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Abstract: This paper presents a human detection system that can be employed on board a
mobile platform for use in autonomous surveillance of large outdoor infrastructures. The
prediction is based on the fusion of two detection modules, one for the laser and another for
the vision data. In the laser module, a novel feature set that better encapsulates variations
due to noise, distance and human pose is proposed. This enhances the generalization of the
system, while at the same time, increasing the outdoor performance in comparison with
current methods. The vision module uses the combination of the histogram of oriented
gradients descriptor and the linear support vector machine classifier. Current approaches
use a fixed-size projection to define regions of interest on the image data using the range
information from the laser range finder. When applied to small size unmanned ground
vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain
irregularities. This is effectively addressed in this work by using a novel adaptive projection
technique, which is based on a probabilistic formulation of the classifier performance.
Finally, a probability calibration step is introduced in order to optimally fuse the information
from both modules. Experiments in real world environments demonstrate the robustness of
the proposed method.
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1. Introduction

The surveillance of critical infrastructure is heavily based on the detection and evaluation of human
presence. Current systems usually employ a variety of strategically placed sensors and rely on human
supervision. However, these systems suffer, due to the overwhelming amount of data, which are
difficult to follow, and, moreover, from repetition that leads to mental and visual fatigue. In order
to alleviate these problems, various methods for the automatic detection of suspicious actions have
been proposed [1].

In large outdoor infrastructures, the magnitude of the area under inspection renders the task
implausible to fulfill with static sensors alone. A distributed mobile robot system could help towards
such a direction. Using autonomous navigation, robots can follow predetermined or random paths along
the perimeter or in between the buildings of the infrastructure. In case of intrusion, detection algorithms
can trigger an alarm or provoke further action. Moreover, the detection of the intruder allows his or her
tracking and following, while keeping security personnel informed. In order to complete this task, the
robotic platform needs to be equipped with an effective human detection module.

Detecting humans from a moving platform raises many difficulties. Outdoor environments are very
noisy, and sensors can be affected by weather conditions, changes in illumination, movement or terrain
irregularities, among many other factors. Constrains on the on board computational power together
with the need of real time processing make the problem ever more demanding. Therefore, a robust and
computationally-efficient set of algorithms is required.

This work presents a robust method for human detection on board an unmanned ground vehicle
(UGV). The method is based on an information fusion scheme that uses a laser range finder and image
data. Both sensors have their own advantages and drawbacks. Using them in a complementary way
increases the overall performance compared to employing each one individually.

The laser data provide useful information about range and the geometrical characteristics of the
surrounding objects. The segmentation of laser points into clusters and using a set of features to classify
whether they belong to a human or not has been proposed [2]. Although this method has been proven
efficient indoors, it is designed for human leg detection and uses distance-based features. An extension
of this work is proposed here, intended to be used outdoors and with the premise of obtaining only one
cluster per person. The distance-based features capture scene-specific information, and although very
discriminative, they harm the generalization capability of the algorithm. In other words, the classifier
learns the scene dependent features well, and it fails to deliver competent performance on different
scenarios. Furthermore, the laser sensor is very prone to outdoor noise, and the features are dependent
on the human pose. In order to better handle the information variations due to distance, human pose and
sensor noise, a novel feature set has been proposed. It not only performs better outdoors, but at the same
time, significantly improves the generalization of the system, making it capable of performing well in
scenes that it was not trained to cope with.

Despite their usefulness, the information contained in the laser data is limited. Since the number of
points returned is relatively low, the detection based solely on laser data may be unreliable. The camera
vision signal is generally more informative and provides object texture and shape, which makes it ideal
for human recognition [3]. Since no localization is provided, the whole image must be thoroughly
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processed, something that slows down the detection task significantly. The range information from
the laser can be very helpful in localizing separate objects in the environment [4]. By exploiting the
localization information of the laser, the computational time needed by the vision system can be reduced.
Due to the geometrical setup, this localization can be well defined only on the horizontal axis. Surface
abnormalities, steep inclinations, inherent vibrations or rapid acceleration of the UGV can introduce
noise in the estimation. All these factors make the definition and projection of a correct region of interest
(ROI) a non-trivial task [5]. In this work, this is addressed by a novel adaptive projection technique that
uses a priori information about the classifier to construct a probabilistic detection model.

Fusion of the probabilistic outcome of the two sensor modules enables the extraction of non-redundant
information. This is achieved by incorporating them in a probabilistic fusion framework that can
be useful in difficult situations, such as occlusions, when one sensor alone cannot provide a correct
detection [6]. In order to optimally combine the two outcomes and reduce the correlation between them,
an off-line classifier calibration process is introduced.

The main contributions of the work presented here can be summarized by the following points:

• Laser detection: An extended feature set targeted for large outdoors environments, based solely on
structural information, is proposed. The information variations due to distance, the human pose
and sensor noise are encapsulated through feature normalization, providing better generalization.
• Vision detection: The problem of vertically localizing a projection from the laser to the image plane

is addressed. A novel adaptive region of interest (ROI) projection technique helps compensate for
misalignment, caused by otherwise uncontrolled factors, which often leads to false predictions.
• Information fusion: The redundancy and the correlation between the two classifiers is reduced by

first calibrating them. The output probability of the fusion scheme is thus more optimal.

Our approach adapts and builds upon well established techniques in the human detection field.
The techniques proposed have been assessed in detail, so as to provide a competent tradeoff between
performance, scalability and execution speed time, when it is used on board a robotic mobile platform.

The paper is organized as follows. In the next section, previous work related to ours is briefly
discussed. In Section 3, an overview of the proposed method is described. Detailed descriptions of
the laser and vision detection modules are found in Sections 4 and 5, respectively. The information
fusion methodologies are presented in Section 6. Then, Section 7 explains the experiments held in
order to validate the method. Finally, Section 8 shows the results of the experiments, followed by
our conclusions.

2. Related Work

During the few last years, applications of human detection have been proven attainable. Intelligent
systems have improved the surveillance and safety of public places [1]. More recently, commercial
cars have been equipped with active pedestrian detection and avoidance systems [7,8]. Similarly, such
systems are being deployed in service robots [9].

Nevertheless, human detection is not an easy task. A lot of different methodologies using various
sensor modalities have been proposed. The most commonly used sensor is a camera in a multitude of
setups, such as monocular or stereo vision, sensitive to either the visible or the infrared light spectrum.
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The fact that computer vision can provide a rich three-dimensional signal, while remaining relatively
inexpensive and easy to deploy, has led to the advancement of many different approaches in human
detection in this field [3,10].

A plethora of these algorithms uses a sliding window approach. Dalal and Triggs [11] proposed
a method for human detection that is based on this approach, with very good detection results at a
comparatively efficient speed. The detection window is subdivided into cells, and for each one, a
histogram of oriented gradients (HoG) is accordingly computed. The final detection is performed by a
linear support vector machine (SVM) classifier. Shape-based methods use template matching algorithms
to detect the appearance of human silhouettes on the image [12]. Another distinct approach is part-based
representations. In this case, instead of exhaustively searching the image, this technique tries to learn
and identify human parts and their relative positions [13]. A variation of the HoG descriptor is used in
the vision module of this work (see Section 5.1).

Although significant advances have been introduced, vision-based systems suffer mainly from high
computational requirements. Additionally, when real time applications are developed for systems like
a small UGV, they are constrained to lower resolutions, due to the limited processing power and low
payload capacity. As a consequence, the detection range is also limited. This work uses the laser range
readings to reduce the search space and to comply with the real-time requirements of an autonomous
surveillance UGV.

Laser range finders have been extensively used on autonomous ground vehicles for multiple tasks,
such as object recognition and avoidance, or simultaneous localization and mapping (SLAM). The
fact that human parts—especially legs—display distinct geometric characteristics in laser range data
has been exploited for the detection and tracking of humans. These techniques generally rely on the
segmentation of the two dimensional signal into separate clusters [14]. Consequently, for each cluster,
various geometric and statistical characteristics are extracted. The identification can be made by either
manually selecting fitting thresholds [15] or through machine learning [2]. Nevertheless, the information
of the laser data is not enough to provide a set of highly discriminative features. Tracking of the moving
object is commonly used in order to improve the performance. Human motion or gait models combined
with tracking algorithms provide the necessary formulation for this task [4,16]. Another approach is
based on occupancy grids, where the space is divided in cells, and the probability of each cell being
occupied is computed based on information from current and previous laser scans [17]. Apparently, both
tracking and occupancy grid methods are susceptible to occasions where humans remain stationary.

The work of Arras et al. [2] has been shown to be effective indoors. Using their method as a
basis, this work proposes an extension aimed at being used in more diverse outdoor environments. The
problem with feature-based methods arises from the use of characteristics dependent on the particular
surroundings, such as the distance from the laser or the distance between objects. Although highly
discriminative, these features tend to be scene-specific and to provide very poor generalization, a
disadvantage that becomes more apparent in outdoor scenes that have greater variability. Furthermore,
outdoors, the laser sensor is very susceptible to noise. Another finding is that the features are also
dependent on the relative pose of the objects. In order to alleviate these phenomena, a novel feature
set that captures the aforementioned dependencies is proposed in this work. The use of normalization
techniques helps the classifier to adapt itself and discard intrinsic correlations, providing better overall
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outdoor performance. At the same time, it significantly increases the robustness of new scenes, which is
critical in applications concerning large outdoor infrastructures.

Simultaneous use of both laser and computer vision has been used to provide a more reliable
prediction, both in terms of detection accuracy and speed [18]. Applications of such bimodal
detection systems have been introduced in mobile service robots [9] and automated braking systems
for vehicles [19]. In various works, the range data from the laser are used in combination with geometric
models of the surroundings to confine the search on the image data into areas of high interest [19,20].
The localization, provided by the laser data, assists in deducing ROIs that are subsequently processed
and classified by the vision module. This approach helps to dramatically increase the execution speed,
while at the same time, decreasing false alarms, because the detection is bounded to relevant areas.

However, the latter approach is limited in the sense that it does not take into account the laser
discriminative information that could, in combination with the vision detection, provide more reliable
results. With fusion techniques, information from both sources is evaluated; thus, partial incompleteness
of the human appearance in one source can be addressed using the other. This is especially helpful in
hard situations, when occlusions happen, due to the interaction between dynamic and static elements of
the environment.

Fusion methods are generally divided into two categories, depending on which level the fusion
is being done. In feature level fusion, the features for each laser cluster and vision region are
computed separately and are then concatenated to a single vector used by a subsequent classification
scheme [21,22]. In high or detector-level fusion, the data provided by each sensor lead to two separate
classification results, and the combination of the results is done in a final fusion step. As before, laser
data are used to reduce the vision module search space. Prior assumptions about human height and
the geometric characteristics of the environment are used to define a projection ROI [6,23–26]. Other
approaches are based solely on the geometric constraints of the system and the scene to construct a
relevant space hypothesis [9,27,28].

Many of the methods that have been presented make use of fixed-size window projection. In this case,
the vision module is highly susceptible to projection errors that occur when the platform is moving.
Although the horizontal boundaries of the apparent cluster are easily defined by laser data, there are
a lot of misplaced projections produced by factors, such as the acceleration of the platform, ground
irregularities and steep slopes. In such cases, the assumption that the ground is level and the robot is
neither rolling nor pitching does not stand true [25]. This becomes more important when a descriptor,
like HoG, which is sensitive to the relative position of the human on the detection window, is used [23].
Furthermore, while these shortcomings are found on big mobile platforms, such as a car, a small-sized
UGV is significantly more sensitive to them, due to its smaller form. In order to overcome this, ground
plane extraction using a 3D laser scanner has been proposed with the objective of finding an accurate
estimate of the platforms pitch and roll [23]. In this work, an adaptive projection scheme is proposed
to address this problem; it is a simpler solution, which does not require the use of complex sensors or
algorithms. The size of the projection window is increased to compensate for the misalignment, and the
resulting ROI is thoroughly searched for human presence. The final prediction outcome is based on a
probabilistic formulation that incorporates a priori knowledge about the classifier’s performance. The
result is a more versatile detection system that is capable of correctly detecting hard situations, even
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when the person is not on the same level with the UGV. At the same time, the computational cost is held
low by restricting the search to a meaningful scale-space only.

Laser and camera fusion systems produce the final prediction probability using the score outcomes
from the two modules. The accurate conversion of the classifier outcome to a probability distribution
is therefore essential. Classifiers, like adaptive boosting (AdaBoost) and SVM, are commonly used in
detection, but their outcome consists of uncalibrated scores [29]. When cascades are used, the sum of
the weak classifier weights can be used to provide an estimate [9,23,25]. The logistic function has also
been used to normalize the outcomes [26]. Here, this problem is addressed by calibrating the classifiers
using a well-known method, thus generating more precise probability distributions [30].

3. Methodology Overview

This system is aimed to be used on board a UGV performing surveillance operations around a critical
infrastructure. The main goal is to achieve the best detection performance possible while maintaining
real time processing.

The UGV is equipped with a laser range finder and a camera sensor. In order to be able to use the
range data of the laser together with the image from the camera, first, the sensors need to be calibrated,
both intrinsically and extrinsically. This calibration process provides the translation and rotation vectors,
which are needed for converting a point in the laser scan to a corresponding pixel in the image, as is
described in Section 7.1.

Figure 1. Schematic diagram of the proposed method.
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The data readings from the two sensors are synchronized and then individually processed. Both
modules, laser and vision, are comprised of two parts: a feature extraction algorithm and the subsequent
pattern recognition process. Initially, the laser data are segmented into clusters, and a set of geometrical
and statistical features is computed for each one. Afterwards, a Real AdaBoost classifier produces a
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probability estimate of whether it belongs to a person or not. Furthermore, these clusters are projected to
the camera image for further processing in the vision module. For each projection, a corresponding ROI
in the image is assessed using an adaptive window approach that utilizes a HoG descriptor and an SVM
classifier. The probability outcome of both modules is subsequently merged into a single likelihood
using fusion information techniques. Since the angular range of the laser range finder is much greater
than that of the camera, some clusters do not have corresponding projections on the image. Nevertheless,
those clusters are processed only from the laser module. A schematic overview of the method can be
found in Figure 1.

4. Laser Detection Module

The laser detection module has a dual function. On the one hand, it provides the first estimation of
human presence, which is later used in the fusion scheme. On the other hand, the range values from
the sensor are used for localizing the apparent structures in the image plane, thus reducing the search
space significantly.

Data are acquired from the device as an ordered sequence of n points, P = {p1, p2, . . . , pn}. Each
point is represented in Cartesian coordinates, pi = (xl, zl), derived from the polar coordinates, φ, ρ, of
each range reading (xl = ρ sinφ , zl = ρ cosφ). In order to be consistent with the calibration, the laser
readings are considered to belong in the plane where yl = 0.

4.1. Prepossessing and Segmentation

Individual points provide little to none structural information. Before any further processing is made,
it is very crucial to obtain clusters representing distinct surrounding objects. Since the data points
are sequential, a one-dimensional gradient filter mask [−1, 1] can be applied to produce a vector of
differences, ∆. Values greater than a given threshold, T∆, define the borders of the clusters. This method
is widely known as jumping distance segmentation. When big differences exist in readings between
two consecutive laser points, it is very common to have a shadow effect, which means that the readings
are erroneously somewhere between the two points. Methods based on Euclidean distance are greatly
affected by this phenomenon. An appropriate adaptive filtering is applied beforehand in order to alleviate
this effect. This is a relatively simple and fast algorithm; for an overview of segmentation methods and
threshold estimation techniques, see [14].

This type of segmentation was originally conceived to work in indoor environments and normally
leads to two distinct clusters, one for each leg. In our application, it is important to obtain a single cluster
for each human in order to correctly project a region of interest in the image plane. This is partially
achieved by placing the laser at upper leg height. However, as has already been discussed, this cannot
be trusted, due to pitch variations of the UGV. Furthermore, outdoor conditions are much more versatile
and affected by noise, which usually causes oversegmentation. Thus, a second cluster aggregation step
is employed. When the euclidean distance between two distinct clusters is less than T∆, they are united
to form a new composite one. The value of T∆ is the same as before. Very small remaining clusters that
consist of less than three points are discarded as noise. In Figure 2, the segmentation of the laser data
and their respective projection on the camera frame is shown.
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Figure 2. Projection of laser segmented clusters to the image plane using the calibration
parameters. In the left image, the shaded area indicates the field of view of the camera. The
color and number of each cluster are the same in both views.
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4.2. Feature Extraction

After the segmentation has been completed, the next step is to extract a set of characteristics for each
cluster. The feature extraction can be considered as a function where the input is the set of points of
the cluster in two-dimensional Cartesian coordinates and the output is a vector in n-dimensional space,
f : R2 → Rn. In [2], Arras et al. propose a scheme for indoor human detection from laser data that
is considered a work of reference in the field [6,23]. They use a combination of geometrical, statistical
and distance-dependent features. Some of them are obtained by the cluster points themselves and others
by their relationship with the surroundings, such as the distance from the sensor, the distance between
clusters and the speed of the cluster. Those features do not conform to the aforementioned mathematical
description, because the distance between objects cannot be inferred using the points of a sole cluster.

The aforementioned features have been built for describing human legs in indoor environments. The
proposed extension is developed in order to produce a more appropriate feature set for the outdoor
environment with the additional constraint of having only one cluster for each person. Since outdoors
surroundings tend to be more complex, using features that are context specific, such as the distance
between objects, harms the generalization of the detector. Furthermore, in outdoor areas, the distance
between the laser and the targets can be large, so that far away objects may be represented by only a
few points. The number of points of a human cluster is also dependent on other uncontrolled factors,
such as the lighting conditions, the platform movement and the objects relative pose with respect to the
laser. In order to study the variations on the feature values with respect to the aforementioned factors,
normalization methods are employed. The distance from the camera and the number of laser points are
used as normalization factors. The initial feature basis containing the distance-independent components
that have been used in this work can be found in Table 1. From the initial feature basis, a final vector
with 63 components is acquired as follows:
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• The initial 13 features from the feature basis of Table 1.
• The initial 13 features divided by the distance from the origin.
• The initial 13 features multiplied by the distance from the origin.
• Features 2 to 13 divided by the number of points.
• Features 2 to 13 features multiplied by the number of points.

Table 1. List of the laser feature basis.

1. Number of points
2. Standard deviation from centroid
3. Mean average deviation from median
4. Width
5. Linearity
6. Circularity
7. Radius

8. Boundary length
9. Boundary regularity

10. Mean curvature
11. Mean angular difference
12. Kurtosis
13. Aspect ratio

No distance-dependent feature is explicitly included in the final set. Using this novel extended feature
set, the classifier employed in the subsequent step can learn and compensate for distance, noise and
human pose-dependent variations, ultimately providing better generalization.

Three feature sets were considered for comparison reasons: the feature basis of Table 1, the feature
basis with distance features added and the proposed 63-dimensional feature set. In Table 2a and 2b,
a performance comparison between the three sets is presented, and the results are further discussed in
Section 8.

Table 2. Results comparison of laser feature sets. Three feature sets are compared. The
feature basis is described in Table 1. DIST denotes the addition of distance features to the
feature basis. The proposed feature set is described in Section 4.2. The laser data sets from
Table 3 were used.

Static Moving
Basis Basis +

DIST
Proposed Basis Basis +

DIST
Proposed

Precision 95.25% 98.89% 97.86% 86.67% 91.26% 89.75%
Recall 88.60% 98.67% 96.96% 84.66% 90.14% 88.57%

Specificity 99.75% 99.94% 99.88% 98.27% 98.86% 98.66%

(a) Gymnasium experiments.
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Table 2. Cont.

Moving
Basis Basis +

DIST
Proposed

Precision 76.84% 76.83% 78.97%
Recall 59.93% 63.36% 66.11%

Specificity 97.97% 97.83% 98.00%

(b) Outdoor experiments.

4.3. Classification

The identification of the cluster is performed by an AdaBoost (i.e., adaptive boosting) classifier. In
boosting, a set of discriminative weak classifiers are combined to construct a final strong classifier [31].
Individual classifiers are called weak because the only requirement is to perform better than random
guessing. Due to their simplicity, they are computationally inexpensive. Generally, AdaBoost techniques
tend towards margin maximization between the classes. Overfitting of the data is very improbable in
practice, and the classifier provides good generalization. There are various different schemes of the
AdaBoost algorithm; an overview can be found in the work of Friedman et al. [32].

The training input consists of labeled data, (si, li), i = 1 . . . N , where N is the number of samples.
Each sample consists of an n-dimensional descriptor, si ∈ Rn, and an annotation label, li ∈ {+1,−1},
denoting a positive or a negative example. In our case, the descriptor is a 63-dimensional feature vector,
while the label signifies if the sample belongs to a human or not. In each iteration, the algorithm trains
a weak classifier, which produces a weak hypothesis, ht(si) : Rn → R, over the weighted distribution,
Dt, of the training samples. Subsequently, the weight distribution is recalculated, taking into account the
error of the previous step. With this method, the weight of the wrongly classified examples is increased,
forcing the next classifier to focus more on those hard cases. The final strong classifier, H(si), is
produced by the weighted sum of the T best weak hypotheses. An outline of this procedure can be
found in Algorithm 1.

Algorithm 1 Outline of Real AdaBoost.
Input: Training data samples, (si, li), i = 1, 2, . . . , N ; si ∈ Rn, li ∈ {+1,−1}
Initialization: Set uniform sample weights, w1(i) =

1
N .

Iteration: For t = 1, 2, . . . , T , repeat the following steps:

1. Train the weak classifier to obtain a class probability estimate, P (l = 1|s) ∈ [0, 1], using the weighted samples.
2. Set ht(s) =

1
2 log

P (l=1|s)
P (l=−1|s) .

3. Update the sample weights: w(t+1)
i = w

(t)
i exp (−yiht(si)), i = 1, 2, . . . , N .

4. Normalize the weight distribution: w(t+1)
i =

w
(t+1)
i

N∑
i=1

w
(t+1)
i

.

Output: The final strong classifier, H(s) = sign

(
T∑

t=1
ht(s)

)
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In their implementation, Arras et al. used a modified version of the Discrete AdaBoost algorithm with
stumps as weak classifiers. This variation of AdaBoost uses a weak hypothesis with a response restrained
to a discrete outcome, essentially two classes, ht(si) : Rn → {−1,+1}. In our implementation, the Real
Adaboost version has been used. It is reported to be less immune to noise and generalizes better in
practice than its Discrete counterpart [31,32]. Furthermore, our data set is significantly larger than that
of Arras et al., and our experiments showed that using stumps results in a classifier that is too weak and
that underfits the data. Therefore, our choice for a weak classifier is a two-split decision tree. Finally,
our proposed feature set yields better results when more classifiers are used, so empirically, T was set to
20. These changes provide considerable performance improvements and better generalization at a very
low speed cost (see Section 8).

The low cost comes also from another advantage of AdaBoost classifiers. After the training procedure
has been completed, the classification is based on a smaller subset of the complete feature vector. Since
this knowledge is a priori available, the feature extraction algorithm can be accordingly adjusted to only
compute the appropriate features, thus leading to faster execution time.

5. Vision Detection Module

The vision detection module serves as a second opinion observer that helps to improve the overall
detection performance of the system. The detection is based on the established method of the histogram
of oriented gradients. A novel adaptive projection method has been developed in order to obtain an
accurate ROI from the image.

5.1. Histogram of Oriented Gradients

Edge orientation histograms have been extensively used in the computer vision field for object
detection. Lowe’s Scale Invariant Feature Transformation (SIFT) combines gradient orientation
information with local spatial histogramming in a sparse grid [33]. The histogram of oriented gradients
descriptor, proposed by Dalal and Triggs, uses a dense overlapping grid along with local contrast
normalization and has been proven very effective for human detection in images [11].

Though HoG entails a lot of details and parameters, a brief description of the algorithm is provided
here. The parameters used in our work have been reported to provide the best results and are considered
as standard in recent implementations. The descriptor is evaluated over a fixed-size sliding window of
128× 64 pixels. First, the magnitude and orientation for each pixel of the image is computed. The
window is divided into smaller regions called cells. For each cell, a nine-bin local histogram over
the gradient orientations is composed with the magnitude of the gradients serving as a weighted vote.
Contrast normalization of local responses is applied over larger spatial regions in order to overcome
illumination variations, called blocks. The block dimensions are 2× 2 cells, and the grid is overlapping,
so each cell finally contributes in more than one block. Before being fed to the SVM classifier, the
features are concatenated into a 3,780 dimension vector. The partition of a region into blocks and cells
and the corresponding oriented histograms can been seen in Figure 3.
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Figure 3. Histogram of oriented gradients descriptor. (a) The histogram of oriented
gradients (HoG) descriptor is computed over image cells (in red) and 2 × 2 overlapping
blocks of cells (green and cyan); (b) visualization of the HoG descriptor computed for the
same image.

(a) (b)

5.2. SVM Classifier

The evaluation of the HoG descriptors is performed by a linear support vector machine classifier.
SVM is a machine learning algorithm, proposed by Cortes and Vapnik [34], that has been extensively
used in pattern recognition applications. The linear SVM method conceptually follows and extends the
idea that input vectors, si ∈ Rn, can be effectively separated by a hyper plane, wTw + b > 0, lying on
the same n-dimensional space. It mainly focuses on finding the hyper plane that achieves the maximum
separation between the two classes. For that, it is also known as a maximal margin classifier. By using
kernels, such as polynomials or Radial Basis Functions, the data can be mapped into higher dimensions,
f(si) : Rn → Rm,m > n. This allows further insight into higher order feature spaces. Finally, since the
method is less susceptible to outliers, it has been proven to be very effective on non-separable classes.

5.3. Adaptive ROI Projection

The laser module performs the segmentation of the laser data into separate clusters, described in
Section 4.1. Each individual cluster is, afterwards, projected into the image plane using the parameters
obtained by the laser—camera extrinsic calibration, as explained in Section 7.1 and shown in Figure 2.
Considering that the field of view of the camera is much smaller than the angular range of the laser range
finder, it is apparent that only a portion of the clusters can be accordingly projected.
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From the optical theory, the distance of an object with known dimensions can be calculated from its
projection on the sensor. If the procedure is inverted, it is possible to obtain the height in pixels of an
object, when its distance and dimensions are known, as described by Equation (1).

ROI Height(pixel) =
Object Height(m)× Frame Height(pixel)× Focal Length(m)

Distance(m)× Sensor Height(m)
(1)

In Equation (1), ROI height is the wanted height of the projection window in pixels, object height is
the corresponding height in the physical world, the frame height is the sensor’s pixel resolution in the
corresponding axis, focal length is the intrinsic lens parameter, distance is the distance of the cluster’s
centroid from the camera and sensor height is the camera’s physical sensor dimension. The range
information from the laser and the extrinsic calibration provide the distance of the object’s centroid
from the camera. An approximation of the object dimensions can be acquired by taking into account the
medium human height and also by using some detailed information on how the HoG descriptor classifier
is trained.

Figure 4. Fixed and adaptive projection methods. (a) Projection of the same cluster for
different corresponding sizes. The cyan rectangle is used in the fixed case, and the larger
green window is used in the proposed adaptive method. (b) In the adaptive method, the
region of interest (ROI) is scanned by an overlapping sliding window over multiple scales.
In this figure, the maximum scale of the pyramid is depicted and the sliding window is of the
size 2.0× 1.0 meters.

1.5 x 3.0 m

1.2 x 2.4 m

(a) (b)

The dimensions of the training images are 128 × 64 pixels, and according to the creators, there is
a sixteen pixel margin around the person [11]. This means that the human figure occupies 75% of the
image height. In Section 7.3, INRIAand MIThuman databases are described in more detail. According



Sensors 2013, 13 11616

to recent statistics, medium human height is estimated to be 175 ± 15 cm [35]. The projection window
dimensions can be estimated by adding the margin used for the training data set and taking into account
the variations around mediums. These estimations range from 2.0 × 1.0 m to 3.0 × 1.5 m. It is worth
noting that, since HoG is computed over a region of constant dimensions, the maximum effective distance
is linearly related to the projected window size. This can be illustratively seen in Figure 4a.

It is evident that strictly defining the ROI size leads to some misclassifications, due to human height
variations. Furthermore, the laser data can only confine the extremes of each object horizontally. The
vertical boundaries can be estimated by taking into account the distance of the object and the height
of the laser sensor with respect to the ground. Unfortunately, this hypothesis only stands true for even
surfaces and while the UGV is static. When the platform is moving, pitch changes are very probable to
occur, due to inherent vibrations, acceleration or deceleration. Furthermore, terrain irregularities, steep
inclination and other uncontrolled factors may produce the same effect.

A novel method of adaptive projection has been used in order to restrict these effects. Instead of using
a fixed-size window, a pyramid of meaningful sizes is constructed and thoroughly searched for possible
human presence. Additionally, the use of an enlarged projection window increases the operational range
of the vision module, thus producing overall more reliable results.

Initially, a 3.0×1.5 m ROI is extracted from the image, according to the distance of the cluster. Next,
the HoG descriptors are computed with a sliding window of dimensions 128 × 64 over an overlapping
grid with a step of eight pixels in each direction. A visualization of the overlapping sliding window
can be seen in Figure 4b. As previously mentioned, there is no use in probing regions of size less than
2.0 × 1.0 m. Therefore, in this first step, if the sliding window corresponds to a size smaller than this
threshold, the original region is scaled down in pixels accordingly. This significantly speeds up the
process by eliminating searches in a space of irrelevant size. Afterwards, the extracted region is scaled
down by a predetermined factor, and the procedure continues iteratively until the sliding window reaches
the final scale of 3.0×1.5 m. Finally, the pyramid of the descriptors is evaluated by the previously trained
SVM classifier.

The evaluation over a large number of sliding windows, typically contained in a region, will likely
contain some false predictions. Methods, like non-maximum suppression and mean shift, have been
proposed in order to cluster multiple detections when no prior knowledge is available [36]. In order
to take into account the extra information available from the range data, a new way to discriminate
between positive and negative examples is proposed. As previously mentioned, the classifier used has a
high rejection rate, which produces only a few false alarms. Therefore the space-scale pyramidal search
can be approached from a statistical perspective as a Bernoulli process with a product space given by
P = {p, 1− p}N, where p is the possibility of success and N , the number of trials. Consequently,
the evaluation of each sliding window corresponds to a Bernoulli trial. The probability of success rate
can be approximated by the true negative rate of the SVM classifier on a representative test set. From
the above results, the probability of having k true negative predictions out of n trials is given by the
following equation:

P (X = k) =

(
n

k

)
pk(1− p)n−k (2)
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In Equation (2), n is known, so it is possible to deduct the number of trials, kthr, so that
P (X > kthr) ≤ 1 − TP . In practice, the value of the probability threshold, TP , is not very important,
provided it is sufficiently small to reject random false alarms. If the number of trials classified as
belonging to the positive class is greater than kthr, then the output of the algorithm is positive.

Since a multitude of sub-windows is evaluated for each cluster, there is an increase in the
computational cost of the algorithm. Nevertheless, this increase is not significant enough to create a
bottleneck and, thus, does not limit the real time functionality of the method. An outline of the method
is shown in Algorithm 2.

Algorithm 2 Outline of adaptive projection window method.
Input: A 3.0 by 1.5 m image region I ∈ R2N×N and TP � 1 probability threshold, where N is the
width of I in pixels.
Initialization: If the filter sliding window, S, of 128 × 64 pixels corresponds to less than 2.0 by 1.0 m,
then, accordingly, scale down I .
Procedure:

while S corresponding dimension ≤ 3.0 by 1.5m do
n = 0; . number of total pyramid windows
for i = 1; until S traverses all I vertically; i← i+ 8 do

for j = 1; until S traverses all I horizontally; j ← j + 8 do
Hn ← HoG descriptor of S(Iij)

Cn, Pn ← class and probability output of linear SVM classifier for input Hn

n← n+ 1

end for
end for
Scale down I by a constant scaling factor, F .

end while
Find k for which P (X > k) =

(
n
k

)
pk(1− p)n−k ≤ 1− TP

if sum(Cn == +1) > k then
Cout ← +1

Pout ← max(Pn)

else
Cout ← −1

Pout ← min(Pn)

end if

Output: The output class, Cout, and probability, Pout

6. Information Fusion Scheme

In the fusion module, the output prediction is improved by combining information from the two
different sources in a meaningful way. The process of correlating data between the two sensors is
addressed with the adaptive ROI projection described in Section 5.3. This preliminary fusion step
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ensures the correspondence between the outcome of the sensors, permitting further exploitation of
their relationship.

The decentralized fusion scheme employed in this study uses probability estimations derived from
each detection module. Initially, the outputs of each individual detector have to be mapped to a calibrated
probability distribution. After that, three different approaches of probabilistic fusion are assessed to
obtain a final estimation of certainty.

6.1. Calibrated Probabilities

The fusion scheme is focused on providing increased accuracy by integrating the two distinct
detection methodologies described previously. Since the techniques are based on probabilistic estimates,
the accuracy of those estimates is very important.

Classifiers, like SVM and AdaBoost, tend to maximize the margin between the two classes, and
their calculated scores are shifted away from the typical range of probability values. This bias creates
a distorted probability distribution. A method, f , for transforming the classifier score, x, to posterior
probability is necessary in order to overcome this inconsistency:

x ∈ (−∞,∞)
f−→ P (y = 1|x) ∈ (0, 1)

Considering support vector machines, Platt [29] proposed that this could be accomplished by passing
the output of the classifier through a parametric sigmoid function:

P (y = 1|x) =
1

1 + exp (Ax+ b)
(3)

The parameters of the sigmoid are fitted post-training, using maximum likelihood estimation on a
calibration set (xi, yi), as shown in Equation (4). Gradient descent is used for the minimization process.

argmin
A,b

{
−
∑
i

yilog(pi) + (1− yi)log(1− pi)

}
where:

pi =
1

1 + exp (Axi + b)

(4)

The statistical interpretation of AdaBoost dictates that calibrated probabilities can be obtained by
logistic correction. In this case, the theoretically proven parameters of the sigmoid are A = −2 and
b = 0 [32]. This method works in the case of decision stumps, but when decision trees with more
splits are used, the calibration tends to be poor. Similarly to SVM, Platt’s scaling method has been
experimentally tested with AdaBoost and other large margin classifiers, providing good calibration
results [30].

6.2. Fusion Techniques

A probabilistic framework is incorporated to combine the outputs of the classifiers. The outputs
inferred from the sensor data, z, are considered as conditional probabilities that depend on the
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underlying state, x, of the object under examination. Their likelihood is denoted as Λi(xj) = P (zi|xj),
where i is the label of the sensor, zi ∈ {zl ≡ laser, zc ≡ camera}, and j corresponds to the states,
xj ∈ {x1 ≡ person, x2 ≡ not person}. When an observation is made, the sensor reading is considered
fixed, and i is known; thus, the likelihood function, Λi(xj), is considered a distribution in xj .

A reasonable hypothesis is to assume the same confidence for both sensors, so the same weight
is assigned to them in every fusion technique. Their likelihood is finally combined to compute the
posterior probability, which corresponds to the presence of a person, P (x1|zl ∩ zc). Three different
formulas—maximum, average and Bayesian-average—are evaluated for the purposes of comparison.
The first two are simple and straightforward. The maximum formula is expressed as:

Maximum(P (x1|zl ∩ zc)) = max
i=l,c

(Λi(x1)) (5)

while the average formula is:

Average(P (x1|zl ∩ zc)) =

∑
i=l,c

(Λi(x1))

2
(6)

The third fusion technique is inspired and derived from the Bayes theorem. In this formulation, a
posterior distribution, P (x1|zl ∩ zc), can be expressed as the normalized product of the likelihoods,
Λi(x1), given the presence of a person. From Bayes theorem, this can be directly written as follows:

P (x1|zl ∩ zc) =
P (zl ∩ zc|x1)P (x1)

P (zl ∩ zc)
(7)

The joint distribution, P (zl ∩ zc|x1), must be known for computing the posterior probability, which
is generally a difficult and complex task. In practice, the information obtained by different sources,
zl and zc, can be considered independent when conditioned on the real underlying state of the object.
Although this condition does not always stand true, it facilitates the computation of the combined
posterior probability for different values of the state. The resulting equation is known as the independent
likelihood pool [37]. Moreover, Equation (7) depends on prior information, P (xj), representing any
previous knowledge about the occurrence of the states. Under the strong assumption that individual
states are described by a uniform prior, U(xj), the final formula is devised:

Bayes(P (x1|zl ∩ zc)) =

∏
i=l,c

Λi(x1)

P (zl ∩ zc)
(8)

where the denominator constitutes the marginal distribution, which acts as a normalizing factor, and can
be defined as:

P (zl ∩ zc) =
2∑

j=1

∏
i=l,c

Λi(xj) (9)

7. Experiments

In this section, the platform used for testing our methodology is briefly described. First, the
laser-camera calibration procedure is described. Then, the experiments carried out to collect the data
sets are explained in detail. Furthermore, it also describes how the classifier training was made and
which evaluation criteria were used.
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7.1. Calibration

A correct calibration of the sensors is very important for the fusion implementation, because it serves
two purposes. First, the intrinsic calibration provides the focal length (fx, fy) and principal point (cx, cy)
of the camera sensors. It also provides the necessary radial and tangential parameters to compensate
for inherent lens distortion (k1, k2, k3, p1, p2). Additionally, extrinsic laser-camera calibration is used to
obtain the requisite rotation and translation matrices (R, T ), which allow the transformation of a point
belonging to the laser plane, into the image sensor pixel coordinates.

The procedure is formulated by the pinhole camera model, which has been implemented with a
numerical precision of up to sixth order coefficients. First, using the translation and rotation matrices,
the points are converted from the laser frame to a frame fixed with respect to the camera. Next, the points
from the camera frame are perspectively projected to the image plane. The projection to the image plane
is distorted, due to imperfections of the lens. This can be compensated for by undistorting the image
using the distortion coefficients provided by the intrinsic calibration. Finally, the undistorted image
plane coordinates are transformed into the equivalent pixel coordinates of the sensor using the intrinsic
camera parameters of focal length principal point. The procedure is depicted in Figure 5.

Figure 5. Calibration of the laser and camera. Two reference frames are shown, one with
respect to the camera (xc, yc, xc) and another with respect to the laser (xl, yl, xl). The extrinsic
calibration provides the matrices, R, T , containing the rotation and translation between the
two frames. I corresponds to the 2D image plane. The laser plane, L, is defined by yl = 0.

yc

zc
xc

zl

yl

xl

[R,T]

yi

xi

I

L

yl=0

A reference object, such as a flat checkerboard, is used for the calibration process. In order to record
the calibration data, the object is positioned at various distances and orientations with respect to the
sensors. Consequently, the normal vector of the checkerboard is extracted for every image, and the
matching line parameters are computed from the range data. Therefore, to minimize the discrepancy
between them, Zhang and Pless [38] proposed a two-stage process. First, a linear estimation is computed
in order to get a rough estimate of the R and T matrices. Then, their final values are obtained by the
optimization of a quadratic error function. Further improvements in the automatic object extraction and
optimization can be found in [39].
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7.2. Platform

The proposed methodology was assessed using data acquired on board a Summit XLTM mobile robotic
platform developed by RobotnikTM. It is equipped with a range of active and passive sensors, such as an
IMU, a differential GPS, a pan-tilt-zoom camera and a laser range finder, among others. The maximum
speed of the platform, which can be seen in Figure 6a, is three meters per second.

Figure 6. Platform and sensors used in experiments. (a) Summit XL mobile platform;
(b) Hokuyo laser range finder above the Firefly camera.

(a) (b)

In our setup, a Hokuyo UTM-30LX-EWTM is used. It is a laser range finder that provides a
measurement range of 30 meters and an angular range of 270◦ degrees with 40 Hz (scans per second)
acquisition frequency. All data points have a fixed angular resolution of 0.25◦ degrees. The data are
transferred through the TCP/IPprotocol and are collected using a driver built upon the communication
specification protocol of the laser (SCIP). Data points are represented by polar coordinates (φ, ρ).

The vision system consists of a monochrome Firefly MV R© camera by Point GreyTM with a resolution
of 752× 480 pixels, a horizontal angle of view of 59◦ and a frame rate of 60 FPS. The camera uses the
IEEE1394 (FireWire) protocol to send the data through a USB cable. The acquisition was made with
a driver developed using a Linux APIfor FireWire cameras. Automatic CMOSsensor parameters were
used where possible.

Before any data acquisition, the sensors were calibrated both intrinsically (camera) and extrinsically
(camera-laser) with the procedure described in Section 7.1. Both sensors stamp their data with the
acquisition time to enable the synchronization between scans and frames. Figure 6b shows a detailed
image of the two sensors and their geometrical configuration.

7.3. Data Acquisition

The data were gathered while manually driving the platform inside the campus of the School of
Industrial Engineering of the Polytechnic University of Madrid (ETSII-UPM). Three different datasets
were collected in two different places. The first two sets of data were collected in the campus gymnasium,
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the first while the platform was held static and the second while it was moving. Although being a closed
environment, the gymnasium was illuminated with dispersed natural light under cloudy conditions. In
order to record the third set of data, another experiment was carried out in an outdoor area of the campus,
where, usually, a lot of pedestrians pass by. Throughout this experiment, the platform was moving.
Lighting conditions consisted mostly of direct sunlight with temporary cloud interference.

Inside the gym, in the static scenarios, only one person, following a predetermined route, passed in
front of the robot each time. In the moving scenarios, a random number of people passed in front of the
robot while it was moving. The people were walking in random paths, and in many cases, occlusions
have happened, when people have crossed with each other. In one specific scenario, the people were
standing still, while the robot was moving. There were no obstacles between the robot and the people
walking in the gymnasium experiments. Outdoors, the experiments were held in a university campus
area, and the people were walking in front of the moving robot in various directions. Some people were
static and others at a level different from the robot. Furthermore, more occlusions happened when people
crossed with each other or when they interacted with other surrounding elements. The robot’s speed in
the gymnasium was 0.25–0.50 m/s and outdoors, 0.50–0.75 m/s.

The complete set of data consists of 21,550 time-synchronized pairs of laser scans and image
frames. The laser scans were segmented into clusters using the algorithm described in Section 4.1.
The segmentation threshold was initially estimated using methods from [14]. These methods are more
suitable for discerning between human legs. Since the creation of one cluster per person is important for
the subsequent projection, the threshold was experimentally adjusted to the final value of 30 cm. After
the segmentation, a total of 485,420 laser clusters were produced, 43,040 of which belong to humans.
Annotation of the clusters was done manually, aided by vision images where possible. To accelerate the
annotation process, an assistive algorithm was developed. Our entire set corresponds to more than 625
seconds of real world data recordings. Altogether 28 distinct people appear in all three scenarios. A
detailed description of the data sets can be found in Table 3.

Table 3. Overview of the acquired data set. Three scenarios in two different places were
collected in total.

Gymnasium Outdoors
Total

Static Moving Moving

Scans 10,350 10,800 4,000 25,150
Total segments 191,418 191,426 102,576 485,420

Human segments 10,179 22,412 10,449 43,040
Seconds 258.75 270 100 628.75

Persons appearing 6 12 10 28

As has been noted, the vision module only takes part in the classification of a portion of the segments
produced by the laser. The number and the quality characteristics of these clusters vary, depending on
which projection size and method are used. In this work, two different methods are compared. The first
one is the fixed projection window, and the other one is the proposed adaptive projection algorithm. Our
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experiments have shown that in the fixed-width case, a size of 2.4× 1.2 m gives the best results. In the
adaptive projection case, the size of 3.0× 1.5 m corresponds to the maximum scale of the pyramid.

From Equation (1), the range of the fixed window is calculated between 3.33–12.5m, while that of the
adaptive projection is 4.17–15.63m. This increased range means that the critically more distant clusters
are evaluated by both detection modules, something that increases the overall detection performance
and the robustness of the method. Apart from the farther reach, the projective window approach also
increases the operational range from 9.17m to 11.46m. This is the reason why more clusters are
evaluated overall by both modules. Since the fusion of the two outcomes generates better results, this can
be considered another advantage over the fixed-size projection. The difference in the evaluated clusters
is depicted in Table 4, where the fusion data sets corresponding to the adaptive projection method are
significantly larger that their fixed method counterparts.

Table 4. Data sets used for fusion detection. Different ROI projection sizes lead to different
data sets.

Fixed-size ROI Adaptive ROI

Total segments 12,686 18,504
Human segments 10,780 12,531

(a) Gymnasium experiment (moving scenario).

Fixed-size ROI Adaptive ROI

Total segments 27,261 30,543
Human segments 6480 6611

(b) Outdoors experiment.

7.4. Classifier Training and Calibration

Two distinct classifiers were trained and calibrated, one for each detection module. For the laser
module, a Real AdaBoost classifier is used. It is made up of twenty weak classifiers, namely two-split
decision trees. This setting is chosen, after several experiments, on the grounds of performance versus
computational cost tradeoff, while trying to avoid overfitting, as well. Three different feature sets are
compared. The first one is composed of the feature basis of Table 1. The second one is derived by the
addition of distance-based features to the feature basis, and the third consists of the proposed 63-feature
vector that is described in Section 4.2.

The stratified two-fold cross validation (holdout method) is used to produce the results. The training
and test sets are derived from the complete data sets of Table 3. First, the training is done on the training
set and the evaluation on the test set, followed by the reverse order. This way, each cluster on the test
set is used both for training and evaluation. A separate classifier is trained and tested for each one of the
three data sets.
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Furthermore, the generalization properties of the method are also tested. A classifier is trained using
the complete data set from the gymnasium moving scenario. It is then tested on the data from the
outdoors scenario. The procedure is also done vice versa. This gives an insight of how well each feature
set can adapt to a new environment.

For the vision module, two established, openly available databases were used. The first one is
the MIT pedestrian image database, which consists of 924 pedestrian images (positive) limited to
frontal and rear views [40]. The second one is the more challenging and complete INRIA person
database [11]. The picture quality of the databases is very similar to the one produced by the camera used
in our experiments. The rationale on using established databases over a proprietary data-set is because
they cover a large number of human poses in a large variety of scenes that would be very difficult to
replicate within our experiments. Using a restricted database could possible harm the generalization of
the method, and since the objective of the proposed system is to be applied in a diverse environment, a
more versatile approach was adopted.

The INRIA training set contains 2,416 positive images and 1,218 negative images, and the test set
contains 1,126 positive and 453 negative images. Positive images from both databases are scaled to a
size of 128 × 64 pixels, with the person located at the center of the image. Around the person, there
is a sixteen pixel-wide margin. People appear in various poses and orientations in a broad range of
backgrounds. From each non-pedestrian image of the INRIA database, a number of negative cropped
images are randomly extracted, both for the training and the testing sets.

The HoG descriptors, computed for each image of the dataset, were used to train an SVM classifier.
After some initial tests, it was observed that non-linear kernels show very small improvement—less
than two percent—in comparison with the linear case. This improvement was accompanied by a
disproportional increase in the computational cost. In their work, Dalal et al. [11] have drawn analogous
conclusions. Furthermore, our results have not shown observable overfitting, neither in the initial cross
validations tests nor with the final test set. Under the assumption that the database is uncorrelated, this
can be attributed to the relatively high ratio between the input vector dimension and the training dataset
size. For such reasons, the implementation used in this work is based on the linear version of the method.
The only choice that had been made was the value of C, which modulates the importance of outliers
lying beyond the support vectors. Using a relatively small value (0.01) means putting less importance on
outliers and results in the training of what is commonly mentioned as a soft SVM classifier.

The training procedure consists of two steps. First, a preliminary linear SVM classifier is individually
trained using the randomly extracted negative samples described above. Afterwards, all the negative
images are exhaustively searched over the space-scale pyramid using the preliminary classifier. Every
example that is falsely classified as one containing a human (false positive) is considered a hard example,
and it is added to the negative training pool. The final SVM classifier is trained using the extended
negative training set constructed in the previous step. These preliminary and final training sets along
with the test set can be seen in Table 5. The final classifier is evaluated on the aforementioned test set,
and the resulting confusion matrix is presented in Table 6. Note that the true negative ratio in this table
serves as an approximation of the probability, p, in the binomial distribution expressed in Equation (2).
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Table 5. Data sets used for support vector machine (SVM) classifier training.

Preliminary Training Final Training Testing

Positive (Human) [INRIA,MIT] 3,340 3,340 1,126
Negative (Non-human) [INRIA] 12,800 47,229 4,530

Table 6. Confusion matrix of the final HoG-SVM classifier on the INRIA test set. The
percentages in parenthesis are computed horizontally and correspond to TPR, FNR, FPR
and TNR, respectively.

Predicted Label
Human Non-human

Actual
Human 1,071 (95.12%) 55 (4.88%)

Non human 40 (0.88%) 4,490 (99.12%)

After the training of the classifiers, the probability calibration is necessary in order to obtain accurate
fusion results. As explained in Section 6.1, Platt’s scaling method is used for extracting the parameters,
A and b, of the sigmoid in Equation (3). As a calibrating set, the test sets of each classifier are
used. The results for the SVM are A = −3.82, b = 0.56 and for the AdaBoost, A = −1.78,

b = −0.067, accordingly. It is worth noting that when stumps (one-split decision trees) were used
in our experiments as weak classifiers for boosting, the theoretically expected values of A = −2, b = 0

were experimentally verified.

8. Results

The results of a classifier are often presented in the form of confusion matrices. Unfortunately, when
several data sets are used, confusion matrices become relatively difficult to compare. In order to facilitate
the comparison of results, a combination of three well-known metrics that capture the classifier behavior
in total are used: precision, recall and specificity. Recall is otherwise referred to as sensitivity or the true
positive rate, while specificity is also known as the true negative rate.

For the visualization of the results, various modalities exist in the literature, such as the receiver
operating characteristic (ROC) curves and precision-recall graphs. In our work, detection error tradeoff
(DET) graphs are chosen in order to simplify performance comparison. DET plots are variants of ROC
curves that provide better insight when a particular operating range is of principal interest [41]. The false
positive rate between 10−3 and 10−1, which is the most important in our case, is well articulated using
this method. It thereby facilitates comparison.
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8.1. Laser Module Results

First, the laser module on the complete acquired data sets, as described in Table 3, is evaluated. Three
feature sets are used to train two distinct Real AdaBoost classifiers in each scenario: the basis feature set
of Table 1, the basis with distance features added (Basis + DIST) and the proposed feature set.

It is observed that, regardless of the feature set used, the experiments carried out indoors give better
results than those performed outdoors. Likewise, static experiments in the gym are easier than the
moving experiments in the same scene. This can be attributed to the different complexities of the scenario
and to the fact that outdoors, there is more noise in the data, due to direct sunlight illumination, terrain
irregularities and other factors.

More specifically, the results show that the Basis + DIST feature set performs better in the
experiments carried out inside the gymnasium, while the set proposed here is better suited for the
outdoors environment. The simple basis set without the distance features has inferior performance in all
experiments in comparison with the other two features sets. In the moving scenarios of the gymnasium
experiment, the Basis + DIST feature set provides a 1.5% increase in recall and precision when compared
to the proposed one. On the other hand, outdoors, our proposed set provides an improvement of more
than 3.5% in recall and more than 2% in precision over the Basis + DIST set performance. These
findings are also evident in the DET plot in Figure 7a, where it is shown that the proposed feature set
provides better recall rates over the complete operating range in the outdoors experiment. At the same
time, the Basis + DIST set offers an increase over the basis set of more than 10% in recall and 3.5%

in precision for the gym experiment, but only a smaller increase in recall of 3.4% outdoors, affirming
that distant-dependent features are less important in outdoor scenarios. Detailed metrics are shown
in Table 2.

On the second experiment, the training and test sets correspond to different scenarios. In this
case, the importance of using distance-independent features becomes more apparent. As observed in
Figure 7b, the proposed feature set generalizes and performs better than the Basis + DIST set for
the whole operating range. Specifically, when the outdoor data were used as the training set and the
gymnasium data as the test set, the gain in recall is more than 10% for false positive rates less than 10−2.
From the same figure, it can be deduced that the normal basis set performs very similarly to the Basis +
DIST set and even better in the critical operational range between 10−3 and 10−2. This further solidifies
the hypotheses that the inclusion of distance-dependent features may harm the robustness of the method.

Another interesting conclusion that can be drawn from this graph is that, when data from outdoors are
used for training and data from the gymnasium are used for testing, the classifiers perform significantly
better than the opposite case. This was somewhat expected, since outdoor environments are generally
more diverse or difficult. In the gymnasium experiments, the information is more canonical and cannot
embrace the additional perplexity.

Generally, the results can be explained in the sense that the indoor readings are significantly
confined from the surrounding structures. In a setting like this, distance-based features can be highly
discriminative. On the contrary, in large outdoor environments, the same restrictions do not usually
occur, and the need for a more generalized feature set becomes apparent. Additionally, in such
environments, the information available is more noisy, due to sunlight, platform vibration and other
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uncontrolled factors; thus, the clusters are represented by a varying number of points. The proposed
feature vector is able to encompass these variations, and the classifier learns to discriminate the data
better. Most importantly, using our method results in a more robust training of the classifier, helping it to
perform better in diverse scenarios, even if it was trained with a different dataset. This aspect is crucial
for applications in autonomous large infrastructure surveillance.

Figure 7. Laser feature sets—detection error tradeoff curves. In both figures, the green
line corresponds to the basis feature set, the red line to the basis plus the distance features
and the blue line to the proposed feature set. (a) The training and test sets are acquired
from the split up of same experimental data: solid lines indicate the gymnasium and dotted
lines the outdoors data sets, respectively. (b) Solid lines signify that the outdoor data set
is used for training and its gymnasium counterpart for testing. Dotted lines signify the
reverse procedure.
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(b) Cross experiment validation.

Finally, it should be noted that although the feature vector in the proposed set is much larger, the
execution speed is the same or even better. This happens because in the real time applications, only
the feature subset chosen by the trained AdaBoost classifier needs to be extracted instead of the whole
feature set.

8.2. Fusion Results

For the fusion experiments, only the two moving scenarios were taken into account. Comparisons
are considered in two domains: first, between the performance of individual sensors and the three
fusion techniques—maximum, mean, Bayes—presented in Section 6.2; second, between the fixed and
proposed adaptive projection methods. Data sets are shown in Table 4, and their difference is explained
in Section 7.3.

Some common observations can be made from the results of both experiments in Tables 7 and 8.
First of all, it should be pointed out that since the datasets for the adaptive and fixed-size projections are
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of different sizes, direct comparison of the results cannot be entirely conclusive. Nevertheless, the two
datasets are highly correlated, because they are obtained by the same raw data. Additionally, the dataset
of the adaptive method should be considered of higher complexity, not only because of its larger size,
but because it includes samples lying at further distances from the sensors. This increase in maximum
distance, from 12.5m to 15.63m, generally results in more noisy data, thus rendering the classification
task more difficult.

Table 7. Gymnasium experiment results. Comparison of the fixed (a) and the proposed
adaptive (b) projection methods. The performance of using each sensor individually is also
compared with three different information fusion techniques. The data sets used for these
results are shown in Table 4a.

Individual Sensors Information Fusion
Laser Camera Maximum Mean Bayes

Precision 99.29% 99.85% 99.26% 99.82% 99.82%
Recall 92.61% 91.33% 98.15% 94.58% 94.58%

Specificity 96.28% 99.21% 95.86% 99.01% 99.01%

(a) Fixed-size projection.

Individual Sensors Information Fusion
Laser Camera Maximum Mean Bayes

Precision 98.44% 99.54% 98.44% 99.88% 99.88%
Recall 90.72% 95.68% 99.27% 95.20% 95.20%

Specificity 97.12% 99.05% 96.65% 99.76% 99.76%

(b) Adaptive projection.

Equivalently to the laser-only detection, the gymnasium scenario turned out to be easier than
outdoors. What also becomes apparent is that fusion methods have better detection rates than the
individual detectors in every case. More specifically, over the laser-only approach, all metrics are
improved with mean and Bayesian fusion. Maximum fusion is primarily shown for comparison.
However, it can be considered a reasonable choice when high recall is of great importance or when the
specificity and precision of the individual classifiers is high, as observed in the gymnasium experiments.

Another finding is that the laser recall is decreased when the adaptive projection is used. This can be
mainly attributed to the increased detection range, which allows more hard clusters to be evaluated. Less
information is available for the clusters that are far away, so it is more difficult to classify them. Despite
that fact, the vision module performs even better in this case, manifesting an important advantage of the
adaptive approach. In both experiments, the improvement over the fixed-size method is more than 4%.

In the gymnasium experiment, the gains by fusion are moderate. The individual classifiers are already
very accurate. Nevertheless, using the fixed projection, an increase of almost 2% in recall can be
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seen, and with the proposed method, the increase is slightly less than 4.5%. Precision and specificity
improvement, over the laser results, in both cases, is more than 2.5%. It needs to be clarified that the
results of mean and Bayesian fusion appear to be the same because the same threshold value has been
used (0.5). Their quantitative and qualitative differences are depicted in detail in the DET curves of
Figure 8. From these plots, it can be deduced that Bayesian fusion is better when the fixed projection
size is used with a miss rate of 3.5% at a 10−2 false positive rate. With the adaptive projection, the mean
rule provides the best tradeoff, with a 2.4% miss rate at the same false positive rate. Note that direct
comparison with the individual sensor curves is not applicable, since the operating point can be adjusted
independently for each one.

Table 8. Outdoor experiment results. Comparison of the fixed (a) and the proposed
adaptive (b) projection methods. The performance of using each sensor individually is also
compared with three different information fusion techniques. The data sets used for these
results are shown in Table 4b.

Individual Sensors Information Fusion
Laser Camera Maximum Mean Bayes

Precision 86.22% 87.17% 85.51% 99.63% 99.63%
Recall 69.43% 83.15% 91.17% 79.83% 79.83%

Specificity 96.54% 96.18% 95.18% 99.99% 99.99%

(a) Fixed-size projection.

Individual Sensors Information Fusion
Laser Camera Maximum Mean Bayes

Precision 85.02% 86.42% 81.55% 98.58% 98.58%
Recall 64.38% 87.52% 93.01% 82.95% 82.95%

Specificity 96.87% 96.20% 94.19% 99.67% 99.67%

(b) Adaptive projection.

The fusion in the outdoors experiment, in general, and the adaptive projection method, in particular,
demonstrate a considerable increase in metrics. As far as individual classifier performance is concerned,
when the adaptive projection is used, the vision module performance increases by more than 4.3%, while
the laser module recall drops by more than 5%. This is because the laser module is heavily affected by the
inclusion of further, more difficult to classify, clusters. Fusion with the fixed-width projection improves
recall, precision and specificity by more than 10.4%, 13.4% and 3.4%, respectively. In the adaptive
projection, recall is boosted by more than 18.5%, precision by 13.5% and specificity by 3.2%. The most
prominent improvement in recall is when the maximum fusion ruled is used. In this case, the increase
is almost 22% for the fixed-window projection and greater than 28% for adaptive projection. Detailed
results can be found in Table 8. Similarly to the gymnasium experiment, the Bayesian rule gives better
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tradeoff curves when the fixed-size projection is used and the mean rule in the adaptive method, as
can be observed in Figure 9. Overall, the advantage of the adaptive projection is twofold: significantly
improving the fusion results, while providing further detections and a larger operating range.

Figure 8. Gymnasium experiment detection error tradeoff curves. The curves are plotted
for each sensor individually and, also, for the three fusion techniques. Fixed-size (a) and
adaptive (b) projection techniques are compared.
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Figure 9. Outdoors experiment detection error tradeoff curves. The curves are plotted
for each sensor individually and, also, for the three fusion techniques. Fixed-size (a) and
adaptive (b) projection techniques are compared.
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(a) Fixed-size projection.
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The visualization of the detection algorithm in Figure 10 gives a qualitative view of the proposed
methodology. They include various people crossing each other and moving along the surroundings, in
both experimental scenes.

Figure 10. Detector images from the gymnasium (a), (b) and outdoor experiments (c), (d).
The boxes above each cluster give the probability of the laser and image detection modules
and the mean fused probability. Cluster distance is shown at the bottom of the enclosing
rectangle. (a) Typical scenario with multiple people, movement in various directions and
occlusions. (b) The laser module does not detect the right person correctly. Due to correct
camera classification, the person is eventually detected after fusion. (c) Outdoors, the
laser detector performance is considerably lower. (d) The right person (blue rectangle) is
misclassified from both sensor modules. The person in the middle is too close to the camera;
in this case, the cluster is evaluated by the laser classifier only. Persons hidden by the bench
on the right are not detected by the laser.
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Since the system is designed to be used in real-time surveillance, computational efficiency is also
of high importance. The results presented here were produced by offline processing of data using a
prototype of the method. At the same time, a speed optimized version was developed. Although not yet
fully deployed, preliminary tests show an execution rate of more than 8Hz, depending mainly on the
number of clusters and, to a lesser extent, on their distance from the camera.
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Certainly, our approach shows some shortcomings. First, the detection range is restricted by the vision
sensor resolution. Fortunately, this can be resolved by utilizing another sensor. The cost in speed will
not be significantly affected, due to the downscaling step at the beginning of Algorithm 2. Moreover,
uneven terrain levels and rapid accelerations of the mobile platform can be addressed by the adaptive
projection method only to a certain extent.

9. Conclusions

This work has demonstrated that it is feasible to accurately detect human presence from a robotic
mobile platform using information from both laser and vision sensors. It is observed that meaningful
fusion significantly improves the performance over single sensor detection. Furthermore, an adaptive
method to address the issue of misalignment of image projection is introduced. This method was shown
to outperform fixed-size projection methods, while providing longer and further detection range. For
the laser detection domain, a scene independent feature set based on state-of-the-art characteristics has
been created. By utilizing normalization techniques, the classifier learns feature variations. It is also
observed that the proposed feature set performs and generalizes better than previous approaches. Finally,
a classifier probability calibration step was introduced in order to facilitate the information fusion from
the two modules. The effectiveness of our method was verified through extensive tests on real world
data, which were collected from diverse experimental scenarios.

Future work will be focused on integrating the input from the fusion detector within a tracking
framework for developing a human following system. Vision data could also be exploited to distinguish
among different people being tracked. Moreover, extending the method for use with a distributed
multi-robot system is an ongoing line of work in our research group.
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