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Abstract: This paper addresses the problem of direction-of-arrival (DOA) estimation of 

multiple wideband coherent chirp signals, and a new method is proposed. The new method 

is based on signal component analysis of the array output covariance, instead of the 

complicated time-frequency analysis used in previous literatures, and thus is more compact 

and effectively avoids possible signal energy loss during the hyper-processes. Moreover, 

the a priori information of signal number is no longer a necessity for DOA estimation in 

the new method. Simulation results demonstrate the performance superiority of the new 

method over previous ones. 

Keywords: direction-of-arrival (DOA) estimation; wideband chirp signal; sparse 
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1. Introduction 

Previous direction-of-arrival (DOA) estimation methods for wideband chirp signals are mostly 

based on the special time-frequency distribution of such signals. Ma and Goh separate the 

simultaneous chirp signals first according to their distinguishable auto- or cross-terms in the ambiguity 

function, and then use the secondary time-frequency data to estimate their directions [1]. Their 

methods are grounded on the assumption that the signals are separable in the time-frequency domain, 

so they are not usable for completely overlapped coherent chirp signals. Wang and Xia use the chirp 
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rate and coarse DOA estimates to compensate the time-varying array manifold, and then introduce 

narrowband methods to refine the DOA estimates [2]. This process is repeated several times to obtain 

converged source directions, but our experiments and previous literature [1,3] show that such expected 

convergence is not guaranteed, especially when the signal-to-noise ratio (SNR) is low. Gershman and 

Amin focus the signal energy to a certain manifold in the time-frequency domain, and then use 

narrowband methods to estimate the directions of wideband chirp signals [3], but as the focusing 

process may loose some signal energy, the performance of this method at low SNR may deteriorate 

significantly. A maximum likelihood (ML) method has also proposed by Gershman et al. in [4] to 

address the parameter estimation of polynomial-phase signals generally, but it is computationally too 

intensive, thus is not suitable for practical applications. 

This paper addresses the problem of DOA estimation of multiple wideband coherent chirp  

signals, which emerges due to various factors such as multi-path and echo signals [5]. The recently  

interest-attracting technique of sparse representation [6,7] is introduced to solve this problem. To 

simplify the analysis, we assume in this paper that the central frequency and chirp rate of the coherent 

signals are known, which is reasonable in cooperative applications or when it has been estimated using 

other methods. The new method significantly differs from previous ones, as it is based on the array 

output covariance matrix, and completely avoids time-frequency analysis, thus being much more 

compact and avoiding possible signal energy losses during the complicated hyper-processes. 

Furthermore, the new method transforms the problem of DOA estimation of wideband chirp signals to 

one of sparsely representing an observation vector, thus automatically concentrating the observation 

data energy on the signal directions, so it does not require the a priori information of incident signal 

number, and it achieves model-order selection simultaneously. 

2. Problem Formulation 

Suppose that the chirp rate of the incident coherent signals is  , the starting, ending and central 

frequencies are 1f , 2f  and 0f , respectively, the chirp period is T , signal bandwidth is B , which 

satisfies 2 1B f f T   . The temporal waveform of the chirp signal is: 

  2

1exp 2 , 0 ,
2

s t j f t t t T


 
  

     
  

 (1) 

where   comprises the signal amplitude and initial phase. When K  wideband coherent chirp signals 

impinge onto an M -element linear array from directions  1, , K θ , the array output at time t  is 

given by: 

       , ,t t t t x A θ s v  (2) 

where      1 , ,
T

Kt s t s t   s  is the signal waveform vector,  tv  is the additive noise with power 

2

v ,      1, , , , ,Kt t t    A θ a a  is the array responding matrix at t , which not only depends on the 

signal directions, but also varies with the instantaneous signal frequency. The time-varying response 

matrix blocks the straightforward usage of conventional subspace methods in DOA estimation of 

wideband chirp signals. Existing methods address this problem by exploiting the property of linear 
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frequency modulation of such signals, but they are much too complicated and do not deal with the 

wideband coherent chirp signals effectively, as they are completely overlapped in the time-frequency 

domain. This paper aims at the DOA estimation of wideband coherent chirp signals via covariance 

component analysis, thus avoiding the complicated time-frequency analysis process and possible 

signal energy loss during this process. 

3. DOA Estimation of Wideband Coherent Chirp Signals 

When K  wideband coherent chirp signals impinge from directions 1, , K   simultaneously, the 

output of the thm  sensor at time t  is given by: 

           
2

, 1 , ,

1 1

exp 2 ,
2

K K

m k k m m k k m k m m

k k

x t s t v t j f t t v t


    
 

  
         

  
   (3) 

where 
,k m  is the propagation delay of the thk  signal from the reference to the thm  sensor. We take 

the first sensor as the reference, thus 
,1 0k  . Suppose that N  snapshots are collected with interval sT , 

and the total observation time equals the chirp period of the incident signals, i.e., sT NT , then  

the  , thp q  element of the covariance matrix estimate R̂  is: 
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 (4) 

where     is the auto-correlation of the chirp signal with unit amplitude, which satisfies  0 1  ; 

the estimation perturbation 
,p q  is: 

            , , ,

1 1

Corr , Corr , Corr ,
K K

p q k k p q p k k q p q

k k

s t v t v t s t v t v t  
 

   
       

   
   (5) 

whose expectation is    2

,E p q v p q     and satisfies  
*

, , ,
ˆE 0p q p q p q   

  
R

. 
Further  

straight-forward derivation shows that the variance of 
,p q  is: 
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 (6) 

Equation (4) indicates that when K  wideband coherent chirp signals impinge simultaneously,  

each covariance element consists of 2K  “signal” components, including K  auto-tems and 2K K   

cross-terms. For large K , the structure of the covariance is very complicated, and it is difficult to 

obtain the signal directions from it. Therefore, we set 1q   in Equation (4) to simplify their structure, 

i.e., we only extract the elements along the first column. The expressions of those elements are: 
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As   2

1,1E v  , the signal components are contaminated by the unknown noise power in 1,1R̂ , thus 

we extract the 2nd to thM  elements in the first column to form a new observation vector 

1 2,1 ,1
ˆ ˆˆ , ,

T

M
 
 

r R R . Define 
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 , then 1̂r  can be expressed as follows: 
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where 
1 2,1 ,1, ,

T

M    ε ,     1 , 2
2, ,

sinc
T

k k p
p M

T B  


 
  

ψ .  1 kψ  relies uniquely on the signal 

direction, thus is written as a function of k . Equation (8) shows that 1̂r  is a noisy weighted sum of the 

atoms   1 1, ,k k K



ψ , with each atom corresponding to an incident signal. Therefore, if one can 

recover the K  signal components from 1̂r , the signal directions can be determined. In this paper, we 

first form an overcomplete dictionary   1 1 





Θ
Ψ ψ  on the possible signal direction set Θ , and 

then decompose 1̂r  on 1Ψ  under sparsity constraint to obtain the signal components. If the time delays 

of these multipath signals exist, we should first estimate the time delays following reference [8]. For 

convenience and more coherent condition, our paper does not consider the time delays.  

This sparse decomposition process can be implemented by solving the following convex 

optimization problem approximately [6,7]: 

1 11 2
ˆmin , subject to , η r Ψ η  (9) 

where η  is the energy distribution of 1̂r  on the dictionary, and takes non-zero values of  *

1

K

k k
  

 only 

at the indices of the true signal directions,   is the hard threshold of the fitting error between 1̂r  and 

the observation model 1Ψ η , which relies on the perturbation level of 1̂r . The locations of the 

significant non-zero values in the energy distribution estimate (denoted by η̂ ) indicate the directions of 

the incident signals. The solution of Equation (9) is single if the number of signals is less than 
2

M 
 
 

[9]. 

In order to solve Equation (9) for DOA estimation, one should first set   according to the 

perturbation level of 1̂r . The variance of perturbation of 1̂r  can be straightforwardly derived from 

Equation (6) as: 
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Thus the fitting error threshold in Equation (9) can be set according to [10] as: 
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where   is a weighting factor, with an empirical value between 0.5 and 2. To facilitate the calculation 

of the variance in Equation (10), we rewrite it as follows: 
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 (12) 

In the above expression of  1Var ε , 
1,1R  and 

,m mR  can be approximated by the corresponding 

elements in R̂ , and 2

v  is the unknown noise power. To estimate 2

v , we first separate the signal and 

noise subspaces of R̂  according to the model-order selection techniques, such as MDL [11], then we 

use the average of the eigenvalues corresponding to the noise subspace to approximate 2

v . Thus, the 

fitting error threshold   is uniquely determined by the weighting factor  , which relies on the array 

geometry in use, and can be optimized empirically via sufficient simulations accordingly. In this paper, 

we choose an 8-element uniform linear array (ULA) for DOA estimation, and   is set to 0.5. 

After calculating the fitting error threshold according to Equation (12) and the above 

approximations, we can solve Equation (9) to reconstruct the signal components from 1̂r , thus 

estimating the source directions. Various methods can be used for the solution of Equation (9) (see [7] 

and the references therein), so we do not go deeply into their details, and just turn to the toolbox of 

SeDuMi [12] for a satisfactory estimate. Finally, the signal directions can be determined according to 

the locations of the non-zero values in η̂ . It should be noted that the sparsity constraint is an inner 

motivation for solving Equation (9), and this constraint helps to concentrate the data energy onto 

several dictionary atoms corresponding to the signal directions, thus the a priori information of signal 

number is not a necessity for the implementation of the new method. However, the goal of  

model-order selection is also achieved together with DOA estimation. 

4. Simulation Results 

Suppose two coherent chirp signals impinge onto an 8-element ULA from directions of 10° and 

20°, respectively, the central frequency of the two signals is 2.5 MHz with a bandwidth of 40%  

(the starting and ending frequencies are 2 MHz and 3 MHz accordingly). The initial phases of the two 

signals are chosen independently and uniformly between 0 and 2  in each trial. The ULA is  

inter-spaced by half-wavelength of a 2.5 MHz sinusoid, and 512 snapshots are collected at 10 MHz 

during a chirp period. 

As the two signals are completely overlapped in the time-frequency domain, the method in [1] is not 

able to separate them, thus we choose the conventional coherent signals subspace method (CSM) [13], 

the iterative method in [2] (denoted as the Wang Method), the focusing method in [3] (denoted as the 

Gershman Method) and the proposed method to estimate their directions. The central frequency and 
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chirp rate of the incident signals are assumed to be known exactly, the snapshots are divided into sections 

of 64 snapshots each in CSM, and the iteration number is set to 3 in the Wang Method. The a priori 

signal number information is not used in the proposed method, but is used in the other three methods.  

As too dense a dictionary may cause an increased estimation bias in the sparse representation  

techniques [14], we divide the [−90°, 90°] space into 1° intervals and set the angular samples on the grids 

to form the dictionary (the searching grid is set identically in the other three methods). If such spatial 

sampling does not provide the required precision, further grid refinement process [6] or the ML  

method [4] can be introduced to improve it. The selected model order and coarse DOA estimates can 

be used to restrict the parameter scope in those further processes to save computational load. In this 

paper, we skip over those further processes, and concentrate on the performance of adaptability and 

superresolution in demanding scenarios. 

Figure 1. Resolution probabilities at varying SNR. 
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Figure 2. Resolution probabilities at varying SNR diversity. 
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Firstly, suppose that the SNR of both signals is identical and varies from −10 dB to 20 dB,  

1,000 trials are carried out at each SNR. Successful resolution is defined when the two most significant 

spectrum peaks are located near the true signal directions, and the biases are no larger than 3°. The 
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resolution probabilities of the four methods at various SNR are given in Figure 1. The results indicate 

that, the proposed method greatly surpasses the other three methods in the given scenarios, and 

Gershman Method obtains the second best performance, while CSM and the Wang Method fail to 

achieve satisfying resolution probability, even when the SNR is as high as 20 dB. 

Then we fix the SNR of the first signal at 10 dB, and attenuate that of the second signal from 10 dB 

to 0 dB (i.e., the SNR diversity increases from 0 dB to 10 dB) to simulate more vividly the multi-path 

and echo scenarios. The resolution probabilities of the four methods derived from 1,000 trials are given 

in Figure 2. The results show that the proposed method is less significantly influenced by the power 

diversity. It still retains a higher than 80% resolution probability when the SNR diversity is as large as 

10 dB. Contrarily, the resolution probabilities of CSM and the Wang Method decrease to 0, and that of 

the Gershman Method decreases to about 40%. 

6. Conclusions 

The technique of sparse representation to estimate the directions of simultaneous wideband coherent 

chirp signals is introduced in this paper. The covariance matrix, instead of the time-frequency 

distribution, is exploited in the new method, and the a priori information of signal number is no longer 

a necessity. Simulation results show that the proposed method greatly surpasses its existing 

counterparts, especially when the SNR is low or the incident signals are very diverse in amplitude. 

Moreover, it simultaneously achieves model-order selection. 
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