption 

should occur. Other synchronized sensor nodes can be simulated up to the point independently, and 

then the nodes wait for others. The preempting ISR is not emulated asynchronously to simplify the 

recovery procedure.  

Figure 2. Asynchronous simulation of ISR. 
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The causality error for a sensor node during asynchronous simulation of an ISR affects only its own 

simulated result and the synchronized simulation results of other sensor nodes are error free by the 

asynchronous simulation of the sensor node. In addition, because the virtual sensor nodes are modeled 

in the discrete-event simulation engine, the simulator can automatically detect causality errors between 

whole events from all the sensor nodes. Hence, each sensor node can perform the asynchronous 

simulation and the recovery mode independently and simultaneously. Our technique shows better 

performance where the ISR is long. As the length of ISR becomes longer, we can further avoid 

synchronizations between sensor nodes.  

The proposed technique can be applied to any conservative simulation because our technique 

focuses on how to simulate interrupt service routine without the synchronization. This does not depend 

on any specific simulator architecture. For example, during simulation of ISRs, we remove the 

synchronization points in the lock-step technique or we do not assign any events into the event queue 

in the shared queue approach. Other simulators using any synchronization method also can apply this 

asynchronous simulation for ISRs. Therefore, this is an effective general approach for enhancing the 

sensor network simulation speed since there are a few preemptions between interrupts. 

3. Implementation 

In this section, we describe how we implemented the proposed technique. First, we explain our 

implementation of the optimistic simulation approach of ISR. Second, the rollback recovery procedure  

is explained. 

3.1. Asynchronous Simulation of Interrupt Service Routines 

We have proved and validated our technique by implementing it with NQEM. It simulates a MicaZ 

mote which consists of an Atmega128 processor and CC2420. Figure 3 shows the NQEM architecture. 

The simulator uses SMPL as its discrete-event simulation engine which contains an event queue to 

maintain causality.  

Each virtual sensor node shares a single event queue for synchronized simulations, so instruction 

cycles are the base events to be processed by the queue. Events from different nodes are identified by 

SMPL’s tokens. All virtual nodes generate events while they simulate the sensor nodes. Future events 

with their arrival times are inserted into the queue, and then the inserted events are sorted by their 

arrival times. The simulation clock proceeds whenever the simulator removes one event from the 

queue. After the removed event is processed, the results of the event are reflected into the virtual 

nodes. The simulator starts by inserting each sensor node’s first instruction into the queue with 

different arrival times. Figure 4 shows the simulator’s sequence to execute the base event as one 

instruction of a virtual node. Insert() and Release() are the operations to insert and retrieve the event 

from the queue. Figure 4 indicates that the procedures of modeled sensor nodes can be executed by 

Insert() and Release(). Every sensor node writes events to the queue and the simulation time 

progresses to the arrival time of the events as they are released. This sequence is repeated during  

the simulation. 
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Figure 3. The architecture of a discrete-event simulator NQEM [6]. 
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Figure 4. Synchronized simulations using the event queue on the SMPL engine. 
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Figure 5 shows the implemented optimistic simulation sequence. To simulate ISRs asynchronously, 

we should not access the event queue during the ISR period. While a regular instruction-level 

simulator repeats Insert() and Release() in an ISR, the implemented simulator simulates ISR 

instructions without calling Insert() and Release() which are the two functions for managing the event 

queue. The simulator executes ISR instructions without accessing the event queue until the RETI 

instruction is met. Through this technique, the simulator reduces the number of Insert() and Release() 

calls. As a result, event queue overhead for synchronization is improved. For the first instruction after 

the RETI, the simulator schedules that instruction event with its previous arrival time added by the total 
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ISR’s simulation time. The following instruction of the asynchronous ISR is likely to be scheduled at 

the end of the queue. This instruction event does not affect other sensor nodes running synchronously. 

This is reason why when an event is inserted into the event queue, the SMPL searches and verifies the 

event’s causality before an insertion. 

Figure 5. Optimistic asynchronous simulation of ISR without accessing the event queue. 
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3.2. Rollback Recovery 

Asynchronous simulation takes an optimistic approach for the ISRs assuming that there will be no 

preempting interrupts during the ISR period. However, when one or more preemptions occur, the 

simulator should detect it, and then a safe rollback process is performed. Figure 6 shows an interrupt 

preemption scenario. The simulator is processing ISR20_START event and performs asynchronous 

simulation as it is an ISR of the sensor node. ISR20_END event is inserted at the end of the queue 

reflecting ISR20’s simulation time. At the position of Current Clock, another interrupt ISR6 occurs and 

preempts ISR20_START while the asynchronous ISR has been already completed. The simulator 

detects the preemption by comparing the Current Clock and the simulation time of ISR20_END. If the 

Current Clock is earlier than the ISR20_END, the simulator determines that preemption should have 

occurred. Once the simulator knows that preemption has occurred, the rollback recovery routine is 

called. The routine restores the state data saved at the entry of the ISR, and the ISR is re-simulated up 

to the Current Clock position. Then, we can continue the synchronized simulation. After the rollback 

process, some events in the queue should be removed since they are inserted by the wrong optimistic 

simulation. Instead of explicitly removing them, we simply check the correctness of the events when 

they are released. This can reduce extra queue access overhead. 

The rollback procedure consists of the rollback preparation and the rollback recovery. For the 

rollback preparation, each virtual sensor node needs to take some time and incurs in extra memory 

costs. The data structure for a virtual sensor node consists of virtual program counter, registers, flash 

memory, SRAM, external memory and simulation setting values. The extra memory cost is about  
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132 kB per one sensor node. As the number of virtual sensor nodes is increased, the memory overhead 

is increased. We have measured the rollback preparation time. The time consumption of saving the 

data structure is about 8 μs. Even though it is constant value, the overhead can affect to the speed up 

more as the length of an ISR is shorter. In the rollback recovery procedure, the simulator restores the 

saved data structure and removed events data for the sensor node, and then the sensor node is  

re-simulated. In addition, there is another side effect. Some virtual sensor nodes may take some extra 

time to wait for the sensor node during the recovery. The time for restoring data structure is the same 

with the preparation time as 8 μs. However, the number of re-simulating events and the extra time 

needed by the side effect are non-deterministic. They depend on the application’s behavior and the 

simulation status of other virtual sensor nodes. Since the rollback recovery is called by the casualty 

errors, how many interrupt preemptions are invoked is important for the speedup. 

Figure 6. An interrupt preemption scenario in optimistic simulation. 

 

4. Evaluation 

We present the experiment-based evaluation of our proposed technique in this section. Three 

experiments were performed. First, we profiled interrupt service routines in sensor network 

applications to assess achievable speed improvements using our techniques. Second, we evaluated the 

speed up of our implementation. Third, we compared the scalability between AvroraZ and NQEM with 

the proposed technique. 

All experiments were performed on an Intel i7 920 quad core desktop computer, running at  

2.67 GHz clock with 4 GB memory. Profiling was performed on Windows XP platform. CentOS9 of 

Linux kernel 2.6.9 with JVM 1.6 was used to run AvroraZ. The six applications in Table 2 are selected 

for evaluation. We choose active applications in order to get the effective result in a short period of 

simulation time. All of the applications which are compiled MicaZ mote. CountSend, CountReceive 

from the MoteWorks 2.0 distribution and CntToRfm, CntToLedsAndRfm, SenseToRfm, RfmToLeds 

from the TinyOS 1.1.7 distribution. According to [15], MoteWorks distribution has various benefits 

over TinyOS 1.x or TinyOS 2.x. 
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Table 2. Profiling results of sensor network applications for ISRs. 

Applications # of Inst. # of Inst. in ISR ISR Ratio  # of Intr. 

MoteWorks 2.0 

CountSend 273,890 108,965 39.8 % 111 

CountReceive 70,664 27,992 39.6 % 83 

TinyOS 1.7 

CntToRfm 281,418 9,250 3.3 % 111 

CntToLedsAndRfm 284,828 9,250 3.2 % 111 

SenseToRfm 315,509 17,259 5.5 % 150 

RfmToLeds 48,672 6,124 12.6 % 83 

4.1. Assessment of Achievable Speed up 

The speed up is determined by the ISR length and number of invoked interrupts in our approach. 

Achievable enhancement can be estimated by profiling the amount of ISR instructions during the 

simulation time period. The profiling of each application was performed for the simulation time of  

10 virtual seconds. Table 2 shows the results of each application for ISRs. CountSend and 

CountReceive of MoteWorks show an ISR ratio of 39% while TinyOS applications have the lower ISR 

ratio. Therefore, the simulation speed of MoteWorks applications can be faster than the TinyOS 

applications in our approach because of the ISR ratio.  

We configured the networks as 1-sender/N-receivers and N-senders/N-Receivers using the 

applications. Experiments were performed with various numbers of nodes. The number of simulated 

instructions, number of ISR instructions, number of interrupts, and number of preemptions were 

recorded during the simulation. To count the number of instructions in ISR, we counted instructions 

within ISRs until the execution of the RETI instruction. The preemption count is increased when an 

interrupt is invoked before the execution of RETI instruction. The interrupt ratio was computed by 

dividing the number of ISR instructions by the number of simulated instructions. 

Table 3 shows the profiling results with one sender and N receivers configuration. MoteWorks 

applications show an interrupt ratio of 39% and this value is almost constant over various numbers of 

nodes. However, for others, it also increases as the number of nodes increases. The reason is that the 

sender and the receiver nodes do not have the same ISR ratio. In Table 2, CountSend and 

CountReceive show the same ISR ratio of 39% while the receiver RfmToLeds has 12% and the 

senders CntToRfm, CntToLedsAndRfm and SenseToRfm have 3% to 5%. Hence, the ISR ratio of 

TinyOS applications increases as the number of nodes increases. Table 4 shows the results with  

N senders and N receivers configuration. Since the number of senders is increased, the number of 

invoked interrupts in the receivers is larger than that of 1-to-N configuration. The MoteWorks 

applications show a much larger increment in ISR ratio than the TinyOS applications because they 

have longer ISRs. According to Tables 3 and 4, a few preemptions were recorded in this experiment. 

With SensToRfm(64 nodes)/RfmToLeds(64 nodes), only 93 preemptions occurred out of  

296,931 interrupts. Thus, the rollback recovery routine was executed only a few times. The interrupt 

preemption count of SenseToRfm(64 nodes)/RfmToLeds(64 nodes) that has 11% ISR ratio is larger 

than CountSend(64 nodes)/CountReceive(64 nodes) that has a 60% ISR ratio. Though the ISR ratio is 

larger, the interrupt preemption count can be smaller. The number of preemption count is dependent on 
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the application’s architecture and behavior. According to the profiling results about the ISR ratio and 

the preemption count of the each application, we can estimate the speed up limit. 

Table 3. Profiling results of sensor network applications for ISR (1 sender, N receivers). 

MoteWorks 2.0 - CountSend(1), CountReceive(N) 

# of nodes 4 8 16 32 64 128 256 512 1,024 

# of Instructions 487,154 774,366 1,347,754 2,494,375 4,789,981 9,369,175 18,517,175 36,839,580 73,492,899 

# of ISR Inst. 193,256 306,274 532,100 983,752 1,887,581 3,692,614 7,299,950 14,520,817 28,964,441 

Interrupt Ratio 39.7  39.6  39.5  39.4  39.4  39.4  39.4  39.4  39.4  

# of Interrupts 363 705 1,387 2,751 5,484 10,925 21,781 43,552 87,112 

# of Preemption 0 0 0 2 2 2 4 6 11 

TinyOS - CntToLedsAndRfm(1)/ RfmToLeds(N) 

# of nodes 4 8 16 32 64 128 256 512 1024 

# of Instructions 431,537 628,767 1,022,621 1,810,216 3,386,785 6,533,052 12,820,327 25,409,177 50,590,925 

# of ISR Inst. 27,838 53,054 103,342 203,918 405,430 806,654 1,607,302 3,212,702 6,424,726 

Interrupt Ratio 6.5 8.4 10.1 11.3 12.0 12.3 12.5 12.6 12.7 

# of Interrupts 363 705 1387 2751 5484 10925 21782 43553 87112 

# of Preemption 0 0 0 0 0 0 1 1 2 

4.2. Evaluation of Improved Simulation Speed 

We also evaluated the improvement of simulation speed in comparison with the basic NQEM. 

Simulations were performed for 10 virtual seconds of simulation time. Figures 7 and 8 show the 

simulation speed up with various numbers of sensor nodes in 1-to-N and N-to-N configuration.  

The Figure 7 shows two graphs. The upper plot is the result of MoteWorks applications and the 

bottom plot is from TinyOS applications. MoteWorks applications achieved more speed up than 

TinyOS applications and this is due to their large ISR ratio. In 1-to-N configuration, 

CountSend/CountReceive has an ISR ratio of 39% and CntToLedsAndRfm/RfmToLeds has an ISR 

ratio of 6% to 12% as shown in Table 3. This result shows that the monitored speed up values of the 

CountSend/CountReceive are quite close to the assessed achievable speed up values of almost the ISR 

ratio of 40% which is evaluated in Section 4.1. For the same reason, for the TinyOS applications, we 

had expected a 12% speed up with 12% of the ISR ratio. However, they achieved only a 6% speed up. 

This is because the rollback preparation overhead reduces the speed up gains. According to Table 3, 

each MoteWorks and TinyOS application performed 600 instructions and 75 instructions per one 

interrupt service routine, respectively. Though the numbers of interrupts invoked in those two test sets 

are similar and they have similar rollback preparation overheads, the speed up of TinyOS applications 

is further degraded due to the ISR ratio. In addition, the synchronization overhead increases 

exponentially, as the number of the sensor nodes increases according to our observations as shown in 

Table 1 and Figure 1.  
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Table 4. Profiling results of sensor network applications for ISR (N senders, N receivers). 

MoteWorks 2.0—CountSend(N)/CountReceive(N) 

# of nodes 16 32 64 128 

# of Instructions 7,082,399 23,783,034 84,596,488 305,690,197 

# of ISR Inst. 377,6879 13,559,491 50,255,546 185,836,411 

Interrupt Ratio 53.3 57.0  59.4  60.8  

# of Interrupts 5,833 21,256 79,492 295,307 

# of Preemption 1 8 19 74 

TinyOS—CntToRfm(N)/RfmToLeds(N) 

# of nodes 16 32 64 128 

# of Instructions 5,628,263 1,774,8843 61,295,719 216,703,785 

# of ISR Inst. 448,510 1,664,948 6,397,109 23,810,178 

Interrupt Ratio 8.0  9.4  10.4  11.0  

# of Interrupts 5,833 21,115 79,826 296,884 

# of Preemption 0 0 15 41 

TinyOS—CntToLedsAndRfm(N)/RfmToLeds(N) 

No of nodes 16 32 64 128 

# of Instructions 5,656,607 17,845,480 61,409,073 21,715,0050 

# of ISR Inst. 448,510 1,668,694 6,397,033 23,827,598 

Interrupt Ratio 7.9  9.4  10.4  11.0  

# of Interrupts 5,833 21,164 79,825 297,194 

# of Preemption 0 1 12 34 

TinyOS—SenseToRfm/RfmToLeds(N) 

# of nodes 16 32 64 128 

# of Instructions 5,909,069 18,119,867 61,880,817 217,091,151 

# of ISR Inst. 515,126 1,881,358 6,596,922 24,070,581 

Interrupt Ratio 8.7  10.4  10.7  11.1  

# of Interrupts 6,157 21,471 80,376 296,931 

# of Preemption 0 7 30 93 

Avrora and NQEM show the same results by the synchronization issue even though they are 

implemented in the different techniques, since the graph represents that y-axis is log scale as the 

execution time in Figure 9. Figure 8 shows the speed up results in the N-to-N configuration. Three 

TinyOS application sets were simulated with the MoteWorks test set. More interrupts were invoked 

and a few preemptions are observed as the number of senders increased. Compared to the 1-to-N case, 

higher speed up was achieved. As Table 4 shows, the ISR ratio of CountSend/CountReceive is about 

60% and we can see that the speed up approaches this limit. TinyOS applications show a smaller speed 

up as they have an ISR ratio ranging from 8% to 11%. For the same reasons we have mentioned 

concerning Figure 7, the expected speed up is not achieved. However, among the three TinyOS 

application sets, SenseToRfm/RfmToLeds shows the smallest speed up with 128 virtual nodes as 

shown in Table 4. This is due to the fact that it has the largest number of preemptions and their 

corresponding rollback recovery overheads. We showed that our method can enhance the simulation 

speed up. The speed up is determined by the behavior of applications, network protocols or operating 

systems. When they have long ISRs without preemptions between ISRs, our technique is  

more suitable. 
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Figure 7. Simulation speedup with various numbers of nodes (1 sender, N receivers). 

 

Figure 8. Simulation speedup with various numbers of nodes (N senders, N receivers). 

 

4.3. Comparison with AvroraZ 

We compared AvroraZ and NQEM. AvroraZ is an extension of Avrora with IEEE 802.15.4 

support. We simulated the MoteWorks CountSend/CountReceive applications on AvroraZ, NQEM and 

NQEM_Speedup. The simulation was performed for 10 virtual seconds. The simulation result in  

1-sender and N-receivers configuration of MicaZ motes is shown in Figure 9. The y-axis is the 

execution time and the x-axis is the number of virtual sensor nodes. As we show in this experiment, the 

optimistic simulation technique further improves the scalability, and our NQEM outperforms AvroraZ 

up to 1,024 nodes. The execution time of NQEM_Speedup was 0.65 s in 16 nodes and 318.79 s in 

1,024 nodes while AvroraZ requires 7.32 s in 16 nodes and 655.11 s in 1,024 nodes. NQEM_Speedup 

is 11 times faster in 16 nodes and two times faster in 1,024 nodes than AvroraZ. Moreover, it can 

achieve real-time performance with 8 s in 128 sensor nodes. When we consider the fact that networked 

sensors use a limited number of communications to save lifetime, our approach can be a very helpful 

technique for simulating large scale sensor networks. 
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Figure 9. Scalability comparisons of NQEM and AvroraZ. 

 

5. Related Works 

The first tools used to simulate sensor networks are classical network simulators such as NS-2 and 

OMNET++. In recent years, underwater wireless sensor networks simulators such as Aqua-Sim [16], 

ns-miracle [17], and Climent [18] were presented. Aqua-Sim and ns-miracle are extended on NS-2 and 

Climent to provide a network simulation package based on NS-3 [19]. However, this type of 

simulators cannot simulate target applications. They can verify modeled protocols or behaviors so that 

actual applications cannot be applied.  

TOSSIM [20] was developed as a simple TinyOS simulator. TOSSIM has an advantage in 

simulation speed over other simulators because it works with state transitions instead of working on 

the cycle-accurate instruction-level. Since it was designed only for TinyOS, it cannot support other 

operating systems. In addition, TOSSIM cannot simulate with fine-grain timing and code interrupts. 

Cycle-accurate, instruction-level simulation is the known solution for high-fidelity. ATEMU [5] 

was the first instruction-level sensor network simulator. However, the simulator framework has poor 

scalability due to its fine-grain simulation process. NQEM [6], Avrora [7], Polarlite [10], 

SnapSim [11], etc., are also instruction-level sensor network simulators, which can solve 

synchronization issues in various ways so that they can be faster than ATEMU.  

NQEM is high-fidelity instruction-level simulator, and it can be extended to the power 

estimator [21]. It has greatly reduced the simulation overheads by using a discrete-event based SMPL 

simulation engine which contains an event queue to maintain conservative manner. However, the 

number of virtual sensor nodes are increased, the length of the event queue is increased  

for synchronization.  

Avrora is well known instruction-level simulator. It uses the lock-step technique for 

synchronization between all virtual sensor nodes. However, large-scale context-switching can incur in 

overheads, because each virtual sensor node has its own thread.  

Polarlite is an improved simulator which is based on Avrora. It introduced speedup techniques 

which use a longer synchronization interval than Avrora’s constant interval strategy at the radio, MAC 

layer, and sleep mode. However, the synchronization strategy can be applied only if one of the 

scenarios in their study occurs and it still has large-scale context-switching overhead.  
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SnapSim is also based on Avrora. It uses an optimistic approach to reduce synchronizations about 

network transmission. However, It does not consider event-driven practices consisting of various 

networked sensors. Moreover, the method is dependent on the sensor network communication layers, 

so it cannot be extended to other simulation tools.  

DiSenS [22] can be used for simulation not only for SMP, but also for cluster environments. The 

synchronization overhead is reduced by using network topology information. However, the 

communication overhead for managing synchronization can be a problem between clusters. 

Cooja [23] provides both network level, operating system level and instruction level simulations. 

This feature has several advantages over traditional simulations restricted to one level for tests and 

developments. Furthermore, Cooja is extended for the interconnection of simulated sensor nodes and 

real node hardware [24]. Even though this tool offers efficient simulation environments, MSPSim [25] 

which is used as the instruction set simulator in the Cooja did not consider its speed  

up for the synchronization issue. In addition, it supports MSP430 microcontroller and our simulator 

has the Atemega 128 model, so the performance cannot be compared due to the different  

instruction-level simulations. 

By comparison, the synchronization management is the most important technique for enhancing 

speed up. We reduce the overhead by exploiting asynchronous code segments during simulations of 

ISRs. This is an effective and general approach, and besides it can be extended to any instruction-level  

conservative simulation. 

6. Conclusions and Future Works 

In this paper, we have proposed a novel technique that improves simulation speed. It is based on an 

optimistic approach by asynchronously simulating ISR. A rollback procedure is implemented to restore 

the simulator back when it meets the timing causality error. We implemented the proposed technique 

on NQEM and reduced overall overhead. In the evaluation, our technique shows better performance 

when the ISR is long. We also compared our technique with the well-known sensor network simulator, 

and our method showed better scalability. This technique does not depend on any specific  

instruction-level conservative approach, so that it can be extended to other simulators. In the future 

works, we will apply our approach to other instruction-level simulators. 
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