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Abstract: Deployment is a critical issue affecting the quality of service of camera networks.
The deployment aims at adopting the least number of cameras to cover the whole scene,
which may have obstacles to occlude the line of sight, with expected observation quality.
This is generally formulated as a non-convex optimization problem, which is hard to solve
in polynomial time. In this paper, we propose an efficient convex solution for deployment
optimizing the observation quality based on a novel anisotropic sensing model of cameras,
which provides a reliable measurement of the observation quality. The deployment is
formulated as the selection of a subset of nodes from a redundant initial deployment with
numerous cameras, which is an `0 minimization problem. Then, we relax this non-convex
optimization to a convex `1 minimization employing the sparse representation. Therefore,
the high quality deployment is efficiently obtained via convex optimization. Simulation
results confirm the effectiveness of the proposed camera deployment algorithms.

Keywords: camera networks; deployment; nodes layout and assignment; sparse
representation; anisotropic sensing model; observation quality

1. Introduction

Camera networks, as a special category of senor networks with all nodes being cameras, collect
comprehensive and reliable visual information of regions being monitored based on well-planned
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deployment of cameras in the scene. It is widely applied in traffic management [1], security
monitoring [2], agricultural production [3], virtual reality [4], intelligent surveillance [5], stereo
reconstruction [6], etc. The node deployment, which aims at optimizing both the quality of captured
information and the cost of visual information acquisition, is an essential step in camera network
related applications [7].

The camera deployment contains two aspects, which are the static layout and the dynamic assignment.
Layout and assignment approaches are designed to optimize the distribution of observation quality and
the resource consumption in different stages of camera deployment. The task of static layout is to
efficiently place the least number of cameras with well-designed positions and parameters, such as the
orientation, to achieve an optimized observation quality distribution over the whole scene. Once a layout
has been determined, the dynamic assignment mechanism controls the working states of cameras in real
time to operate the network with the least number of active cameras to reduce the resource consumption.
In addition, the sensing model of cameras, which can provide a realistic measurement of observation
quality, is also of importance in the layout and assignment.

1.1. Deployment

Effective and efficient approaches for the deployment of camera networks are expected for real-world
applications. An empirical manual deployment is efficient and practical for small scenes. However, this
approach makes no assurances on the coverage, observation quality and hardware cost. Thus, it is hard
to extend to complex and large scale scenes. To deploy camera networks, both layout and assignment
should be considered to optimize the overall observation quality under constraints, including the number
of cameras, energy supply, communication bandwidth, etc. As it requires selection and adjustment
on the configurations of cameras, such as positions and orientations, the deployment is intrinsically a
combinatorial optimization problem, which faces the well-known NP-hard problems [8]. Furthermore,
the overall measurement of observation quality over a scene is non-convex, even if it is quasi-convex
for one camera. This makes the deployment a non-convex optimization problem, which is hard to be
solved efficiently.

Extensive works on deployment have been done for various sensor networks. In general sensor
networks, researchers mainly focus on omni-directional sensors and deploying cameras according to the
energy consumption, coverage and connectivity of communication nodes [9–11]. For camera networks,
various deployment schemes have been investigated. Approaches employing integer programming [8,12]
are proposed for optimizing the coverage based on the binary sensing model. Sensors with the binary
sensing model can sense the object in its field of view with a quality of one; and the sensing quality out
of its field of view is zero. To reduce the energy and bandwidth consumption in resource-constrained
networks, sensor deployment strategies are designed in [13–15]. This literature considers only the
coverage of the observed fields, which cannot comprehensively reflect the observation quality. In
addition, the concept of multiple level coverage, or K-coverage, for short, is introduced in [16] to assure
that one object is detected by at least K sensors. This is of importance for binary sensing models.
However, the K-coverage model makes the problem more complex, as the potential combinations of
positions and poses of cameras are increased exponentially.
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Facing the high difficulty and computational complexity of sensor deployment, several algorithms,
such as integer programming [8,12], particle swarm optimization [17,18], genetic programming [19,20]
and the bee colony algorithm [21], have been introduced for finding the solutions. However, these
approaches can hardly achieve high efficiency, because the related problems they deal with are
still non-convex.

According to the analysis above, for the camera network, it is hard to obtain an effective and
efficient solution of deployment, due to its combinatorial nature. Fortunately, the recent development in
compressed sensing [22] shows that the combinatorial `0 pseudo-norm minimization can be relaxed to a
convex `1 optimization with an exact solution, supposing the vector (signal) is sufficiently sparse [23,24].
Furthermore, the theory also shows that the sparsity is a widely existing nature of signals. Thus, we can
apply such a convex relaxation if we can construct (or find) a sparse representation of the problem. In
fact, in sensor networks, the sparse representation has been applied in multiple source data fusion and
analysis [25]. Next, we need to construct a sparse representation suitable for the deployment problem.

Different from the existing approaches, which obtain the solution through computational intelligent or
integer programming, our approach solves the problem via convex relaxation, so that the deployment can
be solved efficiently. In this paper, the deployment is solved by selecting the best subset of cameras from
a redundant initial layout. As the number of cameras in the initial layout is very large compared to the
number of selected ones, the vector indicating which camera is selected is sparse. Such a formulation
is based on the fact that the redundant layout includes the near-optimal deployment. If we randomly
place a number of cameras in the scene as an initial layout, a sub-optimal deployment can be obtained
by selecting a subset from this layout. The sub-optimal deployment is near-optimal with satisfactory
observation quality if the number of cameras in the initial layout is large enough. According to the
research on coverage [26], O(A/R2) cameras with omni-binary sensing fields guarantee a full coverage
of a field of area, A, where R is the radius of the sensing range. In the initial layout, if it is ten or
more times larger than this threshold, the number of cameras is large enough to obtain a near-optimal
deployment. In addition, for a sensing model with a non-circular coverage shape, we can use the radius
of its maximum inner circle instead to get an over-estimated coverage threshold.

Based on the sparse representation, we propose a framework to deploy camera networks by
minimizing the pseudo `0 norm of an indicator vector, given constraints on observation quality. A
systematic approach is provided to get the representation and compute the observation quality.

1.2. The Sensing Model

The camera, as a special kind of sensor, has attracted much interest in the measurement of its
observation quality [27]. In the art gallery problem [28], a view point watches any position with equal
quality, as long as there are no obstacles between them. Considering the limited sensing field angle, a
directional binary sensing model is designed in [8]. Two non-uniform directional models are proposed
in [17,20,29] under the consideration of anisotropic sensing characteristics. However, both models are
based on empirical assumptions, which do NOT provide realistic measurements of observation quality.
Thus, a measurement based on the physical imaging process is expected.
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In this paper, we consider the camera networks composed of cameras with directional, occlusive and
nonuniform sensing fields. We measure the observation quality of a given position in the scene by the
quality of its image. In this work, we consider a widely used camera with such a structure, which is
equipped with a lens with a fixed focal length and without auto-focus capability. To construct its sensing
model, we explore the relationship between the imaging quality and four relevant factors: resolution,
defocus, geometric distortion and occlusion. All factors are crucial to feature extraction and image
analysis and related directly to the configuration of a camera. For each factor, a measurement function
is designed according to its influence on the imaging quality. Thus, the anisotropic sensing model for
cameras is derived by combining the four parts.

In this paper, an efficient approach is proposed to deploy camera networks for large-scale complex
scenes, which solves the original non-convex NP-hard combinatorial optimization problem via convex
relaxation by introducing the sparse representation idea. The rest of this paper is organized as follows.
Section 2 systematically presents our sparse solutions for layout and assignment of camera networks.
Simulation results are illustrated in Section 3. Discussions and conclusions are given in Section 4.
Detailed discussions on the creation of the used anisotropic sensing model are provided in Appendix A.

2. Camera Network Deployment

In this section, the sparse representation-based camera network deployment approach is formulated
to ensure observation quality and resource consumption reduction.

2.1. Observation Quality Measurement

Before performing the deployment, the observation quality of an object point within the sensing field
of a camera must be well defined, based on which the overall observation quality of the camera network
can be deduced. We construct an anisotropic sensing model, which consists of a non-uniform imaging
quality field. In the model, the observation quality is measured by considering four main factors affecting
the imaging quality. The factors considered are resolution, defocus, geometric distortion and occlusion,
which are represented as Fr, Fd, Fg and Fo, respectively. Observation quality is measured by combining
the four components. As the imaging quality will be decreased by the weakening of any one of the
components, one camera observation quality of an object point at (l, θ) is defined as:

q(l, θ) = αFr(l, θ)Fd(l, θ)Fg(θ)Fo(l, θ) (1)

where α is a normalization parameter and (l, θ) are the polar coordinates of the object with respect to the
camera. This sensing model is systematically described in Appendix A.

Each component describes the distribution feature of sensing quality for the corresponding aspect.
Though the observation quality cannot be comprehensively measured by any aspect independently, a
reliable measurement is achieved by jointly considering these aspects. With this formulation, the sensing
features are reliably described according to the physical imaging process. This measurement reflects the
anisotropic characteristic of a camera: directional sensing and non-uniform observation quality field. For
a detailed definition of each component in the sensing model, please refer to Appendix A.
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When the object is observed by multiple cameras, the synthesized observation quality is the sum of
the observation quality of all cameras. We can sum observation quality of different cameras, because
multiple views provide more information than one camera. Based on multiview images, we can obtain
a high-resolution image/video through super-resolution and solve the occlusion problem for tracking.
Meanwhile, the sensing model in Equation (1) takes multiview observation quality into account, where
the quality near the boundary of the observation field is penalized exponentially. In addition, the sum
operation can be seen as an extension of the K-coverage model [16].

Suppose m cameras are placed in the scene to be monitored. The jth camera has a generalized
coordinate, sjc = (pjc, o

j
c), where pjc and ojc denote the position and the pose of the camera, respectively.

Let Ω be the region of the scene. Thus, the overall observation quality of the object located at p ∈ Ω is:

Q(p) =
m∑
j=1

zjq
(
l
(
p, sjc

)
, θ
(
p, sjc

))
(2)

where l
(
p, sjc

)
and θ

(
p, sjc

)
are the conversion functions from the Cartesian coordinates to the polar

coordinates and the indicator, zj ∈ {0, 1}, denotes whether the jth camera is selected/activated or not.

2.2. Camera Layout

To design a layout algorithm optimizing the resource consumption and observation quality for camera
networks, the following aspects should be considered: (a) the lower bound of average observation quality,
(b) the uniformity of the observation quality distribution, (c) the minimum resource consumption and (d)
regions of different importance.

Let us state the aspects above more intuitively. The lower bound guarantees the minimum observation
quality in the scene. Meanwhile, the uniform distribution indicates the equity of observation resource
allocation, which avoids both excessively and insufficiently observed areas. Expectation E(Q) and
variance D(Q) of the observation quality are adopted to measure the distribution of the monitoring
resource. Expectation indicates the total amount of observation quality in the scene, while the variance
reflects the uniformity. Considering the limited supplies of resource, including hardware cost, energy
and bandwidth, a good camera layout should use the least number of cameras to reach both adequate
expectation and as low as possible variance of observation quality. In addition, the layout algorithm
should have the flexibility of adapting to scenes divided in areas of different importance.

Thus, the optimization goal of camera layout can be mathematically formulated as:

min ‖z‖0 + µD(Q),

subject to E(Q) ≥ E0,

Q(p) ≥ Q0, ∀p ∈ Ω,

zj ∈ {0, 1}, j = 1, · · · ,m

(3)

where ‖z‖0 denotes the pseudo `0 norm, which counts the number of non-zero elements in the indicator
vector, z, with z = [z1, · · · , zm]T , E0 is the minimum expectation of observation quality, µ is a weight
coefficient and Q0 is the minimum observation quality for effective monitoring.

In this formulation, the `0 minimization is employed as a selector that chooses the smallest subset of
cameras from a redundant initial layout. Such a selection provides a near-optimal solution if the initial
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layout is redundant enough compared with the pure coverage threshold. In other words, the indicator
vector, z, is very sparse. The minimization of termD(Q) aims to ensure the uniformity of the observation
quality distribution, which can prevent the observation sources from being excessively distributed at the
local area. The constraints aim to ensure effective observation coverage on average and on every point.

To solve the optimization (3), we need to compute the expectation, E(Q), and the variance, D(Q), of
the observation quality with respect to the scene, Ω, being monitored. As the scene, Ω, is continuous in
general cases, the expectation and variance can be computed according to:

E(Q) =
1

|Ω|

∫∫
p∈Ω

Q(p)/w(p) dp (4)

D(Q) = E
{

[Q− E(Q)]2
}

=
1

|Ω|

∫∫
p∈Ω

Q2(p)/w2(p) dp− E2(Q) (5)

respectively, where |Ω| denotes the area of Ω and w(p) is the importance degree of p. The importance
degree, w(p), is introduced to describe critical regions expecting more observation resources. The
importance degree is set to w(p) > 1 and w(p) = 1 for critical and ordinary regions, respectively.

However, the problem (3) is intractable with the integral form computation of E(Q) and D(Q).
Firstly, most practical monitoring scenes contain obstacles, and the corresponding boundaries are
usually non-convex. That leads to complex discontinuity of Q(p) in Ω under the visual sensing model.
Therefore, integration in the objective function is analytically intractable. Secondly, the observation
quality is generally anisotropic in the field of view of the camera, which makes q(l, θ) a quasiconcave
(or unimodal) [30] function in its definition domain. Therefore,Q(p)/w(p) in Ω is non-concave, because
the sum operation does not preserve the quasiconcavity. Thus, the objective function (3) is hard to solve.

To compute E(Q) and D(Q), we adopt the numerical integration method. Firstly, n points pi
are uniformly sampled from the scene where i = 1, · · · , n. Then, the expectation and variance of
observation quality of these sample points are used to approximate the exact E(Q) and D(Q). If n is
large enough, this approximation is accurate enough. To compactly represent the computation of E(Q)

and D(Q), we define an observation quality matrix, B ∈ Rn×m, where Bij , q
(
l(pi, s

j
c), θ(pi, s

j
c)
)

is
the observation quality of point i observed by camera j. The product, Bz, is a column vector, where
the ith element is Q(pi). Let W = diag

(
1/w(p1), · · · , 1/w(pn)

)
be the weight coefficient matrix. The

expectation of observation quality can be approximated by:

E(Q) ≈ 1

n
1TWBz = bTz (6)

where 1 is a column vector with n ones. With further derivation, the variance is approximated by:

D(Q) ≈ 1

n

n∑
i=1

(Q(pi)−E(Q))2 =
1

n

∥∥∥WBz−1(
1

n
1TWBz)

∥∥∥2 =
∥∥∥ 1√

n

(
I− 1

n
11T

)
WBz

∥∥∥2

= ‖Bvz‖2

(7)
where I ∈ Rn×n denotes the unit matrix.

Another difficulty in solving Equation (3) is that the objective function is a non-convex `0 problem
with a Boolean constrain. In order to obtain a convex objective function, we first relax the Boolean
constrain to a convex form. Here, we adopt the widely used relaxation method [30], which replaces
the Boolean constrain with the linear inequalities as 0 ≤ z ≤ 1. Then, we transform the objective to a
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tractable form. Works [23,24] prove that the real solution can be recovered efficiently by `1 minimization,
as long as the real solution is sparse. In camera layout, z is quite sparse, because the number of adopted
cameras is very small compared to the redundant initial layout. Therefore, the pseudo `0 norm can be
relaxed to the `1 norm. As a result, the objective function (3) is relaxed to:

min ‖z‖1 + µ‖Bvz‖2,

subject to bTz ≥ E0,

WBz ≥ Q01,

0 ≤ z ≤ 1

(8)

according to the sparsity. Compared to the original non-convex objective function, the `0 item is relaxed
to a `1 norm. E(Q) andD(Q) are approximated to two linear calculations. The second constraint was set
to ensure the effective observation of the sampled n target points of the scene. Moreover, The Boolean
constrain is relaxed to a closed interval. As each element of B is non-negative, the relaxed constraint
lower bounds the total amount of observation quality measured by the original indicator vector.

To obtain the final camera layout, we need to select cameras according to the relaxed non-Boolean
indicator, z. As the majority elements of z are near zero, similar to the way adopted by [31], cameras are
selected according to the descending order of coefficients, until the constraints on average and point-wise
observation quality in (8) are satisfied. Such a scheme collects the most contributive cameras. Thus, a
high quality camera layout is achieved by efficient convex optimization.

2.3. Camera Assignment

On the basis of the optimized layout, camera networks can perform a surveillance task of objects
appearing in the monitoring scene. To achieve a high efficiency, the cameras’ assignment concerns the
following requirements: a) the least number of active cameras, b) observation quality of each observed
target and c) a real-time decision.

Camera networks are usually resource (energy and bandwidth)-limited, especially in the wireless
environment. The life time of a camera network with limited energy will be greatly decreased if
all cameras are activated. The assignment procedure activates the least number of cameras if other
constraints are satisfied to reduce the resource consumption. When multiple targets are monitored,
different targets generally have different priorities. This is defined as the observation quality requirement
for each target. In addition, for surveillance, a real-time decision is indispensable to observe moving
targets without interruption.

Suppose m∗ cameras have been placed in the scene. There are ñ points on objects to be observed.
Then, observation quality matrix, B̃ ∈ Rñ×m∗ , is obtained, where B̃ij is the observation quality of point
i observed by camera j. The weighted observation quality of each point must be larger than a given
lower bound, Q̃0, where the weighting matrix is W̃ = diag(w̃1, · · · , w̃ñ). A binary indicator vector,
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ψ = [ψ1, . . . , ψm∗ ]T , where ψj ∈ {0, 1}, is introduced to denote the activation state of each camera. The
optimization goal of camera assignment is formulated as:

min ‖ψ‖0,

subject to W̃ B̃ψ ≥ Q̃01̃,

ψj ∈ {0, 1}, j = 1, · · · ,m∗
(9)

where 1̃ is a column vector of ñ ones.
The objective function of camera assignment is also an `0 minimization problem with a Boolean

constrain, which is hard to solve in polynomial time. Similar to the procedure used in camera layout,
sparse representation is employed to relax this optimization to the `1 form, because the cameras activated
are quite sparse compared to all the placed cameras. Therefore, the objective function is revised to:

min ‖ψ‖1,

subject to W̃ B̃ψ ≥ Q̃01̃,

0 ≤ ψ ≤ 1,

(10)

by means of the sparse property. Cameras are selected into the active subset according to the descending
order of coefficients, until the constraints of Equation (9) are satisfied.

The objective functions of camera layout Equation (8) and assignment Equation (10) are both
with convex objectives and convex constrains. Thus, they can be solved efficiently via many convex
optimization methods, such as interior point, conjugate gradient, etc. To solve both optimization
problems, we employ CVX, a package for specifying and solving convex programs [32,33].

3. Experimental Results

In this section, experiments are designed to demonstrate the effectiveness of the proposed camera
deployment algorithm. The camera model adopted in all experiments is with an anisotropic sensing field,
which provides an accurate measurement of observation quality and is described in detail in Appendix A.
Sensing parameters concerning sensing field and observation quality distribution are derived according
to the equipment parameters of the camera. Camera layout and assignment are validated, in turn, on
two monitoring scenes. Experimental results of camera layout are analyzed in the following aspects:
sparsity, coverage, distribution of observation quality, number of used cameras, optimization time and
stability. Then, camera assignment is carried out based on the solution of the layout step. The number
of active cameras and the time of assignment decision are used to verify the effectiveness and efficiency,
respectively. All the experiments are operated on a computer with a 2.2 GHz CPU and 2 GB RAM.

3.1. Configurations of Experiments

Some necessary parameters of device and objective function are set firstly for camera network
deployment, as shown in Table 1. All cameras in the network are with the same parameters. The pixel
density of the image sensor is 152.17 pixels per square millimeter. The size of the image sensor, i.e.,



Sensors 2013, 13 11461

Ds, in Figure 9, is set to 36 mm. We suppose that at least 2 pixels are needed to observe an object of 5

unit areas effectively. The minimum effective observation quality, Q0, is set to 0.1. Thus, the parameters
of the observation field, such as the field angle and the best object distance, are deduced, as given in
Table 1. Sensing field and observation quality distribution are shown in Figure 1a.

Figure 1. Experimental Parameters. (a) Distribution of observation quality in the sensing
field of a selected camera. (b)(c) Two experimental scenes: dark blocks denote the obstacles;
green blocks denote the critical regions, which need more observation resources.

(a)
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2 12000mm

(b)

1

4
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2Room 2 Room 3

Room 4Room 1

16000 mm

(c)

Observation quality, q(l, θ), equals to 1 when l = ubest and θ = 0. Meanwhile, the effective sensing
region, determined by setting q(l, θ) ≥ Q0, is surrounded by a green dashed line.

Two simulated monitoring scenes, which reflect the typical monitor requirements, are designed for
experiments. One scene is called the irregular square scene, as shown in Figure 1b. The boundary of this
observation scene forms a non-convex polygon. Furthermore, four obstacles, denoted by the dark blocks
in Figure 1b, are placed in this scene. This test case carries the complex indoor monitoring scenes. The
two green square parts are critical regions. The other is the four rooms scene, which is composed of four
rectangular rooms connected by four gangways. This scene simulates the surveillance task with multiple
rooms. The shape and size of this scene are shown in Figure 1c. The gangways are defined as the critical
regions.

Table 1. Sensing parameters of adopted cameras.

Focal Length (f ) 50 mm F-number (f/D) 1.8

κ 0.01 dmax Ds/2

rm D/8 Fr,min/Fd,min/Fg,min 0.05

θm 0.69 rad ubest 2, 448 mm

3.2. Camera Layout Experiments

The performance of the camera layout algorithm is tested in both designed scenes. To reflect the
observation quality of the scene, 900 target points are uniformly sampled. At the initial stage, 1, 000

cameras are randomly placed in the scene. In the construction of the observation matrix, columns with
all zero values are deleted, as these vectors represent the ineffective cameras that cannot observe any
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Figure 2. The indicator vector of the layout experiment on the irregular square scene without
critical regions. The red dots denote the adopted cameras with large coefficients.
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Figure 3. Layout results on the irregular square scene without critical regions. (a) Coverage.
(b) Observation quality distribution.

(a) (b)

target points. Thus, they are deleted beforehand to enhance the efficiency of optimization. The minimum
expectation observation quality is set to 1.8. Weight coefficient µ in the objective function (8) is set to
√
n. The effective coverage is defined as C = (|Ωc|/|Ω|) × 100%, where the region covered by the

observation fields of deployed cameras is denoted by Ωc = {p|p ∈ Ω, Q(p) ≥ Q0}. The coverage is
calculated based on the observation data of the target points.

3.2.1. Scenes without Critical Regions

Camera layout is firstly carried out in the irregular square scene, as shown in Figure 1b, without
critical regions. The optimization process costs 92.67 seconds to get the coefficients of cameras as
shown in Figure 2. There are 962 cameras left after the deletion of ineffective cameras. Only 51 camera
coefficients are larger than 0.1. According to the constraints, 19 cameras are chosen as the optimization
results. This sparsity can guarantee the effectiveness of `1 minimization.

Coverage and observation quality distribution are shown in Figure 3. The coverage of effective
observation is 99.74% (the gray part of Figure 3a. Expectation and variance of observation quality
are 2.20 and 0.48, respectively. The experimental data shows that almost all parts of the scene are
effectively observed.
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3.2.2. Scenes with Critical Regions

We then test the camera layout in two scenes with critical regions marked out by green blocks, as
shown in Figure 1b,c.

The Irregular Square Scene Camera layout is carried out in the scene as shown in Figure 1b, firstly.
The observation quality distribution is shown in Figure 4a. The observation quality distribution data of
this experiment is illustrated in Table 2a. The coverage of the global scene is 96.69%, and both of the two
critical regions are completely covered. Since the importance of the whole scene is not equal, variance
of observation quality is not given. Experimental data shows that these two critical regions are observed
with emphasis compared to common regions. The whole scene is also effectively observed.

Figure 4. Experimental results of scenes with critical regions. (a) Irregular square scene. (b)
Four rooms scene. (c) Boundary restricted layout in irregular square scene. (d) Boundary
restricted layout in four rooms scene.

(a) (b)

(c) (d)

The Four Rooms Scene Then, camera layout is carried out in the scene, as shown in Figure 1c.
Four gangways marked as green blocks are critical regions. The observation quality distribution is
shown in Figure 4b. Observation quality distribution data of this experiment is illustrated in Table 2b.
The coverage of Room 4 is 99.88%, and the coverage of all the other regions is 100%. As shown by
experimental results, the observation quality distribution of the four rooms can meet the requirement.
Moreover, the four gangways are emphatically observed compared to the four rooms.

3.2.3. Boundary-Restricted Layout

In some cases, cameras cannot be placed at all locations of the scene. For example, they can only be
placed on the boundary of the monitoring scene. Our layout algorithm can also fit this case effectively.
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Table 2. Observation quality distribution data of scenes with critical regions.

(a) The Irregular Square Scene

Global Region 1 Region 2

Free
E(Q) 2.88 5.50 5.18

D(Q) / 0.17 0.32

Boundary
E(Q) 2.36 4.04 4.09

D(Q) / 0.34 0.35

(b) The Four Rooms Scene (RM—room, GW—gangway.)

RM 1 RM 2 RM 3 RM 4 GW 1 GW 2 GW 3 GW 4

Free
E(Q) 3.19 3.31 2.97 2.88 5.97 5.55 5.09 4.37

D(Q) 0.96 1.31 1.08 1.25 1.24 1.93 0.32 1.76

Boundary
E(Q) 2.04 1.96 1.97 1.96 2.73 2.73 2.78 3.13

D(Q) 0.55 0.60 0.40 0.45 0.57 0.40 0.75 0.55

In this case, cameras are randomly placed on the boundary of the scene at the initial stage. Then, the
same operation as the unrestricted layout is executed.

Camera layout on the boundary is carried out, in turn, for the two designed monitoring scenes. Firstly,
the camera layout is implemented in the irregular square scene. Observation quality distribution is shown
in Figure 4c, and the experimental data is shown in Table 2a. The coverage of the whole scene is 99.59%,
and the two critical regions are completely covered.

Then, the boundary-restricted layout is carried out in the four rooms scene. Observation quality
distribution and the experimental data are shown in Figure 4d and Table 2b, respectively. The coverage
of Room 1 is 99.88%, and the coverage of the other regions is 100%.

As shown by the experimental data, the critical regions are emphatically observed compared to
common regions, and the whole scene is also effectively observed though cameras that can only
be placed on the boundary. The layouts for different place restrictions verify the robustness of our
layout algorithm.

The optimization of these four camera layout experiments in the scenes with critical regions are quite
efficient with the sparsity of the layout. Table 3 shows the optimization data of these experiments.
As the data show, the comparison between the number of large coefficients and the number of initial
effective cameras verifies the sparsity of camera layout, which guarantees the efficiency and accuracy of
the optimization algorithm.

3.2.4. Stability of Layout Algorithm

We have performed five camera layout experiments based on different monitoring scenes and layout
restrictions. Although the solutions above are obtained from randomly placed cameras, the result of
observation quality is stable if the number of initial placed cameras is large enough. The five layout
experiments are marked as layout I to V , as listed in Table 4. In the following, each layout experiment is
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Table 3. Experimental data of layout optimization in two scenes with critical regions.

Irregular Square Scene Four Rooms Scene
Free Boundary Free Boundary

Effective Cameras 957 825 943 778

Large Coefficients (> 0.1) 33 29 66 58

Adopted Cameras 23 19 63 32

Optimization Time (s) 120.49 126.29 143.88 139.63

repeated 50 times under the same parameters. Then, statistical data of objective function values, cameras
number, coverage and observation quality distribution for different layout experiments are obtained.

Objective Function Values The stability of the values of objective function (8) reflects the
convergence of the layout optimization algorithm. Boxplots of these values for the five layout
experiments are given in Figure 5a. As shown in the figure, the values of objective functions (8) for
the five experiments are quite stable. This result proves that there exists a large number of high quality
solutions with similar objective values among the optimal solution, and they can be effectively obtained
by the proposed algorithm with random initial camera layout.

Table 4. List of the sequence number for cameras layouts.

Irregular square scene without a critical region Layout I
Irregular square scene with critical regions Layout II
Boundary-restricted irregular square scene Layout III
Four rooms scene Layout IV
Boundary-restricted four rooms scene Layout V

Number of Adopted Cameras The number of adopted cameras placed in the scene reflects the layout
cost of camera networks. The boxplots of the number of adopted cameras in the five layout experiments
are shown in Figure 5b. We can see that the length of every box is very short compared to the value of
the median data. The stability of cameras number is reflected.

Effective Coverage Effective coverage of the scene is an important aspect of QoS. Blind areas should
be as small as possible in the monitoring scene. Statistical data of the coverage of five layout experiments
are shown in Figure 5c. Because the coverage of all critical regions is 100%, only the global coverage
data is given. It can be seen in this diagram that coverage of each layout experiment is greater than 99%.
Sufficient, effective coverage is guaranteed.

Distribution of Observation Quality The first three layout experiments in the irregular square scene
are tested, firstly. Figure 6a shows the statistical data of the observation quality distribution of these three
layout experiments. As Layout I shows, the expectation and variance are comparatively concentrated.
Boxplots of Layout II and Layout III also reflect the stability of the deployment solutions.

Then, Figure 6b shows the statistical data of the observation quality distribution of the camera layout
experiment in the four rooms scene without placement restriction. Statistical data of the observation
quality distribution in gangways and rooms show the stable quality of layout solutions.
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Figure 5. Statistical data of the deployment performance of the layout experiments (a) The
objective value. (b) The number of adopted cameras. (c) Effective coverage.
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Finally, for experiments of boundary-placed camera layout in the four rooms scene, Figure 6c shows
the statistical data of the observation quality distribution. Similar to the previous experiments, the
deployment solutions of our approach are stable at an acceptable interval.

3.3. Comparison to BIP-Based Deployment

In addition, in order to verify the superiority of our optimization objective function, it is compared to
binary integer programming (BIP)-modeled deployment based on binary sensing nodes. A comparison
experiment is made between our formulation and [8] in a scene three-times larger than the scene shown
in Figure 1b. In this experiment, M1 denotes the deployment under the binary sensing model with
the BIP objective function, which is designed in [8]. M2 denotes the deployment under our nonuniform
sensing model and sparse relaxation-based method. The uniformity restriction on the observation quality
distribution, i.e., the variance term, is added to our objective function, but ignored in M1. The two
experiments are with the same observation requirements. For M1, we segment the field of view by
setting a threshold on observation quality and restrict the observation quality of any part of the scene to
not less than one. For M2, we restrict the observation quality of any part of the scene to no less than
this threshold.

To compare the optimization efficiency between both models, the deployment is firstly operated on a
small scale problem, which is with 15×15 target points and 200 initial cameras. As shown by Figure 7(a),
the optimization time of M2 stabilizes at two seconds, while the branch and bound-based M1 model is
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Figure 6. Statistical data of the observation quality distribution of five layout experiments.
Blue boxes are the statistical data of critical regions. Red boxes reflect the statistical data of
common regions. An upper box and lower box with the same abscissa denote the expectation
and variance of the observation quality, respectively. (a) Layout I–Layout III . (b) Layout
IV . (c) Layout V . In the figures, G stands for gangway and R for room.
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quite unstable (MATLAB bintprog function, which solves the BIP problem via the branch and bound
method). Thus, the optimization efficiency performance of M2 is much better than the M1 model.

Then, in order to compare the deployment quality, a problem with large scale, 30 × 30 target points
and 900 initial cameras is tested. The M1 model fails for this scale problem, which cannot output the
solution within one hour using the bintprog function. Thus, we adopt the `1 relaxation.

The experimental data are illustrated by boxplots, as shown in Figure 7, where each box is a collection
of observation data with 20-times repeated experiments under the same parameter settings. In the
experiment, each pair of results of M1 and M2 are obtained based on the same initial layout. Our
optimization model has less requirement of cameras. In addition, our solution can achieve smaller
variance of observation quality than the M1 result, which means a more balanced observation resource
distribution in the scene. This result verifies that our approach can obtain the layout with less cameras
and inhibit the excessive observation of somewhere in an equally important region, which is better than
the M1 model by means of our nonuniform sensing model and a reasonably objective function.

Figure 7. Comparison between the binary integer programming (BIP) objective function
with the binary model and our objective function with the nonuniform model. (a) The
optimization time for the two objective functions. (b) The number of deployed cameras.
(c) The variance of the observation quality distribution.
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3.4. Camera Assignment Experiments

In this section, we test the effectiveness of camera assignment based on previous layout results.
Different numbers of objects are randomly placed in the monitoring scenes, and each object is given
a threshold of observation quality.

Camera assignment is tested based on the four rooms scene. Observation quality thresholds of objects
in the critical region are set to 0.5 and 1, respectively. The assignment result is shown in Figure 8. There
are 16 objects in the scene, and eight of them are critical objects. In order to observe these objects
effectively, eight cameras are activated. The assignment decision time are 15ms.

As shown in Figure 8, each object in the monitoring scene is effectively observed, satisfying their
observation quality thresholds. The effectiveness of the proposed assignment strategy is validated.

Figure 8. Camera assignment results based on the four rooms scene. (a) Observation effect
of camera assignment. The gray rings are the objects. (b) Active camera number obtained
by two methods. (c) Optimization time of two methods.
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A real-time decision is indispensable to observe targets without interruption in practical application,
such as object tracking. If the assignment objective function (9) is directly solved by BIP without any
convex relaxation strategy, the decision time becomes unacceptable when the number of cameras and
objects are large. However, our approach can obtain the active cameras within a few milliseconds
by using the sparsity of assignment. Then, comparisons of optimization performance and efficiency
between BIP and the sparse approach are made, respectively. We adopt MATLAB function bintprog
as the optimization function of BIP. The number of active cameras obtained by BIP is viewed as the
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optimal solution, i.e., the least number of active cameras. Based on the node layout, as in Figure 4b, the
comparative data of objects numbered from 1 to 20 are shown in Figure 8.

As shown in Figure 8b, solutions of two methods with different numbers of objects are almost the
same. However, with the growing number of objects, the optimization time of BIP increases rapidly,
as shown in Figure 8c. Thus, BIP cannot be used in real-time multi-object surveillance systems. In
contrast, no matter how many objects in the scene, our approach can give exact assignment decisions in
14–16 ms. Therefore, sparse representation is quite valuable for real-time camera assignment.

4. Discussions and Conclusions

Firstly, the proposed sparsity-induced convex relaxation is quite valuable, because this approach can
achieve both high quality and efficiency for large-scale deployment. Though BIP-based deployment can
be solved by employing the branch and bound method, it is not efficient enough, as it can only be applied
to small-scale problems and cannot handle a large number of initial cameras. With a limited number of
initial cameras, this has no guarantee to the quality of the resulting deployment.

Secondly, the good stability of optimization solutions verifies the practicality of the proposed
deployment approach. Based on a sufficiently redundant initial deployment, our method can obtain
solutions with similar qualities in statistical experiments. There lacks a theoretical basis about whether
the solution is the optimal solution or a near-optimal solution in this paper and existing works, which is
quite important for camera deployment. However, sufficiently redundant initial deployment does cover
an acceptable solution for practical usage.

In this paper, we propose an efficient observation quality-optimized camera deployment algorithm
based on a newly designed sensing model. On the basis of the sensing model, the camera deployment
algorithm efficiently deals with the camera layout and assignment problems. With a constructed sparse
representation, the original non-convex camera deployment problem is tackled by convex optimization
with a high quality solution. The high efficiency and stability of the proposed approach are confirmed
through comprehensive experiments.

In addition, the sparsity of deployment is independent of the concrete sensing model of the camera,
which means that the proposed sparse formulation can be extended to a wide variety of applications,
including even other types of sensor networks. Next, we plan to extend the study to the collaboration
strategies of camera networks for visual information acquisition in surveillance systems.
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A. Appendix A. Camera Modeling

A novel anisotropic sensing model of a camera is proposed to measure the observation quality. The
sensing features of cameras are different from other types of sensors. A camera can only observe objects
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within a certain viewing angle range and depth. In addition, the distribution of observation quality in the
sensing field is nonuniform, i.e., anisotropic sensing.

As the classical pinhole model shows, the image resolution of a target depends on its distance to the
camera and is measured by the ratio between the projection area on the focal plane of the target and the
area of one pixel. Moreover, the defocus effect becomes non-negligible when the object is out of focus
and reduces the sharpness of an image [34,35]. Furthermore, imaging through an optical lens does not
strictly comply with the pinhole model for the radial distortion. The projection of a straight line in the
scene cannot remain straight in the image, especially at the edge of the view. In addition, the image
sensing can easily be occluded by obstacles.

Therefore, resolution, defocus, geometric distortion and occlusion are four main factors affecting
imaging quality. All of them are crucial to feature extraction and image analysis. Though other
factors, such as noise and exposure value, can also affect imaging quality, they can be adjusted into
an acceptable range beforehand by modifying the parameters of cameras and scenes. In the following,
four functions are designed to measure the observation quality determined by these factors, respectively.
The anisotropic sensing model for cameras is derived by combining these functions.

Figure 9. The 2D imaging model of a camera. The gray part is the effective sensing field.
The area element, dSi, on image is the projection of the area element, dSo, on the object.
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The imaging principle of the camera is based on the pinhole model. Its 2D model is shown in Figure 9.
The image, Si, of object So is projected on the image sensor through the lens. Suppose the length of the
image sensor is Ds. The distance between the image sensor and the lens is s. The field angle, θm, is
calculated as 2 arctan(Ds/2s). The object can be projected onto the image sensor only when θ ≤ θm/2.

A.1. Resolution

Resolution is the most intuitive factor affecting imaging quality. An image with a higher resolution
can provide more details of the object. The image resolution of the object is directly determined by the
area of the image and the pixel density of an image sensor. As shown in Figure 9, let dso be the area of a
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small part on the surface of an object and dsi the area of its image. The proportion between dso and dsi

is:
dso
dsi

=
u2

s2
, with u = l cos θ. (11)

The observation quality, Fr, with respect to resolution is defined as:

Fr (l, θ) = exp

(
−dso/dsi

σr

)
= exp

(
− l

2 cos2 θ

σrs2

)
, (12)

where σr is a parameter that controls the decay rate of Fr.
The distribution of the resolution component in the sensing field is shown in Figure 10a. It shows the

decay process of the resolution component with increasing object distance, u.

Figure 10. The distribution in the sensing field of the four considered components. (a)
Resolution component. (b) Defocus component. (c) Geometric distortion component. (d)
Occlusion effect caused by the obstacle. (e) Distribution of observation quality in the sensing
field with obstacles.
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A.2. Defocus

The defocus phenomenon reduces the sharpness of an image. The distance between the image plane
and the image sensor plane cannot be ignored when the object is out of focus. Thus, the image of the
object on the image sensor is blurred. The principle of defocus is shown in Figure 11.

As shown in Figure 11, the distance between the image sensor (e.g., a CCD or CMOSarray) and the
focused image plane, (|v− s|), is non-negligible when the object is out of focus. Thus, a point, P , of the
object is imaged as a blur circle of radius, r, i.e., the defocus. The calculation of r is given by [34,35] as:

r =
sD

2

∣∣∣∣ 1f − 1

u
− 1

s

∣∣∣∣ , (13)

where D is the diameter of the lens.
The defocused image is composed of many blur circles. Thus, the visual effect of the defocused

image is not good, because of the low sharpness. Defocus effect becomes more serious with the increase
of r. The observation quality related to the defocus aspect is defined as:

Fd (l, θ) = exp

(
− r

σd

)
= exp

(
− sD

2σd

∣∣∣∣ 1f − 1

l cos θ
− 1

s

∣∣∣∣) , (14)
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where σd is a parameter that controls the change rate of Fd.

Figure 11. Principle diagram of the defocus effect.
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The optimal focus distance is calculated as uopt = fs/|s − f | by setting r = 0. The distribution of
Fd in the sensing field with a given uopt is shown in Figure 10b. The range, including uopt, with high
a defocus component value, is seen as the depth of field of the camera. In experiments, because we do
not know the positions of objects and cameras before the layout stage, the uopt is set to infinity, that is,
f = s.

A.3. Geometric Distortion

Nonlinear geometric distortion leads to deviations from linear projection. That is to say, a projection
of a straight line in the scene through an optical lens cannot remain a straight line in the image.

The radial distortion model [36], which is the most commonly encountered geometric distortion,
provides a one parameter formulation. Suppose the coordinate of a point in an undistorted image is
(x, y); the corresponding coordinate in the distorted image is (x′, y′). The approximate transform is
given as:

x′ = x+ κx(x2 + y2), y′ = y + κy(x2 + y2), (15)

where κ is a parameter decided by the lens.
Let dr, which equals s tan θ in a 2D sensing model, be the distance on the image between a pixel and

the image center. The distorted deviation, d′r = dr(1+κdr
2). Observation quality of geometric distortion

aspect is defined as:

Fg(θ) = exp

(
−∆dr/Ds

σg

)
= exp

(
−|κ|s

3 tan3 θ

Dsσg

)
, (16)

where ∆dr = |dr − d′r|. The parameter, σg, controls the decrease rate of Fg. The distribution of the
geometric distortion component in a sensing field is shown in Figure 10c. It shows the decreasing
process of the geometric distortion component with increasing angle of view, θ.

In computer vision, it has been well known that camera radial distortion can also be compensated for
by a standard calibration procedure [37]. However, as calibration is generally a resampling method based
on the distorted image, it cannot make a remedy for the loss of observation quality, due to the corruption
of the uniform sampling scheme caused by nonlinear geometric distortions. In addition, calibration also
cannot compensate for the lost parts near the four borders of the view. Thus, distortion is an essential
factor in the observation quality model.
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A.4. Occlusion

Visual sensing is easily occluded by obstacles in the sensing field of cameras. If there is no obstacle
between the object and the camera, the observation quality is determined by the first three components;
however, the observation quality becomes zero, as long as the line of sight is occluded by the obstacle.
Thus, the occlusion component, Fo, is defined as:

Fo(l, θ) =

1, Unoccluded,

0, Occluded.
(17)

The distribution of the occlusion component in the sensing field is shown in Figure 10d.

A.5. Decaying Parameters

In order to obtain the parameters, σr, σd, σg, for the first three observation aspects, the measurement
of each component is set with a threshold, while the quality of the physical imaging process satisfies the
minimum requirements, which are:

Fh(l, θ)|cond = Fh,min, (18)

where the subscript, h, denotes one of the three aspects and cond denotes the critical condition of the
corresponding aspect. For the resolution component, Fh denotes Fr. The critical condition is the imaging
resolution of an object with the unit area, Rmin, which is dso/dsi = 1/(spRmin), where sp is the area
of one pixel. For the defocus component, Fh denotes Fd, which equals Fd,min, as long as the radius of
the blur circle, r, equals rm. Finally, for the geometrical distortion component, Fh denotes Fg. The
distortion achieves the the critical condition when ∆dr = dmax.

Through considering these four components comprehensively, the observation quality is measured
as q(l, θ) = αFr(l, θ)Fd(l, θ)Fg(θ)Fo(l, θ), which is described in Section 2.1. The distribution of
observation quality in the sensing field, which contains a square obstacle, is shown in Figure 10e.
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