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Abstract: As part of an ongoing effort to develop genetically encoded calcium ion (Ca
2+

) 

indicators we recently described a new variant, designated CH-GECO2.1, that is a genetic 

chimera of the red fluorescent protein (FP) mCherry, calmodulin (CaM), and a peptide that 

binds to Ca
2+

-bound CaM. In contrast to the closely related Ca
2+

 indicator R-GECO1,  

CH-GECO2.1 is characterized by a much higher affinity for Ca
2+

 and a sensing mechanism 

that does not involve direct modulation of the chromophore pKa. To probe the structural 

basis underlying the differences between CH-GECO2.1 and R-GECO1, and to gain a better 

understanding of the mechanism of CH-GECO2.1, we have constructed, purified, and 

characterized a large number of variants with strategic amino acid substitutions. This effort 

led us to identify Gln163 as the key residue involved in the conformational change that 

transduces the Ca
2+

 binding event into a change in the chromophore environment. In 

addition, we demonstrate that many of the substitutions that differentiate CH-GECO2.1 

and R-GECO1 have little influence on both the Kd for Ca
2+

 and the sensing mechanism, 

and that the interdomain linkers and interfaces play important roles.  

Keywords: red fluorescent protein; calcium ion; genetically encoded sensor; mutagenesis; 

spectroscopy 
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1. Introduction 

Molecular sensors that enable non-invasive fluorescence imaging of intracellular Ca
2+

 dynamics 

with high spatial and temporal resolution are powerful tools in modern cell biology and neuroscience 

research. As the Ca
2+

 ion is a universal “second messenger”, detection of elevated Ca
2+

 levels can 

reveal when an intracellular signaling pathway is being activated [1], or when an excitable cell is 

experiencing an action potential [2]. While organic dye-based Ca
2+

 indicators have long been a 

mainstay of such research [3], over the last decade proteinaceous Ca
2+

 indicators have emerged as a 

preferred alternative for many applications. The major advantage of proteinaceous Ca
2+

 indicators is 

that they are genetically encodable and thus can be tissue-selectively expressed and imaged in 

transgenic model organisms [4]. 

The development of proteinaceous Ca
2+

 indicators became a possibility only after the discovery, 

cloning, and subsequent optimization of the Aequorea victoria green FP [5]. Due to its inherent ability 

to generate a chromophore through an autonomous series of post-translational modifications, the green 

FP uniquely provides a means of genetically encoding a fluorophore. The first FP-derived Ca
2+

 

indicators were based on the Ca
2+

-dependent modulation of Förster Resonance Energy Transfer 

(FRET) efficiency between two FP variants with different hues [1]. Subsequent protein engineering 

efforts led to the development FP-derived Ca
2+

 indicators based on a single FP that exhibited an 

intensiometric response of Ca
2+

 [6,7]. Such single FP-derived indicators are composed of a circularly 

permuted FP variant with new termini in close proximity to the centrally located chromophore. Fused 

to one of these new termini is the Ca
2+

-binding protein CaM, and fused to the other termini is the M13 

peptide that binds to Ca
2+

-bound CaM (Figure 1A). The generally accepted mechanism of such sensors 

is that the chromophore is exposed to the solvent and the fluorescence is largely quenched in the 

absence of Ca
2+

. Binding of Ca
2+

 causes an interaction between CaM and its peptide binding partner 

that stabilizes the chromophore in a conformation and environment where fluorescent brightness is 

increased due to higher quantum yield and/or extinction coefficient. Such a stabilizing interaction is 

apparent in the X-ray crystal structure of R-GECO1, where a lysine side chain from a neighboring  

β-strand is stabilizing the fluorescent phenolate form of the chromophore in the Ca
2+

-bound state 

(Figure 1B) [8]. Similarly, in GCaMP2 [9,10], an arginine side chain from CaM bridges the CaM to FP 

interface and stabilize the phenolate form of the chromophore in the Ca
2+

-bound state (Figure 1C).  

Since 2001 when the single FP Ca
2+

 indicator design was first reported [6,7], dedicated optimization 

efforts have produced an ever-improving series of improved GCaMP variants [2,11–13]. Recent  

years have also seen the introduction of an expanded color palette of Ca
2+

 indicators based on both 

engineered versions of Aequorea green FP [8,14] as well as homologous red fluorescent Anthozoan 

FPs from organisms such as Entacmaea quadricolor sea anemone [8] and Discosoma sp. coral [14,15]. 

The prototypical red fluorescent indicator is R-GECO1 [14] that was engineered from the  

Discosoma-derived FP known as mApple [16]. Some of the most recent additions to this growing 

selection of red fluorescent indicators are CH-GECO2.0 and CH-GECO2.1 [17], which were 

engineered from the popular Discosoma-derived red FP known as mCherry [18].  
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Figure 1. The structure of a single FP-based Ca
2+

 indicator. (A) Cartoon representation of 

the X-ray crystal structure of R-GECO1 [8]. Domains and linkers are colored according to 

the sequence alignment shown in Figure 2. The “cp linker” is the linker used to connect the 

original N-and C-termini of the circularly permuted (cp) FP. (B) Zoom in on the circular 

permutation site of R-GECO1, where the chromophore is exposed to the interface between 

the CaM and FP domains. (C) The circular permutation site of GCaMP2 (PDB ID 3EVR) 

represented from a similar perspective to (B) [9]. 

 

Although they are both ultimately derived from the same wild-type protein, the extensive processes 

of directed evolution that led to R-GECO1 and CH-GECO2.1 have introduced a considerable number 

of differences in the amino acid sequences (Figure 2). These differences include 26 amino acid 

substitutions (Leu1Met, Glu6Val, Ile7Phe, Ala40Gly, Phe41Thr, Phe83Trp, Ile104Val, Ile105Val, 

His106Thr, Asn108Thr, Pro131Ser, Asp132Asn, Glu144Leu, Ser147Thr, Met150Leu, Ser159Gly, 

Lys163Gln, Gly164Arg, Arg166Lys, Gly191Asp, Cys214Tyr, Asp21Gly (CaM), Asp23Ala (CaM), 

Phe61Leu (CaM), Thr77Ser (CaM), and Asp109Asn (CaM), relative to R-GECO1), as well as 

differences in the interdomain linkers. In addition, they exhibit some quite dramatic differences in their 

respective Kds for binding to Ca
2+

 (6 nM for CH-GECO2.1 vs. 480 nM for R-GECO1) and even in the 

underlying mechanism by which this sensing occurs [17]. Specifically, R-GECO1 operates on the 

basis of Ca
2+

-dependent shift in the chromophore pKa [14], whereas the Ca
2+

 sensing mechanism of 

CH-GECO2.1 appears to depend on the interaction of the chromophore with a yet unidentified 

ionizable amino acid side chain with a pKa of ~6.5 to 7.0 [17]. 
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Figure 2. Sequence alignment of Ca
2+

 indicators discussed in this work. Substitutions 

relative to CH-GECO2.1 are highlighted with white text on a black background. Adapted 

in part from Carlson and Campbell [17].  

 

In an effort to identify which amino acid substitutions are responsible for the differences between 

CH-GECO2.1 and R-GECO1, and to obtain insight into the mechanism of CH-GECO2.1, we now 

report the characterization of a barrage of single-site mutants of CH-GECO2.1. Each variant has been 

characterized in terms of its Ca
2+

 Kd as well as its fluorescence intensity as a function of pH both in the 

presence and absence of Ca
2+

. Interpreting the results of these studies in the context of the mCherry 

and R-GECO1 crystal structures has allowed us to propose a mechanistic basis for the response of  

CH-GECO2.1 to Ca
2+

 binding. 

2. Materials and Methods 

2.1. Mutagenesis 

All molecular biology procedures were carried out using genes encoding either CH-GECO2.0,  

CH-GECO2.1, or R-GECO1 in pBAD/His B, as previously described [17]. All site-directed mutagenesis 

was performed using the Quikchange lightning mutagenesis kit (Agilent, Santa Clara, CA, USA) and 

primers designed according to the manufacturers guidelines. 
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2.2. Plasmid Purification 

All plasmid DNA was purified from bacteria using a chloroform extraction protocol. Briefly,  

150 μL of solution I (50 mM Tris, 10 mM EDTA, 100 μg/mL RNaseA, pH 8.0) was used to resuspend 

the bacterial pellet. Then 150 μL of solution II (1% SDS, 0.2 M NaOH) was added and the mixture is 

gently inverted several times. Solution III (2 M acetic acid, 3 M KOAc, pH 5.5) was added to a total 

volume of 450 μL and mixed to pellet the non-soluble cell debris. Finally, 150 μL of chloroform was 

added and mixed several times before being centrifuged at 14,000 rpm, 4 °C for 5 min. The top 

aqueous layer was separated, mixed with 800 μL of 100% ethanol, and then centrifuged at 4 °C for  

5 min. The DNA pellet was washed with 500 μL of 70% ethanol, allowed to air-dry, and then 

dissolved in distilled water. Coding sequences of all gene variants were sequenced using BigDye 

Terminator v3.1 Cycle Sequencing Kit (Life Technologies, Carlsbad, CA, USA) and reactions were 

analyzed by the University of Alberta Molecular Biology Services Unit.  

2.3. Protein Expression and Purification 

Escherichia coli strain DH10B was transformed with the plasmid of interest by electroporation. 

Transformed bacteria were grown overnight on solid media containing ampicillin, and then a single 

colony was picked and grown overnight in 5 mL Luria broth (LB) supplemented with ampicillin at  

37 °C. The 5 mL culture was then used to inoculate 250 mL of Terrific broth (TB) and grown to an 

optical density of 0.6. Protein expression was induced with 0.004% arabinose and the culture was 

grown overnight at 37 °C or for two nights at 30 °C, depending on the brightness of the protein 

construct. Bacteria were pelleted at 10,000 rpm, 4 °C for 10 min and the pellet was then resuspended 

in 10 mM Tris-Cl, 150 mM NaCl pH 7.4 at 4 °C. Cells were lysed using a cell disruptor (Constant 

Systems Ltd., Daventry, United Kingdom) and the debris pelleted at 14,000 rpm. Protein was purified 

from the supernatant by Ni-NTA affinity chromatography (Qiagen, Hilden, Germany) according to the 

manufactures instructions. Briefly, Ni-NTA beads were collected on a column with a vacuum manifold 

and washed twice with 10 mM Tris-Cl, 30 mM imidazole, 150 mM NaCl pH 8.0. The beads were 

gravity washed once and then eluted with 300 mM imidazole, 10 mM Tris-Cl pH 8.0. The excess 

imidazole was removed via buffer exchange with Amicon columns (MWCO 10,000) and 10 mM Tris-Cl, 

150 mM NaCl, pH 7.3.  

2.4. pH Titrations 

Fluorescence intensity as a function of pH was determined by dispensing 5 μL of the protein 

solution into 50 μL of the desired pH buffer in triplicate into a 396-well clear-bottomed plate (Thermo 

Fisher Scientific, Waltham, MA, USA). Buffer solutions were prepared by adjusting the pH of a 

solution of 30 mM trisodium citrate and 30 mM sodium borate to pH 11.5. The pH of the solution was 

then adjusted with HCl (12 M and 1 M) and 10–15 mL was collected at pH value intervals of 0.5, plus 

two additional solutions at pH 5.25 and 5.75. Buffers were prepared both without (30 mM MOPS,  

100 mM KCl, 10 mM EGTA, pH 7.2) and with (30 mM MOPS, 100 mM KCl, 10 mM CaEGTA,  

pH 7.2) Ca
2+

. Fluorescence emission for each solution was recorded using a Tecan (Maennedorf, 

Switzerland) Safire2 microplate reader.  
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2.5. Ca
2+

 Titrations 

The apparent Kd for Ca
2+

 response was determined by mixing the protein solution with buffers 

containing various amount of Ca
2+

, prepared as described in the Calcium Calibration Buffer Kit from 

Life Technologies (Carlsbad, CA, USA). The Ca
2+

-free buffer (30 mM MOPS, 100 mM KCl, 10 mM 

EGTA, pH 7.2) and Ca
2+

-saturated buffer (30 mM MOPS, 100 mM KCl, 10 mM CaEGTA, pH 7.2) 

were mixed in different ratios to generate buffers with Ca
2+

 concentrations ranging from zero Ca
2+

 to 

39 μM Ca
2+

. Similar to the pH titrations, 5–10 μL of the protein was mixed with 150–200 μL of each 

Ca
2+

 buffer. 50 μL of each solution was aliquotted in triplicate into a 396-well plate and the 

fluorescence emission was recorded using the plate reader. Emission peaks were integrated and plotted 

against the log of the calculated free Ca
2+

 concentration. Ca
2+

 titration curves were fit with a sigmoidal 

curve in order to obtain the Kd and the Hill coefficient.  

3. Results and Discussion 

3.1. Probing the Determinants of the Ca
2+

-Binding Affinity 

CH-GECO2.0 (Kd = 28 nM) and CH-GECO2.1 (Kd = 6 nM) [17] differ by only 3 substitutions in 

the CaM domain (Gly21Asp, Leu61Phe, and Ser77Thr, relative to CH-GECO2.1) and 2 substitutions 

in the FP domain (Thr147Ile and Asp191Gly) (Figures 2 and 3A). However the Kds for Ca
2+

 of these 

two proteins differ by a factor of 4.7. Furthermore, CH-GECO2.0 and R-GECO1 (Kd = 480 nM) [14] 

differ by only 1 substitution in the CaM domain (Ala23Asp, relative to CH-GECO2.0), but have Kds 

that differ by a factor of 17. The M13 peptide domain of all three proteins is identical. To determine 

which individual mutations, or combination of mutations, were responsible for the differences in Kd 

values, we used site directed mutagenesis to systematically revert mutations and then determined the 

effect on Ca
2+

 affinity. Notably, in wild-type CaM, Asp21 and Asp23 are two of the key Ca
2+

 chelating 

residues of the first EF hand [19]. 

We first introduced mutations to revert the CaM sequence of CH-GECO2.1 back to CH-GECO2.0. 

Results for all mutations discussed in this work are summarized in Supplementary Table 1. We 

determined that CH-GECO2.1 with Gly21Asp or Ser77Thr gave Kd values of 7 nM and 8 nM 

respectively (Figure 3B). We were unable to purify any soluble protein for CH-GECO2.1 Leu61Phe, 

which is located near the second EF hand of CaM. Previous studies of CaM have demonstrated that 

mutations in the second EF hand are more detrimental to the Ca
2+

 affinity than mutations in the first 

EF hand [20]. The combination of Gly21Asp and Ser77Thr results in a Kd of 13 nM, which is 

somewhat higher than either substitution alone. Addition of the Leu61Phe mutation yielded a Kd of  

44 nM for the triple mutant (Figure 3C). Overall, this result demonstrates that these three mutations in 

the CaM domain account for most of the difference between the Kd values of CH-GECO2.0 and  

CH-GECO2.1. The fact that the Kd values of CH-GECO2.0 (28 nM) and the triple mutant of  

CH-GECO2.1 (44 nM) are not identical indicates that the two substitutions in the FP domain 

(Ile147Thr and Gly191Asp) must also have a subtle influence on the Kd, likely through interactions at 

the interface between CaM and the FP domain. 
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Figure 3. Probing the differences in Ca
2+

 affinity between CH-GECO2.0, CH-GECO2.1, 

and R-GECO1. (A) Location of amino acid substitutions that differentiate the indicators, 

represented using the R-GECO1 crystal structure [8]. Mutations are labeled relative to  

CH-GECO2.1. (B) Ca
2+

 titration curves for variants with single mutations that revert  

CH-GECO2.1 CaM to CH-GECO2.0 CaM. (C) Ca
2+

 titration curves for variants with 

multiple mutations that revert the CaM domain of CH-GECO2.1 to that of CH-GECO2.0. 

(D) Ca
2+

 titrations for two of the point mutants that revert CH-GECO2.1 to R-GECO1.  

(E) Ca
2+

 titrations for CH-GECO2.1 variants with the CaM domain partially and completely 

converted to the R-GECO1 CaM domain. 

 

We next introduced mutations intended to probe the differences between the CaM domain of  

R-GECO1 (Kd = 480 nM) and CH-GECO2.1 (Kd = 6 nM) variants, which have almost a 2-order of 

magnitude difference in their Kds for Ca
2+

. These two proteins differ by a total of 5 substitutions in the 

CaM domain (Gly21Asp, Ala23Asp, Leu61Phe, Ser77Thr, and Asn109Asp, relative to CH-GECO2.1) 

(Figures 2 and 3A). Introduction of the single mutations Ala23Asp or Asn109Asp into CH-GECO2.1 

gave essentially unchanged Kds of 7 nM and 13 nM, respectively (Figure 3D). To fully convert the 

CH-GECO2.1 CaM to that of R-GECO1 CaM we proceeded to introduce additional substitutions. As 

discussed above, CH-GECO2.1 with Gly21Asp, Leu61Phe and Ser77Thr had an increased Kd of  
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44 nM. The addition of Ala23Asp slightly lowered the Kd to 23 nM. Further reversion of a mutation 

close to the FP-CaM interface (Asp191Gly) and one final mutation in CaM that is relatively distant 

from the EF hands (Asn109Asp) produced a protein with a Kd of 35 nM (Figure 3E). These results 

clearly demonstrate that the dramatic difference in Kd between R-GECO1 and CH-GECO2.1 cannot be 

fully explained by the mutations within the CaM domain. Rather, these changes must be due to the 

interactions between the CaM and FP domains, either via the linkers or the domain interface. 

3.2. Investigating the Mechanism of CH-GECO Variants 

To gain a better understanding of the differences in magnitude and mechanisms of the fluorescent 

responses of CH-GECO2.0, CH-GECO2.1, and R-GECO1, we created, characterized, and compared a 

series of protein variants with strategic substitutions at key residues of interest.  

3.2.1. CH-GECO2.0 vs. CH-GECO2.1 

Just two mutations in the FP domain (Ile147Thr and Gly191Asp, relative to CH-GECO2.0) 

differentiate CH-GECO2.0 and CH-GECO2.1, but their fluorescent responses to Ca
2+

 are 150% and 

250%, respectively. While the Asp191Gly reversion variant of CH-GECO2.1 variant retained a similar 

response to CH-GECO2.1, reversion of position 147 to Ile resulted in a decrease in the Ca
2+

 response 

to 115%. This result indicates that the Ile147Thr mutation is primarily responsible for the improved 

performance of CH-GECO2.1, and is consistent with the fact that the side chain of residue 147 is in 

close proximity to the phenolate moiety of the chromophore (Figure 1B). 

3.2.2. R-GECO1 vs. CH-GECO2.1: The Influence of the Linkers 

Previous work in our lab with both single FP-based and FRET-based indicators has showed that the 

length and composition of the linkers between the protein domains can have a substantial effect on the 

response of the indicator to the analyte of interest [14,21,22]. The sequence alignment between  

R-GECO1 and CH-GECO2.1 (Figure 2) reveals that the linkers between the three domains are 

significantly different. Specifically, R-GECO1 has a shorter linker between M13 and the FP  

(Pro-Val-Val) than does CH-GECO2.1 (Leu-Glu-Ser-Leu) and the first two residues (Leu145 and 

Ser146) of the FP domain are deleted. R-GECO1 also has a shorter linker between CaM and the FP 

domain (Ala-Thr-Arg) than does CH-GECO2.1 (Gly-Gly-Thr-Arg). The Thr-Arg residues of both 

linkers correspond to the translation of a MluI restriction site.  

Replacing the Leu-Glu-Ser-Leu linker and residues 145 and 146 of CH-GECO2.1 with Pro-Val-Val 

resulted in a dim red fluorescent protein (designated CH-GECO2.1-PVV). UV-vis spectroscopy 

revealed that a large portion of the protein was halted at the blue intermediate species that absorbs at 

382 nm (Supplementary Figure 1A) [23]. As shown in Supplementary Figure 1C, the pH dependence 

of the red fluorescent component of CH-GECO2.1-PVV was quite different from that of CH-GECO2.1 

(Figure 4A), and the response to Ca
2+

 was effectively abolished. Replacing the FP to CaM  

Gly-Gly-Thr-Arg linker of CH-GECO2.1 with Ala-Thr-Arg and introducing the adjacent Leu144Asp 

mutation, fully converted the CH-GECO2.1 into a variant with identical linkers to R-GECO1 (designated 

CH-GECO2.1-PVV-ATA). However, no red fluorescent protein could be recovered from repeated 
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attempts to express this protein. These results indicate that, in addition to their critical role in the Ca
2+

 

response mechanism of single FP indicators, the interdomain linkers can also have an important role in 

the chromophore maturation. 

Figure 4. Representative fluorescence vs. pH titration curves for CH-GECO2.1 variants. 

(A) CH-GECO2.1 titration in the presence and absence of Ca
2+

, adapted from Carlson and 

Campbell [17]. (B–I) Titration curves for additional variants discussed in the text, both in 

the presence and absence of Ca
2+

. 

 

3.2.3. Attempts to Identify Key Residues Involved in the Ca
2+

 Response of CH-GECO2.1 

From the CH-GECO2.1 pH titration curve reproduced in Figure 4A, it is apparent that there is a key 

ionization with a pKa around pH 6.5 to 7.0. We hypothesized that, at physiological pH and in the 

absence of Ca
2+

, there is a specific residue (of unknown identity) for which the deprotonated form is 

quenching the fluorescence of the chromophore [17]. In the presence of Ca
2+

 either this residue is no 

longer deprotonated due to a change in pKa, or it is no longer in the right conformation to quench  

the chromophore fluorescence. In an attempt to determine the identity of the residue that is so  

critical to the function of the CH-GECO variants, we performed mutagenesis of rationally selected  

candidate residues. 

As the pKa in question is around 6.5 to 7.0, the most likely candidate residue was histidine. 

However, the X-ray crystal structure of mCherry [24] reveals no histidines in the immediate vicinity of 

the chromophore, so we looked to histidine residues that could reasonably be interacting with the 
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chromophore by an extended hydrogen bond network. One likely candidate was His75, which appears 

to participate in a hydrogen bond network with Tyr193, Lys70, Glu148, several water molecules, and 

the chromophore (Supplementary Figure 2A) in the mCherry crystal structure [24]. We mutated each 

of these residues individually and characterized the pH profile and Kd for the variants that formed  

the red fluorescent chromophore. No red fluorescent protein could be obtained for Lys70Gln and 

Glu148Gln, and absorbance scans of both variants revealed that the chromophore maturation process 

was stuck at the blue intermediate species similar to CH-GECO2.1-PVV described above [23]. 

Mutation His75Gln gave a pH profile that was very similar to CH-GECO2.1, albeit with a reduced 

response of 158% (Figure 4B). The Tyr193Phe mutation yielded similar results with a pH curve 

(Figure 4C) and Ca
2+

 affinity that are similar to CH-GECO2.1. We conclude that this hydrogen bond 

network is not involved in the Ca
2+

-dependent response of the CH-GECO variants, but does play an 

important role in the chromophore maturation process. 

Having ruled out our original hydrogen-bond network hypothesis, we reexamined the mCherry 

crystal structure and identified Tyr214, His204, His172, and Asp1 of CaM as ionizable functional 

group in reasonably close proximity to the chromophore (Supplementary Figure 2B). Each of these 

residues was mutated to non-ionizable alternatives in the context of CH-GECO2.1, and the pH profiles 

both with and without Ca
2+

 were determined (Figure 4F–I). The pH profiles of all four mutants still 

retained the characteristic fluorescence increase at pH 6.5 to 7.0, indicating that none of these residues 

played a part in the Ca
2+

 sensing mechanism. Notably, Asp1 is the first amino acid of CaM and 

mutation to Gln did not alter the pH dependence, but it did increase the Kd to 53 nM and the 

fluorescence response to 307%. Due to its improved fluorescence response and a Kd that is very similar 

to that of the high affinity Ca
2+

 indictor YC-Nano50 [25], CH-GECO2.1 Asp1Gln may be particularly 

useful for imaging of transient changes in Ca
2+

 concentration in cells with low resting concentrations. 

Expanding our efforts to include non-ionizable residues close to the chromophore, we decided to 

target positions 159, 163, and 166, which differ between R-GECO1 and CH-GECO2.1 (Supplementary 

Figure 2B). Introducing the Gly159Ser (Figure 4D) or Lys166Arg (Figure 4E) substitutions into  

CH-GECO2.1 resulted in variants where no substantial changes were observed in the Kd or excitation 

and emission characteristics, and only modest effect on the Ca
2+

 response in the case of the Gly159Ser 

variant (Supplementary Table 1). In contrast, the Gln163Lys substitution completely abolished the 

fluorescent response of CH-GECO2.1. This variant will be discussed in more detail in a following 

section. From these results it is apparent that, of all the residues targeted in these efforts, only Gln163 

plays a critical role in the mechanism of action of CH-GECO2.1. 

3.2.4. The Influence of Residue Gln163 on the Ca
2+

 Response of CH-GECO2.1 

Residue 163 of DsRed [26], and its engineered descendants such as mRFP1 [27] and mCherry [18], 

is in close proximity to the chromophore and thus substitutions at this position can have profound 

effects on the fluorescent characteristics. In wild-type DsRed, residue 163 is a Lys, which stabilizes the 

phenolate group of the chromophore in the anionic state by interaction with the protonated terminal 

amine [26]. During the directed evolution of dimeric and monomeric DsRed variants, favorable 

substitutions at this position included Lys163Gln in the dimer2 variant and Lys163Met in mRFP1 [27]. 

During later directed evolution of mRFP1 that ultimately led to the mCherry variant, the Met163Gln 
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mutation was rediscovered and retained since this mutation provided improved chromophore maturation 

efficiency [18]. In contrast, the Met163Lys reversion was found to be beneficial during the directed 

evolution that led to the mApple variant [16]. Through the directed evolution process that led to  

CH-GECO2.1, the Lys163Gln substitution inherited from mCherry was retained. Notably, this residue 

is found in close proximity to both the chromophore and the circular permutation site, so it is prime 

candidate for a residue that would play a crucial role in the Ca
2+

 sensing mechanism. 

The X-ray crystal structures of R-GECO1 and RCaMP (engineered from Entacmaea quadricolor-derived 

mRuby [28]) have recently been reported [8]. In the R-GECO1 structure, Lys163 is interacting directly 

with the phenolate of the chromophore in the Ca
2+

 bound state (Figure 1B), which indicates that  

this residue almost certainly has a critical role in the Ca
2+

 response, likely lowering the pKa of the 

chromophore in the presence of Ca
2+

 by stabilizing the negative charge on the phenolate. The structurally 

equivalent residue in RCaMP [8] is a methionine that is directed inside the barrel in a conformation 

that is very similar to that of Lys163Gln in mCherry [24]. 

As mentioned in the previous section, introducing the Gln163Lys substitution into CH-GECO2.1 

completely abolished the response of CH-GECO2.1 and had a pronounced effect the protonation state 

of the chromophore as evidenced by the pH titration curve shown in Figure 5A. The absorbance, 

excitation, and emission wavelengths remain unchanged. To determine if the combination of Gln163Lys 

and R-GECO1-type linkers would be sufficient for rescuing the Ca
2+

 responsiveness, the Gln163Lys 

substitution was introduced into CH-GECO2.1-PVV-ATA. The resulting variant formed the red 

fluorescent chromophore but did not show a significant fluorescence response to Ca
2+

 (Supplementary 

Figure 1B,C).  

Figure 5. Effect of mutations at Gln163. (A) The Gln163Lys and Gln163Asp mutations 

abolish the response to Ca
2+

. (B) The Gln163Met mutant retains a response to Ca
2+

. (C) In 

the X-ray structure of mCherry (PDB ID 2H5Q) [24], Gln163 is directed into the interior 

of the protein in close proximity to the chromophore. Compare the orientation of Gln163 

with the orientation of Lys163 in R-GECO1 as shown in Figure 1B. 

 

To further probe the role of Gln163, we created the Gln163Met and Gln163Asp variants of  

CH-GECO2.1. Intriguingly, the Gln163Met variant behaved very similar to CH-GECO2.1 in terms of 

its response to Ca
2+

, though the Ca
2+

 response decreased to 54% and the Kd decreases to 2 nM  

(Figure 5B). Much like the Gln163Lys variant, the Gln163Asp variant exhibited no response to  

Ca
2+

 (Figure 5A). Based on these results, we concluded that Gln163 plays a critical role in the  
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CH-GECO2.1 sensing mechanism, and that this role is distinct from that played by the equivalent 

Lys163 residue in R-GECO1. 

3.2.5. A Proposed Ca
2+

 Sensing Mechanism for CH-GECO2.1 

The combined use of site directed mutagenesis and detailed in vitro characterization has enabled us 

to identify Gln163 as one of the key residues in the Ca
2+

 sensing mechanism of CH-GECO2.1. In the 

absence of a crystal structure of CH-GECO2.1, it is of course difficult to predict how specific amino 

acids are oriented near the chromophore, especially given that we expect substantial distortion of the 

protein (relative to mCherry [24]) in the vicinity of the circular permutation site. Fortunately, the X-ray 

structures of R-GECO1 and RCaMP are available to aid us in our effort to interpret our results.  

We propose that, in the Ca
2+

 free state, the side chain of Gln163 is directed outside the barrel 

similar to the orientation of Lys163 in R-GECO1 (Figure 1B). In this orientation the chromophore is 

less sterically constrained by the surrounding protein environment and thus has more rotational and 

vibrational freedom, which explains the low quantum yield in the absence of Ca
2+

. When CaM and 

M13 interact due to Ca
2+

 binding, the side chain of Gln163 moves inwards and interacts with the 

chromophore in a conformation similar to that observed in mCherry (Figure 5C). That is, the side 

chain of Gln163 is likely oriented below the chromophore and sandwiched between Trp143 and 

Ile161. Presumably, this interaction leads to a stabilization of the chromophore in a planar 

conformation that increases the quantum yield. This proposed mechanism is consistent with the results 

obtained with the Gln163Met, Gln163Asp, and Gln163Lys variants. Mutation to the hydrophobic Met 

produces a functional protein, since the side chain is still able to undergo the Ca
2+

-dependent switch 

from the exterior to the interior of the protein. In contrast, mutation of Gln163 to either Lys or Asp 

dramatically increases the energetic cost of bringing the charged side chain into the hydrophobic 

interior, and the Ca
2+

 sensing mechanism is abolished. 

Disappointingly, we were not able to unambiguously identify key residues the contributed to the 

much higher affinity for Ca
2+

 of CH-GECO2.1 relative to R-GECO1, nor we were able to identify the 

key residue that is undergoing an ionization with a pKa ~6.5 to 7.0. We suspect that, in both cases, the 

relevant residues are located in the interface between the CaM domain and the FP domain.  

4. Conclusions 

The goal of this work was to gain insight into the mechanistic details of the recently reported 

genetically encoded Ca
2+

 indicator CH-GECO2.1. While we were not able to answer all of the 

questions that naturally emerged from this effort, we were successful in identifying Gln163 as the most 

important residue for transducing the conformational change associated with Ca
2+

 binding into a 

change in the fluorescence intensity of the FP domain. We expect that this insight will be critical in 

guiding future efforts to further optimize genetically encoded Ca
2+

 indicators for improved response. 

Another important conclusion from this work is that interdomain connections and interactions can 

have a complex influence on multiple aspects of a genetically encoded biosensor. Specifically, we 

observed that changes in linker composition and length could effect protein maturation and the sensing 

mechanism. In addition, our results suggest that interfacial residues play a crucial role in determining 

the affinity of the indicator for Ca
2+

. We recommend that future efforts to optimize such indicators 
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should always involve substantial screening of linker libraries that vary in both length and 

composition. Also, we suggest that, given the complexity of the sensing mechanisms, directed 

evolution efforts that involve screening of libraries of randomly generated variants will tend to be 

much more effective than efforts guided by naive mechanistic hypotheses.  
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