
Sensors 2013, 13, 11128-11145; doi:10.3390/s130811128

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Enhancing the Simulation Speed of Sensor Network

Applications by Asynchronization of Interrupt Service Routines

Hyunwoo Joe
1
, Duk-Kyun Woo

2
 and Hyungshin Kim

1,
*

1
 Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro,

Yuseoung-gu, Daejeon 305-764, Korea; E-Mail: jhwzero@cnu.ac.kr
2

Embedded Software Research Division, Electronics and Telecommunications Research Institute

(ETRI), 218 Gajeng-ro, Yuseoung-gu, Daejeon 305-700, Korea; E-Mail: dkwu@etri.re.kr

* Author to whom correspondence should be addressed; E-Mail: hyungshin@cnu.ac.kr;

Tel.: +82-42-821-7446; Fax: +82-42-822-9959.

Received: 28 June 2013; in revised form: 13 August 2013 / Accepted: 15 August 2013 /

Published: 21 August 2013

Abstract: Sensor network simulations require high fidelity and timing accuracy to be used

as an implementation and evaluation tool. The cycle-accurate and instruction-level

simulator is the known solution for these purposes. However, this type of simulation incurs

a high computation cost since it has to model not only the instruction level behavior but

also the synchronization between multiple sensors for their causality. This paper presents a

novel technique that exploits asynchronous simulations of interrupt service routines (ISR).

We can avoid the synchronization overheads when the interrupt service routines are

simulated without preemption. If the causality errors occur, we devise a rollback procedure

to restore the original synchronized simulation. This concept can be extended to any

instruction-level sensor network simulator. Evaluation results show our method can

enhance the simulation speed up to 52% in the case of our experiments. For applications

with longer interrupt service routines and smaller number of preemptions, the speedup

becomes greater. In addition, our simulator is 2 to 11 times faster than the well-known

sensor network simulator.

Keywords: networked sensors; sensor networks; optimistic simulation; synchronization;

asynchronous simulation; simulation speedup; interrupt service routine

OPEN ACCESS

Sensors 2013, 13 11129

1. Introduction

Since scalable networked sensors are deployed over wide geographical areas, once they are

installed, it is difficult to maintain them. Wireless sensor network simulators are very attractive and

useful tools to the developers. They allow users to simulate their software under various operating

conditions such as radio interference, geographical effects and functional behaviors.

Network simulators such as NS-2 [1], SensorSim [2], GloMosim [3] and QualNet [4] are used in

classical sensor network simulations. They validate modeled communication protocols, but they cannot

debug and verify the source codes of sensor network applications.

High fidelity of the models within simulators is needed to provide more accurate and realistic

simulation results. Cycle-accurate and instruction-level simulators have been proposed for this

purpose. However, these simulators have difficulties in achieving scalability as the number of the

sensors increases.

In particular, ATEMU [5], the first instruction-level sensor network simulator, uses the

cycle-by-cycle synchronization strategy. It simulates every event by a cycle-by-cycle strategy. Each

sensor node is automatically synchronized with each other in a cycle. The cycle-by-cycle strategy can

make synchronization for free but it has poor scalability. Even if some sensor nodes are asleep, all

sensor nodes should be simulated in every clock cycle. On the other hand, NQEM [6] and Avrora [7]

reduce the number of simulation events using discrete-event simulation. Sensor network applications

generally have low duty cycles, so that simulators can skip many cycles with the method while sensor

nodes are sleeping.

Another major cause of slow simulation speed is the synchronization overhead. In discrete-event

simulation, each event carries a timestamp which determines the simulation time at which it is

scheduled to occur. All events are processed in timestamp order to ensure causality. Virtual sensor

nodes should also synchronize with each other to avoid the causality errors. Conservative [8] or

optimistic approach [9] are general solutions to manage synchronization. Conservative approach

demands sensor nodes to coordinate to guarantee that no causality errors can occur. In contrast,

optimistic simulation enforces no explicit synchronizations. However, if a causality error is detected, a

rollback procedure undoes the simulated result to the time. Every conventional sensor network

simulator uses various conservative approaches to maintain the causality, even though they generate

synchronization overheads. For example, NQEM manages a shared queue, and Avrora applies the

lock-step technique between virtual sensor nodes.

PolarLite [10] and SnapSim [11] are extensions of Avrora to reduce the number of synchronization

points because if synchronizations between sensor nodes can be avoided during simulation, the

scalability can be improved. They focus on the interval for synchronization by network transmission

protocols. However, sensor nodes in actual applications are usually in the sleep state, so sensor nodes

do not communicate each other frequently. When sensing data is acquired or transferred, they are

awakened by the events. The mentioned research did not consider these characteristics. Moreover, the

solutions are dependent on the sensor network protocols and communication layers.

In this paper, we propose a novel technique for enhancing the speed of the sensor network

simulations. The technique is based on the optimistic simulation approach in ISRs instead of the

conservative approach. The asynchronous simulation means the sensor nodes are independently

Sensors 2013, 13 11130

simulated regardless of other sensor nodes’ status. The technique within application codes can greatly

reduce the synchronization events. If there are no interrupts and any exception over a period of

execution, the program execution sequence of applications is prefixed. However, interrupts can occur

frequently since applications of networked sensors follow event-driven programming practices. Sensor

nodes stay most of the time in the sleep mode and they are awakened when events are triggered by

external interrupts such as a radio controller, sensors and actuators. Hence, the simulation of ISRs

costs computation time for a large part of the code simulations. This is the main reason and motivation

why the target for improvement is the interrupt service routine.

If interrupts are not preempted by other interrupts, they can be simulated asynchronously during the

period of ISRs. We observed in experiments that there are only a few preemptions during ISRs in

sensor node operations. For the cases in which preemptions occur afterwards during the ISR, the

simulator uses an efficient rollback mechanism to restore the original synchronized simulation to

maintain timing causality. The proposed method can be implemented on any instruction-level

simulator by avoiding the synchronizations during simulation of ISRs. Therefore, this method can be

the effective general approach for improving simulation speed. The speedup is determined by the

length of the ISR and number of invoked interrupts because our technique shows better performance

when the ISR is long. If the behavior of applications, network protocols or operating systems is related

with an interrupts-intensive activity, our technique can be much more suitable. Therefore, we claim our

technique is a good candidate for the simulation of scalable networked event-driven systems.

In this paper, we validated our technique by implementing it with NQEM, a cycle-accurate

discrete-event simulator. Experimental results show that our technique can improve simulation speed.

We also compared our technique with AvroraZ [12]. The NQEM_Speedup is 2 to 11 times faster

than AvroraZ. This paper is organized as follows: in Section 2, we describe the motivation of this

study and how we reduce the overheads. The implementation details are explained in Section 3, and

performance evaluations are discussed in Section 4. Related works are described in Section 5, and we

present our conclusions in Section 6.

2. Enhancing the Speed of Simulation

2.1. Problem Definitions

Sensor network simulation requires high-fidelity and scalability. Previous studies on sensor network

simulators have applied instruction-level and discrete-event simulation. Instruction-level simulation

can maintain cycle-accurate simulation for high-fidelity and the discrete-event method can reduce the

computation overheads during sleep states of virtual sensor nodes for scalability. However, they have

same problems concerning the synchronization overhead between virtual sensor nodes and peripherals.

Virtual sensor nodes have to be synchronized to ensure the causality when the nodes and peripherals

communicate with each other. There are various synchronization methods to maintain the causality in

the conservative approach such as the lock-step and shared queue techniques. However, according to

our experimental observations, both these techniques also have synchronization overhead. In this

section, we consider the problems in both techniques, and then our proposed method is explained.

Sensors 2013, 13 11131

2.1.1. Lock-Step Technique

In the lock-step technique, since all of the simulated virtual sensor nodes have their own thread,

every virtual sensor node has to wait for others to arrive at the lock-step point which is predetermined

in time. However, that leads to a simulation with all of them delayed. This delay time and

context-switching of every thread incur significant synchronization overheads. We identified the

synchronization overhead between virtual sensor nodes by lock-step via experiments. Table 1 shows the

average utilization of quad cores during the simulations of MoteWorks [13] CountSend/CountReceive

applications. The configuration was 1-sender and N-receivers on AvroraZ. According to increase of

virtual sensor nodes, the utilization of the processor cores is getting lower. The virtual sensor nodes

spend most of their time waiting for other sensor nodes at lock-step points. That means the processors

consume lots of time for context-switching rather than in computation. The synchronization overhead

in this type of simulators occurs due to the lock-steps points. Therefore, by reducing these points, the

simulation speed can be improved in this type of simulators.

Table 1. The average utilization of quad cores during AvororaZ simulation via lock-step

technique for synchronization (CountSend / CountReceive, 1-to-N).

of Nodes 4 8 16 32 64 128 256 512 1,024

Avg Utilization (%) 39 37 32 29 27 27 27 26 26

2.1.2. Shared Queue Technique

Classically, the shared queue approach is used for discrete-event simulation engines. When this

approach is applied to network simulations, each node is identified using a shared event queue.

Because every event generated during a simulation enters into the event queue according to its arrival

time synchronized with other events, the event queue management incurs synchronization overhead.

The simulation controller extracts events from the queue head since they are ordered by their arrival

time. There are no delays, context-switching overheads or process blockings involved for the

synchronization like in the lock-step technique. However, as the number of virtual sensor nodes is

increased, the length of the event queue is also increased. As the result, the event queue management

leads to larger synchronization overheads.

Figure 1 shows the profiling result of simulation overheads in NQEM while simulating

CntToRfm/RfmToLeds with 1-to-N configuration. The simulation engine of NQEM is SMPL [14]

which is a discrete-event simulation language with the shared queue approach. We have measured the

execution time of each function within the simulator. As NQEM is an instruction-level simulator, we

expected the micro controller unit (MCU) model to take the largest computation resource. However,

we found that the event queue management was the largest. The queue overhead increased as we

increased the number of simulated nodes. The event queue management is the synchronization

overhead in this case. Thus, the simulation speed can be enhanced by cutting the event

queue consumption.

Sensors 2013, 13 11132

Figure 1. Profiling result of NQEM simulator.

2.2. Optimistic Simulation of Interrupt Service Routines

The applications of networked sensors follow event-driven programming practices. Most of the

time sensor nodes stay in the sleep state. When an event occurs by interrupts, they wake up. The

interrupts are from its I/O devices such as a radio controller, sensors and actuators. The simulation of

ISRs costs computation time for a large part of the code simulation in that environment.

Interrupt service routines usually execute time-critical codes. They are written efficiently to avoid

potential preemptions by other interrupts. If no interrupts occur over a period of execution, the

program execution sequence of each node is prefixed. However, each sensor node should communicate

with sensors, actuators and a radio controller. Thus, most sensor network simulators exploit

conservative approaches for their timing causality.

In this research, we propose an asynchronous simulation technique in order to reduce the

synchronization overheads. The proposed technique is based on the optimistic simulation approach in

ISRs instead of the conservative approach. The optimistic approach is not concerned with the causality

between simulated events or sensor nodes. We assume the synchronization process for the sensor

nodes is not necessary while an ISR of any sensor node is being simulated. If we can identify a code

segment that is executed without any exceptional control flow, simulating the code can be

asynchronous because the invoked events must be temporally executed. However, the exceptional

control flows usually occur when sensor network applications are event-driven by communication

controllers, sensors and actuators. According to experiments, we have observed only a few interrupt

preemptions during execution of ISRs in our experiments. This means we have many opportunities to

try the asynchronous simulation to avoid synchronizations between sensor nodes. Thus, we expect the

ISRs within applications to be simulated asynchronously with only limited exceptions. This is the key

point in improving simulation speed. However, when preemptions occur during this asynchronous

simulation of ISRs, a causality error occurs and a recovery procedure is needed at that time.

Figure 2 shows the overall processing flow of the asynchronous simulation of an ISR. When the

asynchronous simulation is started, the data structure for the virtual sensor should be saved. The data

Sensors 2013, 13 11133

structure consists of virtual program counter, registers, flash memory, SRAM, external memory and

simulation setting values. They are needed for the recovery procedure. Then the asynchronous

simulation of the ISR for the sensor node is started. After the ISR is completed, the sensor node should

wait for the carried timestamp of the simulation engine until the original synchronized simulation time

reflecting the ISR’s simulation time. If another interrupt which should have occurred during the ISR of

the sensor node occurs before the simulation time, while the asynchronous ISR has been already

completed, the simulator detects the causality error. At this point, the rollback recovery for the sensor

node is performed. The saved data structure of the sensor node at the start of the ISR is restored, and

then the sensor node is re-simulated to the ISR asynchronously until the point where the preemption

should occur. Other synchronized sensor nodes can be simulated up to the point independently, and

then the nodes wait for others. The preempting ISR is not emulated asynchronously to simplify the

recovery procedure.

Figure 2. Asynchronous simulation of ISR.

Sensors 2013, 13 11134

The causality error for a sensor node during asynchronous simulation of an ISR affects only its own

simulated result and the synchronized simulation results of other sensor nodes are error free by the

asynchronous simulation of the sensor node. In addition, because the virtual sensor nodes are modeled

in the discrete-event simulation engine, the simulator can automatically detect causality errors between

whole events from all the sensor nodes. Hence, each sensor node can perform the asynchronous

simulation and the recovery mode independently and simultaneously. Our technique shows better

performance where the ISR is long. As the length of ISR becomes longer, we can further avoid

synchronizations between sensor nodes.

The proposed technique can be applied to any conservative simulation because our technique

focuses on how to simulate interrupt service routine without the synchronization. This does not depend

on any specific simulator architecture. For example, during simulation of ISRs, we remove the

synchronization points in the lock-step technique or we do not assign any events into the event queue

in the shared queue approach. Other simulators using any synchronization method also can apply this

asynchronous simulation for ISRs. Therefore, this is an effective general approach for enhancing the

sensor network simulation speed since there are a few preemptions between interrupts.

3. Implementation

In this section, we describe how we implemented the proposed technique. First, we explain our

implementation of the optimistic simulation approach of ISR. Second, the rollback recovery procedure

is explained.

3.1. Asynchronous Simulation of Interrupt Service Routines

We have proved and validated our technique by implementing it with NQEM. It simulates a MicaZ

mote which consists of an Atmega128 processor and CC2420. Figure 3 shows the NQEM architecture.

The simulator uses SMPL as its discrete-event simulation engine which contains an event queue to

maintain causality.

Each virtual sensor node shares a single event queue for synchronized simulations, so instruction

cycles are the base events to be processed by the queue. Events from different nodes are identified by

SMPL’s tokens. All virtual nodes generate events while they simulate the sensor nodes. Future events

with their arrival times are inserted into the queue, and then the inserted events are sorted by their

arrival times. The simulation clock proceeds whenever the simulator removes one event from the

queue. After the removed event is processed, the results of the event are reflected into the virtual

nodes. The simulator starts by inserting each sensor node’s first instruction into the queue with

different arrival times. Figure 4 shows the simulator’s sequence to execute the base event as one

instruction of a virtual node. Insert() and Release() are the operations to insert and retrieve the event

from the queue. Figure 4 indicates that the procedures of modeled sensor nodes can be executed by

Insert() and Release(). Every sensor node writes events to the queue and the simulation time

progresses to the arrival time of the events as they are released. This sequence is repeated during

the simulation.

Sensors 2013, 13 11135

Figure 3. The architecture of a discrete-event simulator NQEM [6].

Discrete-Event
Simulation Engine

(SMPL)

Event
Controller

AVR Core CC2420

Shell

Input Next Event

Input Next EventEvent Output

SimRun

Break

Virtual Sensor node
#1

#2
#N

GUI

TCP/IP

Figure 4. Synchronized simulations using the event queue on the SMPL engine.

 AVR Core Model
Decode()

INS_START

Simulation
Engine

Event
Controller

Event
Queue

INS_END

Execute()

Interrupt?
External I/O?

SPI ?

Interrupt Model

- Push stack
- Store the current PC
- Change the PC to the ISR addr

I/O Models

- Check I/O registers
- Insert I/O events by insert()
- Simulation of I/O Devices
- sensors, timer, etc

RF Model – CC2420

- Check SPI registers
- Insert SPI events by insert()
- Simulation of CC2420

Insert()

Release()

Insert()
(INS_END, Cycles)

Insert()
(INS_START, Cycles)

Release()
(INS_END, The arrival time)

Release()
(INS_START, The arrival time)

NOInterrupt

I/O SPI

Virtual Sensor node 1

Virtual Sensor node 2

Virtual Sensor node #

Figure 5 shows the implemented optimistic simulation sequence. To simulate ISRs asynchronously,

we should not access the event queue during the ISR period. While a regular instruction-level

simulator repeats Insert() and Release() in an ISR, the implemented simulator simulates ISR

instructions without calling Insert() and Release() which are the two functions for managing the event

queue. The simulator executes ISR instructions without accessing the event queue until the RETI

instruction is met. Through this technique, the simulator reduces the number of Insert() and Release()

calls. As a result, event queue overhead for synchronization is improved. For the first instruction after

the RETI, the simulator schedules that instruction event with its previous arrival time added by the total

Sensors 2013, 13 11136

ISR’s simulation time. The following instruction of the asynchronous ISR is likely to be scheduled at

the end of the queue. This instruction event does not affect other sensor nodes running synchronously.

This is reason why when an event is inserted into the event queue, the SMPL searches and verifies the

event’s causality before an insertion.

Figure 5. Optimistic asynchronous simulation of ISR without accessing the event queue.

ISR

Decode() Execute()

Insert()

Release() INS_START

Current Clock:
after the ISR cycles

RETI?

YES

NO

INS_START
Total of the ISR Cycles

Event: INS_START
The Current time : After the RETI

3.2. Rollback Recovery

Asynchronous simulation takes an optimistic approach for the ISRs assuming that there will be no

preempting interrupts during the ISR period. However, when one or more preemptions occur, the

simulator should detect it, and then a safe rollback process is performed. Figure 6 shows an interrupt

preemption scenario. The simulator is processing ISR20_START event and performs asynchronous

simulation as it is an ISR of the sensor node. ISR20_END event is inserted at the end of the queue

reflecting ISR20’s simulation time. At the position of Current Clock, another interrupt ISR6 occurs and

preempts ISR20_START while the asynchronous ISR has been already completed. The simulator

detects the preemption by comparing the Current Clock and the simulation time of ISR20_END. If the

Current Clock is earlier than the ISR20_END, the simulator determines that preemption should have

occurred. Once the simulator knows that preemption has occurred, the rollback recovery routine is

called. The routine restores the state data saved at the entry of the ISR, and the ISR is re-simulated up

to the Current Clock position. Then, we can continue the synchronized simulation. After the rollback

process, some events in the queue should be removed since they are inserted by the wrong optimistic

simulation. Instead of explicitly removing them, we simply check the correctness of the events when

they are released. This can reduce extra queue access overhead.

The rollback procedure consists of the rollback preparation and the rollback recovery. For the

rollback preparation, each virtual sensor node needs to take some time and incurs in extra memory

costs. The data structure for a virtual sensor node consists of virtual program counter, registers, flash

memory, SRAM, external memory and simulation setting values. The extra memory cost is about

Sensors 2013, 13 11137

132 kB per one sensor node. As the number of virtual sensor nodes is increased, the memory overhead

is increased. We have measured the rollback preparation time. The time consumption of saving the

data structure is about 8 μs. Even though it is constant value, the overhead can affect to the speed up

more as the length of an ISR is shorter. In the rollback recovery procedure, the simulator restores the

saved data structure and removed events data for the sensor node, and then the sensor node is

re-simulated. In addition, there is another side effect. Some virtual sensor nodes may take some extra

time to wait for the sensor node during the recovery. The time for restoring data structure is the same

with the preparation time as 8 μs. However, the number of re-simulating events and the extra time

needed by the side effect are non-deterministic. They depend on the application’s behavior and the

simulation status of other virtual sensor nodes. Since the rollback recovery is called by the casualty

errors, how many interrupt preemptions are invoked is important for the speedup.

Figure 6. An interrupt preemption scenario in optimistic simulation.

4. Evaluation

We present the experiment-based evaluation of our proposed technique in this section. Three

experiments were performed. First, we profiled interrupt service routines in sensor network

applications to assess achievable speed improvements using our techniques. Second, we evaluated the

speed up of our implementation. Third, we compared the scalability between AvroraZ and NQEM with

the proposed technique.

All experiments were performed on an Intel i7 920 quad core desktop computer, running at

2.67 GHz clock with 4 GB memory. Profiling was performed on Windows XP platform. CentOS9 of

Linux kernel 2.6.9 with JVM 1.6 was used to run AvroraZ. The six applications in Table 2 are selected

for evaluation. We choose active applications in order to get the effective result in a short period of

simulation time. All of the applications which are compiled MicaZ mote. CountSend, CountReceive

from the MoteWorks 2.0 distribution and CntToRfm, CntToLedsAndRfm, SenseToRfm, RfmToLeds

from the TinyOS 1.1.7 distribution. According to [15], MoteWorks distribution has various benefits

over TinyOS 1.x or TinyOS 2.x.

Sensors 2013, 13 11138

Table 2. Profiling results of sensor network applications for ISRs.

Applications # of Inst. # of Inst. in ISR ISR Ratio # of Intr.

MoteWorks 2.0

CountSend 273,890 108,965 39.8 % 111

CountReceive 70,664 27,992 39.6 % 83

TinyOS 1.7

CntToRfm 281,418 9,250 3.3 % 111

CntToLedsAndRfm 284,828 9,250 3.2 % 111

SenseToRfm 315,509 17,259 5.5 % 150

RfmToLeds 48,672 6,124 12.6 % 83

4.1. Assessment of Achievable Speed up

The speed up is determined by the ISR length and number of invoked interrupts in our approach.

Achievable enhancement can be estimated by profiling the amount of ISR instructions during the

simulation time period. The profiling of each application was performed for the simulation time of

10 virtual seconds. Table 2 shows the results of each application for ISRs. CountSend and

CountReceive of MoteWorks show an ISR ratio of 39% while TinyOS applications have the lower ISR

ratio. Therefore, the simulation speed of MoteWorks applications can be faster than the TinyOS

applications in our approach because of the ISR ratio.

We configured the networks as 1-sender/N-receivers and N-senders/N-Receivers using the

applications. Experiments were performed with various numbers of nodes. The number of simulated

instructions, number of ISR instructions, number of interrupts, and number of preemptions were

recorded during the simulation. To count the number of instructions in ISR, we counted instructions

within ISRs until the execution of the RETI instruction. The preemption count is increased when an

interrupt is invoked before the execution of RETI instruction. The interrupt ratio was computed by

dividing the number of ISR instructions by the number of simulated instructions.

Table 3 shows the profiling results with one sender and N receivers configuration. MoteWorks

applications show an interrupt ratio of 39% and this value is almost constant over various numbers of

nodes. However, for others, it also increases as the number of nodes increases. The reason is that the

sender and the receiver nodes do not have the same ISR ratio. In Table 2, CountSend and

CountReceive show the same ISR ratio of 39% while the receiver RfmToLeds has 12% and the

senders CntToRfm, CntToLedsAndRfm and SenseToRfm have 3% to 5%. Hence, the ISR ratio of

TinyOS applications increases as the number of nodes increases. Table 4 shows the results with

N senders and N receivers configuration. Since the number of senders is increased, the number of

invoked interrupts in the receivers is larger than that of 1-to-N configuration. The MoteWorks

applications show a much larger increment in ISR ratio than the TinyOS applications because they

have longer ISRs. According to Tables 3 and 4, a few preemptions were recorded in this experiment.

With SensToRfm(64 nodes)/RfmToLeds(64 nodes), only 93 preemptions occurred out of

296,931 interrupts. Thus, the rollback recovery routine was executed only a few times. The interrupt

preemption count of SenseToRfm(64 nodes)/RfmToLeds(64 nodes) that has 11% ISR ratio is larger

than CountSend(64 nodes)/CountReceive(64 nodes) that has a 60% ISR ratio. Though the ISR ratio is

larger, the interrupt preemption count can be smaller. The number of preemption count is dependent on

Sensors 2013, 13 11139

the application’s architecture and behavior. According to the profiling results about the ISR ratio and

the preemption count of the each application, we can estimate the speed up limit.

Table 3. Profiling results of sensor network applications for ISR (1 sender, N receivers).

MoteWorks 2.0 - CountSend(1), CountReceive(N)

of nodes 4 8 16 32 64 128 256 512 1,024

of Instructions 487,154 774,366 1,347,754 2,494,375 4,789,981 9,369,175 18,517,175 36,839,580 73,492,899

of ISR Inst. 193,256 306,274 532,100 983,752 1,887,581 3,692,614 7,299,950 14,520,817 28,964,441

Interrupt Ratio 39.7 39.6 39.5 39.4 39.4 39.4 39.4 39.4 39.4

of Interrupts 363 705 1,387 2,751 5,484 10,925 21,781 43,552 87,112

of Preemption 0 0 0 2 2 2 4 6 11

TinyOS - CntToLedsAndRfm(1)/ RfmToLeds(N)

of nodes 4 8 16 32 64 128 256 512 1024

of Instructions 431,537 628,767 1,022,621 1,810,216 3,386,785 6,533,052 12,820,327 25,409,177 50,590,925

of ISR Inst. 27,838 53,054 103,342 203,918 405,430 806,654 1,607,302 3,212,702 6,424,726

Interrupt Ratio 6.5 8.4 10.1 11.3 12.0 12.3 12.5 12.6 12.7

of Interrupts 363 705 1387 2751 5484 10925 21782 43553 87112

of Preemption 0 0 0 0 0 0 1 1 2

4.2. Evaluation of Improved Simulation Speed

We also evaluated the improvement of simulation speed in comparison with the basic NQEM.

Simulations were performed for 10 virtual seconds of simulation time. Figures 7 and 8 show the

simulation speed up with various numbers of sensor nodes in 1-to-N and N-to-N configuration.

The Figure 7 shows two graphs. The upper plot is the result of MoteWorks applications and the

bottom plot is from TinyOS applications. MoteWorks applications achieved more speed up than

TinyOS applications and this is due to their large ISR ratio. In 1-to-N configuration,

CountSend/CountReceive has an ISR ratio of 39% and CntToLedsAndRfm/RfmToLeds has an ISR

ratio of 6% to 12% as shown in Table 3. This result shows that the monitored speed up values of the

CountSend/CountReceive are quite close to the assessed achievable speed up values of almost the ISR

ratio of 40% which is evaluated in Section 4.1. For the same reason, for the TinyOS applications, we

had expected a 12% speed up with 12% of the ISR ratio. However, they achieved only a 6% speed up.

This is because the rollback preparation overhead reduces the speed up gains. According to Table 3,

each MoteWorks and TinyOS application performed 600 instructions and 75 instructions per one

interrupt service routine, respectively. Though the numbers of interrupts invoked in those two test sets

are similar and they have similar rollback preparation overheads, the speed up of TinyOS applications

is further degraded due to the ISR ratio. In addition, the synchronization overhead increases

exponentially, as the number of the sensor nodes increases according to our observations as shown in

Table 1 and Figure 1.

Sensors 2013, 13 11140

Table 4. Profiling results of sensor network applications for ISR (N senders, N receivers).

MoteWorks 2.0—CountSend(N)/CountReceive(N)

of nodes 16 32 64 128

of Instructions 7,082,399 23,783,034 84,596,488 305,690,197

of ISR Inst. 377,6879 13,559,491 50,255,546 185,836,411

Interrupt Ratio 53.3 57.0 59.4 60.8

of Interrupts 5,833 21,256 79,492 295,307

of Preemption 1 8 19 74

TinyOS—CntToRfm(N)/RfmToLeds(N)

of nodes 16 32 64 128

of Instructions 5,628,263 1,774,8843 61,295,719 216,703,785

of ISR Inst. 448,510 1,664,948 6,397,109 23,810,178

Interrupt Ratio 8.0 9.4 10.4 11.0

of Interrupts 5,833 21,115 79,826 296,884

of Preemption 0 0 15 41

TinyOS—CntToLedsAndRfm(N)/RfmToLeds(N)

No of nodes 16 32 64 128

of Instructions 5,656,607 17,845,480 61,409,073 21,715,0050

of ISR Inst. 448,510 1,668,694 6,397,033 23,827,598

Interrupt Ratio 7.9 9.4 10.4 11.0

of Interrupts 5,833 21,164 79,825 297,194

of Preemption 0 1 12 34

TinyOS—SenseToRfm/RfmToLeds(N)

of nodes 16 32 64 128

of Instructions 5,909,069 18,119,867 61,880,817 217,091,151

of ISR Inst. 515,126 1,881,358 6,596,922 24,070,581

Interrupt Ratio 8.7 10.4 10.7 11.1

of Interrupts 6,157 21,471 80,376 296,931

of Preemption 0 7 30 93

Avrora and NQEM show the same results by the synchronization issue even though they are

implemented in the different techniques, since the graph represents that y-axis is log scale as the

execution time in Figure 9. Figure 8 shows the speed up results in the N-to-N configuration. Three

TinyOS application sets were simulated with the MoteWorks test set. More interrupts were invoked

and a few preemptions are observed as the number of senders increased. Compared to the 1-to-N case,

higher speed up was achieved. As Table 4 shows, the ISR ratio of CountSend/CountReceive is about

60% and we can see that the speed up approaches this limit. TinyOS applications show a smaller speed

up as they have an ISR ratio ranging from 8% to 11%. For the same reasons we have mentioned

concerning Figure 7, the expected speed up is not achieved. However, among the three TinyOS

application sets, SenseToRfm/RfmToLeds shows the smallest speed up with 128 virtual nodes as

shown in Table 4. This is due to the fact that it has the largest number of preemptions and their

corresponding rollback recovery overheads. We showed that our method can enhance the simulation

speed up. The speed up is determined by the behavior of applications, network protocols or operating

systems. When they have long ISRs without preemptions between ISRs, our technique is

more suitable.

Sensors 2013, 13 11141

Figure 7. Simulation speedup with various numbers of nodes (1 sender, N receivers).

Figure 8. Simulation speedup with various numbers of nodes (N senders, N receivers).

4.3. Comparison with AvroraZ

We compared AvroraZ and NQEM. AvroraZ is an extension of Avrora with IEEE 802.15.4

support. We simulated the MoteWorks CountSend/CountReceive applications on AvroraZ, NQEM and

NQEM_Speedup. The simulation was performed for 10 virtual seconds. The simulation result in

1-sender and N-receivers configuration of MicaZ motes is shown in Figure 9. The y-axis is the

execution time and the x-axis is the number of virtual sensor nodes. As we show in this experiment, the

optimistic simulation technique further improves the scalability, and our NQEM outperforms AvroraZ

up to 1,024 nodes. The execution time of NQEM_Speedup was 0.65 s in 16 nodes and 318.79 s in

1,024 nodes while AvroraZ requires 7.32 s in 16 nodes and 655.11 s in 1,024 nodes. NQEM_Speedup

is 11 times faster in 16 nodes and two times faster in 1,024 nodes than AvroraZ. Moreover, it can

achieve real-time performance with 8 s in 128 sensor nodes. When we consider the fact that networked

sensors use a limited number of communications to save lifetime, our approach can be a very helpful

technique for simulating large scale sensor networks.

Sensors 2013, 13 11142

Figure 9. Scalability comparisons of NQEM and AvroraZ.

5. Related Works

The first tools used to simulate sensor networks are classical network simulators such as NS-2 and

OMNET++. In recent years, underwater wireless sensor networks simulators such as Aqua-Sim [16],

ns-miracle [17], and Climent [18] were presented. Aqua-Sim and ns-miracle are extended on NS-2 and

Climent to provide a network simulation package based on NS-3 [19]. However, this type of

simulators cannot simulate target applications. They can verify modeled protocols or behaviors so that

actual applications cannot be applied.

TOSSIM [20] was developed as a simple TinyOS simulator. TOSSIM has an advantage in

simulation speed over other simulators because it works with state transitions instead of working on

the cycle-accurate instruction-level. Since it was designed only for TinyOS, it cannot support other

operating systems. In addition, TOSSIM cannot simulate with fine-grain timing and code interrupts.

Cycle-accurate, instruction-level simulation is the known solution for high-fidelity. ATEMU [5]

was the first instruction-level sensor network simulator. However, the simulator framework has poor

scalability due to its fine-grain simulation process. NQEM [6], Avrora [7], Polarlite [10],

SnapSim [11], etc., are also instruction-level sensor network simulators, which can solve

synchronization issues in various ways so that they can be faster than ATEMU.

NQEM is high-fidelity instruction-level simulator, and it can be extended to the power

estimator [21]. It has greatly reduced the simulation overheads by using a discrete-event based SMPL

simulation engine which contains an event queue to maintain conservative manner. However, the

number of virtual sensor nodes are increased, the length of the event queue is increased

for synchronization.

Avrora is well known instruction-level simulator. It uses the lock-step technique for

synchronization between all virtual sensor nodes. However, large-scale context-switching can incur in

overheads, because each virtual sensor node has its own thread.

Polarlite is an improved simulator which is based on Avrora. It introduced speedup techniques

which use a longer synchronization interval than Avrora’s constant interval strategy at the radio, MAC

layer, and sleep mode. However, the synchronization strategy can be applied only if one of the

scenarios in their study occurs and it still has large-scale context-switching overhead.

Sensors 2013, 13 11143

SnapSim is also based on Avrora. It uses an optimistic approach to reduce synchronizations about

network transmission. However, It does not consider event-driven practices consisting of various

networked sensors. Moreover, the method is dependent on the sensor network communication layers,

so it cannot be extended to other simulation tools.

DiSenS [22] can be used for simulation not only for SMP, but also for cluster environments. The

synchronization overhead is reduced by using network topology information. However, the

communication overhead for managing synchronization can be a problem between clusters.

Cooja [23] provides both network level, operating system level and instruction level simulations.

This feature has several advantages over traditional simulations restricted to one level for tests and

developments. Furthermore, Cooja is extended for the interconnection of simulated sensor nodes and

real node hardware [24]. Even though this tool offers efficient simulation environments, MSPSim [25]

which is used as the instruction set simulator in the Cooja did not consider its speed

up for the synchronization issue. In addition, it supports MSP430 microcontroller and our simulator

has the Atemega 128 model, so the performance cannot be compared due to the different

instruction-level simulations.

By comparison, the synchronization management is the most important technique for enhancing

speed up. We reduce the overhead by exploiting asynchronous code segments during simulations of

ISRs. This is an effective and general approach, and besides it can be extended to any instruction-level

conservative simulation.

6. Conclusions and Future Works

In this paper, we have proposed a novel technique that improves simulation speed. It is based on an

optimistic approach by asynchronously simulating ISR. A rollback procedure is implemented to restore

the simulator back when it meets the timing causality error. We implemented the proposed technique

on NQEM and reduced overall overhead. In the evaluation, our technique shows better performance

when the ISR is long. We also compared our technique with the well-known sensor network simulator,

and our method showed better scalability. This technique does not depend on any specific

instruction-level conservative approach, so that it can be extended to other simulators. In the future

works, we will apply our approach to other instruction-level simulators.

Acknowledgments

This research was supported by National Space Lab Program (NRF-2011-0020905) through the

National Research Foundation of (NRF) funded by the Ministry of Education, Science

and Technology.

Conflict of Interest

The authors declare no conflict of interest.

References

1. NS-2. Available online: http://isi.edu/nsnam/ns/ (accessed on 16 August 2013).

Sensors 2013, 13 11144

2. Park, S.; Savvides, A.; Srivastava, M.B. SensorSim: A Simulation Framework for Sensor

Networks. In Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and

Simulation of Wireless and Mobile Systems, Boston, MA, USA, 2000; pp. 104–111.

3. GloMoSim. Available online: http://pcl.cs.ucla.edu/projects/glomosim/academic/license.html

(accessed on 16 August 2013).

4. QualNet. Available online: http://www.scalable-networks.com (accessed on 16 August 2013).

5. Polley, J.; Blazakis, D.; McGee, J.; Rusk, D.; Baras, J.S. ATEMU: A Fine-Grained Sensor

Network Simulator. In Proceedings of First IEEE International Conference on Sensor and Ad Hoc

Communication Networks, Santa Clara, CA, USA, 2004; pp. 145–152.

6. Joe, H.; Lee, J.; Woo, D.-K.; Mah, P.; Kim, H. A High-Fidelity Sensor Network Simulator Using

Accurate CC2420 Model. In Proceedings of ACM/IEEE 8th International Symposium on

Information Processing in Sensor Networks (IPSN 2009), San Francisco, CA, USA, 13–16 April

2009; pp. 429–430.

7. Titzer, B.L.; Lee, D.K.; Palsberg, J. Avrora: Scalable Sensor Network Simulation with Precise

Timing. In Proceedings of the ACM/IEEE 4th International Symposium on Information

Processing in Sensor Networks (IPSN’05), Los Angeles, CA, USA, 25–27 April 2005; pp. 477–482.

8. Chandy, K.M.; Misra, J. Asynchronous distributed simulation via a sequence of parallel

computations. Commun. ACM 1981, 24, 198–205.

9. Jefferson, D.R. Virtual time. ACM T. Progr. Lang. Sys. 1985, 7, 404–425.

10. Jin, Z.-Y.; Gupta, R. Improving the Speed and Scalability of Distributed Simulations of Sensor

Networks. In Proceedings of ACM/IEEE 8th International Symposium on Information Processing

in Sensor Networks (IPSN’09), San Francisco, CA, USA, 13–16 April 2009; pp. 169–180.

11. Jiang, H.; Zhai, J.; Wahba, S.K.; Mazumder, B.; Hallstrom, J.O. Fast Distributed Simulation of

Sensor Networks using Optimistic Synchronization. In Proceedings of the 7th IEEE International

Conference and Workshops on Distributed Computing in Sensor Systems and Workshops

(DCOSS), Barcelona, Spain, 27–29 June 2011; doi:10.1109/DCOSS.2011.5982166.

12. de Paz Alberola, R.; Pesch, D. Avroraz: Extending Avrora with an IEEE 802.15.4 Compliant

Radio Chip Mode. In Proceedings of the 3rd ACM International Workshop on Performance

Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks,

Vancouver, Canada, 2008; pp. 43–50.

13. MoteWorks. Available online: http://bullseye.xbow.com:81/Support/wSoftwareDownloads.aspx

(accessed on 16 August 2013).

14. MacDougall, M.H. Simulating Computer Systems: Techniques and Tools; The MIT Press:

Cambridge, MA, USA, 1987.

15. MoteWorks Brochure Available online: http://bullseye.xbow.com:81/Products/Product_pdf_

files/Wireless_pdf/MoteWorks_OEM_Edition.pdf (accessed on 16 August 2013).

16. Aqua-Sim. Available online: http://obinet.engr.uconn.edu/ (accessed on 16 August 2013).

17. NS-Miracle. Available online: http://telecom.dei.unipd.it/pages/read/58/ (accessed on 16 August

2013).

18. Climent, S.; Capella, J.V.; Blanc, S.; Perles, A.; Serrano, J.J. A Proposal for modeling real

hardware, weather and marine conditions for underwater sensor networks. Sensors 2013, 13,

7454–7471.

http://dx.doi.org/10.1109/DCOSS.2011.5982166

Sensors 2013, 13 11145

19. NS-3. Available online: http://www.nsnam.org (accessed on 16 August 2013).

20. Levis, P.; Lee, N.; Welsh, M.; Culler, D. TOSSIM: Accurate and Scalable Simulation of Entire

TinyOS Applications. In Proceedings of the 1st International Conference on Embedded

Networked Sensor Systems, Los Angeles, CA, USA, 2003; pp. 126–137.

21. Joe, H.; Park, J.; Lim, C.; Woo, D.-K.; Kim, H. Instruction-level power estimator for sensor

networks. ETRI J. 2008, 30, 47–58.

22. Wen, Y.; Wolski, R.; Moore, G. Disens: Scalable Distributed Sensor Network Simulation. In

Proceedings of the 12th ACM Symposium on Principles and Practice of Parallel Programming

(PPoPP), San Jose, CA, USA, 14–17 March 2007; pp. 24–34.

23. Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network

Simulation with COOJA. In Proceedings of the 31st IEEE Conference on Local Computer

Networks, Tempa, FL, USA, 14–16 November 2006; pp. 641–648.

24. Osterlind, F.; Dunkels, A.; Voigt, T.; Tsiftes, N.; Eriksson, J.; Finne, N. Sensornet Checkpointing:

Enabling Repeatability in Testbeds and Realism in Simulations. In Proceedings of the 6th

European Conference on Wireless Sensor Networks (EWSN), Cork, Ireland, 11–13 February

2009; pp. 343–357.

25. Eriksson, J.; Dunkels, A.; Finne, N.; Osterlind, F.; Voigt, T. MSPsim–an Extensible Simulator for

MSP430-equipped Sensor Boards. In Proceedings of the European Conference on Wireless

Sensor Networks (EWSN), Delft, The Netherlands, 29–31 January 2007.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

