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Abstract: Mobile mapping systems (MMSs) are used for mapping topographic and urban 

features which are difficult and time consuming to measure with other instruments. The 

benefits of MMSs include efficient data collection and versatile usability. This paper 

investigates the data processing steps and quality of a boat-based mobile mapping system 

(BoMMS) data for generating terrain and vegetation points in a river environment. Our aim 

in data processing was to filter noise points, detect shorelines as well as points below water 

surface and conduct ground point classification. Previous studies of BoMMS have 

investigated elevation accuracies and usability in detection of fluvial erosion and 

deposition areas. The new findings concerning BoMMS data are that the improved data 

processing approach allows for identification of multipath reflections and shoreline 

delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) 
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and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS 

ground points classification compared to manually classified data. We also demonstrate the 

spatial variations of the ground point density and assess elevation and vertical accuracies of 

the BoMMS data. 

Keywords: mobile laser scanning; ground point classification; data processing;  

digital elevation model; filtering; river survey; fluvial geomorphology  

 

1. Introduction 

Laser scanning (LS) is widely used to create accurate 3-D descriptions such as digital elevation 

models (DEMs) for natural and urban environments. LS methods can be divided into three main 

categories: airborne laser scanning (ALS), terrestrial laser scanning (TLS) and mobile laser scanning 

(MLS). The latter has become a common technique when objects need to be modelled from a 

terrestrial point of view. Data provided by an MLS system can be characterized by a point density  

in the range of 100–1,000 pulses per m
2
 at a 10 m distance from the scanner and with an  

operational scanning range between 1 and 100 m [1]. With the use of improved georeferencing and 

calibration of systems, mobile laser scanning in controlled conditions can achieve elevation and  

planimetric accuracies (std) of 1–4 cm [2]. An overview of mobile mapping systems is presented by  

El-Sheimy [3], Graham [4] and Petrie [5]. 

In order to reliably determine the terrain information for the DEM creation, filtering of the LS data, 

i.e., classification of the point cloud into terrain and non-terrain points, is essential. Many algorithms 

have been developed for filtering ALS data, but these approaches are also relevant to the filtering of 

other point cloud data, e.g., TLS, multibeam echo sound data or point clouds obtained by automated 

image matching [6–8]. The filtering methods include morphological filters [9–12], densification 

methods [13,14], surface based filters [15,16] and segmentation based filters [17,18]. In the case of 

MLS data, higher point density has to be considered, for example when selecting the parameters of the 

algorithm. In many cases, the huge volume of MLS data requires it to be divided into blocks. In 

addition, trajectory information can be utilized for DEM generation. Leslar et al. [19] combined two 

different types of algorithms for the detection and filtering of outliers in point clouds collected using 

MLS. The practical performance of different algorithms is tested with an international filter test [20]. 

A good overview of the ground filtering methods used is presented by Meng et al. [21]. 

MLS products such as DEM or 3D-maps require effective and automatic processing  

methods. The studies of usability and data processing of MLS data have mainly focused on urban 

environments, i.e., [22–25]. Performance of a mobile mapping system in urban areas has been 

evaluated by Haala et al. [26]. In natural landscapes the MLS-based applications have been discussed 

in the context of tree inventory [27,28], coastal mapping [29,30] and fluvial geomorphology [31]. The 

state-of-the-art multi-platform MLS systems and their usability and performance have been discussed 

by Kukko et al. [32].  

Recently, the use of LS data in fluvial studies has rapidly increased. Detailed DEMs derived from 

LS data can be used to improve the recognition of fluvial landforms, the geometric data of hydraulic 
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modelling, and the estimation of flood inundation extents and fluvial processes [33]. Furthermore,  

LS techniques have been considered promising for the hydraulic analyses of riverbank and floodplain 

vegetation [34,35]. However, there are only few MLS-based studies related to river environment. One 

of the newest applications for riverine mapping is the boat-based mobile mapping system (BoMMS). 

The BoMMS is a system primarily developed for urban mapping [36,37], but it has been frequently 

used for environmental applications [32,38,39]. The system enabled surveying a reach of approximately 

six kilometres in length in 85 min [38]. In our previous studies [31,38,39], we evaluated the use of 

BoMMS data for detecting fluvial erosion and deposition areas. The quality of BoMMS-produced 

DEMs and elevation difference maps compared to TLS control data has also been assessed. Despite 

previous studies, its full potential and data characteristics related to river environments should be 

studied in more detail. 

The primary aim of this paper is to develop a data processing approach that is capable of generating 

terrain and vegetation points from BoMMS data while allowing for the identification of multipath 

reflections, delineation of shoreline, and consideration of bathymetry data. The secondary aim is to 

evaluate the accuracy of the BoMMS ground points classification compared to manually classified 

data. In addition, we demonstrate the spatial variations of the ground point density and assess elevation 

and horizontal accuracies of the BoMMS data. 

2. Study Site and Data Acquisition 

2.1. Test Site 

The test site is located along the River Pulmankijoki, a 58 km-long tributary of the Tana River in 

the sub-Arctic, flowing across the border between Finland and Norway at 69.95° N latitude and 28.10° E 

longitude where Lake Pulmankijärvi divides the river into two parts. On the Finnish side, the river 

builds up a small delta into the lake. The river has eroded a 30-m deep and 20 to 50-m wide channel 

into glacio-fluvial sediments. The river is characterized by steep banks, sensitivity to erosion, sandbars 

and bushy vegetation. During the spring flood period caused by the snowmelt, the water level can be 

several meters higher than in autumn. The seasonal discharge ranges from 4 to 50 m
3
/s so that the 

typical spring flood discharge is ~40–50 m
3
/s decreasing to 4–10 m

3
/s by the middle of June. The 

geomorphology of the study site is described in detail by Kasvi et al. [40] and Alho and Mäkinen [41].  

2.2. Mobile Laser Data Collection with the BoMMS  

The BoMMS measurements were conducted at the Pulmankijoki River site in late summer (late 

August–early September) in 2010, as during that time the water level was at its lowest and the  

non-vegetated point bars were as visible as possible. However, during this season, low vegetation is 

dense along the other part of the channel, reducing the number of laser pulses returning from bare 

ground. Figure 1 shows the BoMMS system on a boat installation and Table 1 presents the system 

parameters used in the data collection.  
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Figure 1. The boat-based mobile laser scanner used in the study.  

 

Table 1. System parameters of BoMMS in 2010. 

Scanner FARO Photon 120 

Point measurement rate/Pulse repetition frequency 244 kHz 

Scanning frequency 49 Hz 

Point spacing of adjacent points in profile at 3/25/50 m 3.8 mm/3.2 cm/6.3 cm 

Along-track point spacing for speeds of 1–2 m/s 2.0–4.1 cm 

The nominal boat speed during data acquisition was 1–2 m/s, where the along-track point spacing 

(dalong) can be calculated as: 

dalong = v/fsc (1) 

where v is the platform speed and fsc is the scanning frequency [42]. The point spacing of adjacent 

points (dacross) in a profile projected on a plane perpendicular to the beam at the range r is given by:  

dacross = 2πrfsc/fpr (2) 

where fpr is the pulse repetition frequency. The typical mapping range of the BoMMS in this study 

varied from 3 m to 50 m. 

The BoMMS consists of a global positioning system and inertial measurement unit (GPS-IMU) 

navigation system and a laser scanner combined with data synchronization and recording devices. 

Panasonic Toughbooks (CF-19 and CF-29) were used for scanner and navigation system operation and 

recording. Optionally, a camera system can be added for extraction of color information from the 

object. The GPS-IMU system uses the NovAtel DL-4plus receiver and a GPS-702 antenna capable of 

receiving L1 and L2 frequencies. The inertial measurement unit (IMU) employed is the Honeywell 

tactical-grade HG1700 AG58 IMU based on ring laser gyro (RLG). The GPS-IMU provides position 

and attitude data at 100 Hz for georeferencing the laser data in post-processing. The absolute error  

of the BoMMS is mainly dependent on the GPS-IMU navigation solution that can be provided in  

real-time, or more accurately through post-processing by means of the tactical-grade GPS-IMU. 



Sensors 2013, 13 12501 

 

 

Another major impact on performance is a system calibration. Hence, the accuracy can be improved by 

performing a field calibration, i.e., using test field TLS data in estimating the bore-sight parameters of 

the MLS system [32]. For GPS correction, GPS reference station data is typically downloaded from a 

virtual GPS network service, or a standalone reference station is used in places outside the virtual 

network stations. In Pulmanki reach, a standalone reference station was used. The distance of the 

baseline from the reference station to the system varied from 0.5 km to 1.5 km. 

The BoMMS uses the FARO Photon 120 scanner providing a scan frequency range of 3–61 Hz  

and a point measurement rate of 120–976 kHz with maximum range of 150 m. Point measurement 

accuracy of the scanner is 2 mm with 1 mm repeatability for a 90% reflective target, according to the 

scanner manufacturer, but that depends on the object surface type, reflectivity and angle of incidence 

in practice. 

2.3. Reference Data 

To assess the BoMMS data quality of the z- and xy-coordinates, we installed spherical targets along 

the river reach. Two different target sizes were used, 145 mm and 198 mm in diameter. The spheres 

were positioned with RTK-GPS using the same reference station as BoMMS. RTK-GPS measurements 

enable a 10 mm + 1–2 ppm horizontal and 15–20 mm + 2 ppm elevation accuracy for the sphere target 

locations [43]. We measured the larger spheres by replacing the sphere with GPS-antenna on a 

common mount. The positions of the smaller spheres were measured from the top of the sphere, and 

we applied pre-defined calibration offsets between the centre of sphere and the GPS antenna phase 

centre. The spheres were located close to the water line, and the distances from the boat were 10–30 m. 

In addition, the spheres were placed evenly throughout the test site and on both sides of the river.  

3. Data Processing  

Noise point filtering, identification and processing of water area points and ground point 

classification were undertaken during data processing. The data processing chain for the terrain point 

classification is depicted in Figure 2. We converted profile laser data into georeferenced point clouds 

by assigning each of the mobile laser points the appropriate time stamp and coupling it with the 

trajectory information from the GPS-IMU system. The BoMMS uses the bi-trigger synchronization 

method, which delivers scanner triggers to the receiver log [44]. During the measurements, a time 

stamp was recorded for every laser scanning profile and further measurement time was interpolated  

for every scanning point. Waypoint Inertial Explorer software was used to compute the laser  

scanner trajectory [32]. 

Figure 2. The processing chain for BoMMS point cloud data. 
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After data acquisition, we employed three methods for filtering the non-object points of the 

georeferenced data (707 million points) from the 4.5 km trajectory. These methods were carried out 

individually on the 103 files collected. 

3.1. Automatic Filtering Steps  

Noise points are a typical feature in a point cloud because the system uses a phase difference 

scanner. In a river environment in particular, reflections from the water surface produce erroneous 

measurements below the ground and river bed. Our data also included some noise points above the 

ground surface (Figure 3). Typically, most noise points have a relatively low intensity value, in which 

case they can be filtered out by an intensity threshold. The appropriate threshold was determined from 

test sample so that it does not remove real observations from the targets and then we performed this 

filtering step for the entire dataset. The applied intensity threshold was 500 (scale 0–2,044). Some of 

the erroneous measurements were also filtered using absolute elevation by defining the lowest/highest 

object, i.e., from benthic layer and tree canopy, and deleting the points below/above this defined 

elevation. In addition, the removal by range from the scanner is useful when the point cloud far from 

the scanner is not coherent due to obstacles. After intensity and absolute elevation based filtering, there 

were still noise points with low density. Hence, we removed the remaining erroneous measurements by 

computing the number of points within a certain radius in the air and removing the points if the density 

was less than the threshold. In our study, the system-specific threshold applied was 10 pts within a  

50 cm radius sphere.  

Figure 3. The intensity coloured point cloud and the front view of the river bank. (a) Data 

with noise points. (b) Data after noise point filtering and removal of the points below  

water surface.  
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After the filtering steps, the data was divided into blocks (around 5–15 million points per block) for 

verifying the quality, cutting the points below water surface manually or repeating the point density 

based filtering method with different parameters and classifying the terrain points. The blocks were 

organized according to the trajectory. The filtered points contained 150 million points. Dividing the 

data into smaller block sizes makes the processing of larger projects more manageable. 

3.2. Identification and Processing of Water Area Points 

One part of data processing was the classification of water area points. These points can either be 

returns from the benthic layer or water column, or they can be noise or multipath reflections. By 

identifying MLS data characteristics related to water area, we can improve the quality of processed 

point clouds and separate water from land.  

3.2.1. Multipath Reflections  

Our measurements revealed that the onshore points can have mirrored points if the angle between 

water surface and laser beam is lower than the steepness of the ground (Figure 4). The multipath 

reflections produce extra points, which can be identified and removed locally by defining the height of 

the water surface. The effect appears in sloped terrain or because of the presence of vegetation near the 

shoreline. In this study, these points were removed manually. Otherwise, these points can also be 

removed automatically if the water surface can be estimated throughout the study area.  

Figure 4. The point cloud profile demonstrates multipath reflections underneath the water surface. 

 

3.2.2. Detection of Bathymetry Using BoMMS 

The use of red and infrared laser beam for collecting bathymetric data is limited because at these 

wavelength lasers do not penetrate the water column very well. However, in this study, we intend to 

show that it is possible to acquire bathymetry data (Figures 5 and 6) at a wavelength of 785 nm  

(Faro Photon 120 scanner) in shallow (0–1 m) and clear water when the scanner is mounted on boat 
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and near the water surface. The incidence angle at water surface varied approximately between 25° and 

80° concerning bathymetry data. The smaller than 25° angles were occluded by boat. 

Figure 5. (a) Intensity image of the point cloud. The trajectory of the BoMMS is clearly 

visible as the occluded area in the middle of the river. The intensity value clearly changes 

at the border of the land and water areas; (b) The elevation coloured bathymetry points 

from the same area and digitized shoreline; (c) UAV mosaic; (d) Cross-sectional profile of 

the channel and point bar (location of the profile is marked on (a)). 
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We used 337 independent bathymetry elevation points surveyed with an Acoustic Doppler Current 

Profiler (ADCP) to provide reference data for the BoMMS. The comparison area consisted of sandy 

sediments. The grain sizes are analyzed by Kasvi et al. [40], varying mostly between 0.1 and 2 mm. 

The sensor was mounted on a remotely controlled miniboat. The measurement locations were measured 

with VRS-GPS (1 Hz) and the xy-coordinates were merged with the ADCP depth data in post-processing. 

The GPS and ADCP measurements had a maximum of 0.5 s time difference, which could cause a 

horizontal error of up to 10 cm. The ADCP measures depths greater than 0.18 m and its vertical beam 

sonar is rated to have a maximum error of 2.5% of depth. In addition, the MLS points were 

uncorrected in relation to the refraction of light at the water surface and the speed of light in water. The 

elevation difference (MLS-ADCP) is plotted against the elevation derived from ADCP measurements 

(Figure 6). Vertical errors ranged from 0.228 to −0.123 m, with a mean of 0.061 m and a standard 

deviation of 0.076 m. If the resulting bathymetry point cloud is to be used for DEM production, the 

data will require correction for refraction before registration [45]. We classified these points manually 

as they were clearly distinct from the dry areas or by determining the shoreline if the point cloud 

continued under the water surface (see Figure 5b). 

Figure 6. Vertical errors of MLS bathymetry points. ADCP measurements were used to 

provide reference data. The elevation of the water surface was detected with ADCP to be 

around 36.85 m. There are no ADCP points for the first 18 cm of depth.  

 

3.2.3. Shoreline Detection 

The shoreline needed to be determined in the relatively flat areas where the point cloud continued 

under the water surface. For these cases, the shoreline was determined manually by identifying the 

intensity change at the water-ground boundary (Figures 5a,b and 7). The typical intensity value used  

to delineate the shoreline, ranged from 600 to 800 (scale 0–2,044). The determination was partly 

disrupted by the vegetation growing near the shoreline and above the water surface. In that case, the 

determination of the shoreline was easier if the potential shoreline points were initially classified by 

using the elevation value, e.g., selecting the points ±0.5 m from the estimated water surface. 
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Figure 7. The profile of MLS points on the water–ground boundary indicates that intensity 

distribution is useful for identifying the shoreline from MLS data. For comparison, the 

ADCP retrieved water level was approximately 37.05 m. 

 

3.3. Terrain Classification 

Ground point classification was determined using the method described in Axelsson [13]. The 

method has achieved competitive results in ground filtering tests [20,21]. Meng et al. [21] reported that 

the method outperformed in comparison to nine other ground filters on sites with rough terrain or 

discontinuous surfaces. The method was originally developed for DEM generation from airborne laser 

data, but in this paper we assess the performance of the method for BoMMS data. The algorithm 

classifies terrain points by iteratively building a triangulated surface model. The method starts by 

selecting some seed points that are high probability ground points. These points are selected within a 

user-defined grid (parameter 1). The algorithm assumes that the grid area will have at least one hit on 

the ground and that the lowest point is a ground hit. Hence, the algorithm requires a careful filtering of 

erroneous points below the ground surface before execution. Seed points are selected to form an initial 

model. The routine then starts to densify the model by iteratively adding new laser points to it. In each 

iteration, a point is added to the model if the point meets certain criteria in relation to the triangle that 

contains it. The criteria are that the angle (parameter 2) a point makes to the triangle must be below a 

certain threshold and the point must be within a maximum distance (parameter 3) of the nearest 

triangle node. At the end of each iteration, the TIN and the data-derived thresholds are recomputed. 

The iterative process ends when there are no more points below the threshold.  

4. Evaluation of Data Quality 

4.1. Accuracy Assessment of the Ground Point Classification 

One of the most useful properties of the BoMMS system in the river environment is the mapping of 

topography changes on erosion-sensitive point bars and banks. Therefore, we evaluated the ground 

point classification accuracy on a steep (around 30–40 degree) and sparsely vegetated bank (Figure 8). 

The size of the test site was around 25 × 50 m. The data set totals of 323,966 points, consisting of  
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282,373 manually classified ground points and 41,593 vegetation points. Our analyses showed that the 

grid size parameter (see Section 3.3) had only a minor effect on the result of the ground classification 

when the parameter varied from 2 to 30 m. The biggest impact on the classification result was due to the 

iteration angle parameter. The results of automatic classification were compared with the manually 

classified dataset in order to determine which parameters perform best (Table 2). In the example, the grid 

size parameter is set to be constant (10 m), the iteration angle parameter varies from 10 to 40 degrees and 

the iteration distance parameter is 0.2 or 0.5 m for each angle. 

Figure 8. (a) The test site for the classification accuracy assessment was an erosion-sensitive 

and sparsely vegetated river bank with the height of 15–20 m; (b) Front view of the 

classified points in case 3. Ground points in orange and vegetation in green. 

 

(a) 

 

(b) 
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Table 2. Ground classification results of BoMMS data. The reference points include  

282,373 manually classified ground points and 41,593 vegetation points. 

Case 

Grid 

Size  

(m) 

Iteration 

Angle 

(deg) 

Iteration 

Distance 

(m) 

Truly Classified 

Ground Points 

Truly Classified 

Vegetation Points 

ag (%) 

(Equation (4)) 

av (%) 

(Equation (5)) 

Balanced 

Accuracy (%) 

(Equation (3)) 

1 10 20 0.2 241,310 39,178 85.5 94.2 89.8 

2 10 20 0.5 242,545 38,138 85.9 91.7 88.8 

3 10 30 0.2 251,657 37,837 89.1 91.0 90.1 

4 10 30 0.5 252,936 35,210 89.6 84.7 87.1 

5 10 35 0.2 257,451 36,800 91.2 88.5 89.8 

6 10 35 0.5 260,488 32,643 92.3 78.5 85.4 

7 10 40 0.2 263,660 35,486 93.4 85.3 89.4 

8 10 40 0.5 266,877 29,591 94.5 71.1 82.8 

We use the balanced accuracy (ba) measure [46,47] to assess the performance of the classification as: 

)(
2

1
vg aaba   with (3) 

fvtg

tg
ag


  (4) 

fgtv

tv
av


  (5) 

where ag and av are class accuracies with tg, tv, fg and fv the number of points truly/falsely classified 

into the ground/vegetation classes. The results indicate that the ground point class accuracy has a 

tendency to increase when the value of the iteration angle increases. Simultaneously, the vegetation 

point class accuracy decreases. The best balanced accuracies of around 90% were achieved with the 

iteration distance of 0.2 m. 

4.2. Data Features and Accuracy Assessment of z- and xy-Coordinates 

The terrain points generated after the BoMMS data processing chain (see Figure 2) contained  

10.8 million points for the 0.15 km
2
 study site (Figure 9) or 1.4% of the raw point cloud. The average 

density of the final ground point cloud was 72 pts/m
2
. However, the point density is irregular and 

strongly dependent on the scanning range (Figure 10). In this study, the ground point density varied 

mostly between 10 and 1,000 pts/m². The presented point spacing Equations (1) and (2) can be used 

for calculating the point density at a certain range.  

We evaluated the elevation and horizontal quality of the point cloud data against 16 spherical targets. 

The placement and measurements of the spheres are described in Section 2.3. Table 3 summarizes the 

accuracies of the z- and xy- values for the directly georeferenced BoMMS data. Minimum, maximum, 

mean and Root Mean Squared Error (RMSE) were computed for elevation and horizontal assessment. The 

z errors are real errors, including direction relative to the target points, whereas the xy errors are absolute 

values of distance. A comparison was performed by fitting a sphere to the laser points and computing the 

difference between the fitted sphere center and a reference sphere center measured by RTK-GPS. 
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Figure 9. The river bank ground points of the BoMMS from a 4.5 km trajectory. 

 

Figure 10. (a) The river bank and point bar point density map of classified ground points 

from the BoMMS data; (b) UAV-image mosaic of the same area. 

  

Table 3. The z- and xy-accuracies of the BoMMS point cloud compared to 16 reference 

sphere targets. 

Parameter Min (m) Max (m) Mean (m) RMSE (m) 

z −0.019 0.022 0.005 0.010 

xy 0.008 0.049 0.021 0.023 
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5. Discussion 

The findings of this study present new information regarding the data processing, characteristics 

and quality of BoMMS data in river environments. The presented processing chain was used for 

generating ground and vegetation points. Furthermore, we studied BoMMS’s capability to measure 

bathymetry data.  

We used three filtering method for removing the noise points from BoMMS data. These methods 

exploit intensity, absolute elevation, and point density within a certain radius for filtering erroneous 

measurements. The filtering methods can be performed automatically if the appropriate thresholds 

were determined from the test sample (see Section 3.1). It is important to pay attention to the reflection 

from the water surface when laser scanning from a boat platform. Effects such as multipath reflection 

will have a great impact on the quality of surface models, if it has not been taken into account during 

the data processing. We identified this effect near the shoreline (Section 3.2.1) and removed these points 

manually using profiles that are perpendicular to the direction of the system trajectory (Figure 4).  

The identification and processing of the points below the water surface was one step in the 

processing chain. The MLS system used in this study showed a limited capability to estimate 

bathymetry information in shallow (0–1 m) and clear water. The bathymetry points were evaluated by 

using ADCP measurements as a reference. The elevation differences had a mean of 0.061 m and a 

standard deviation of 0.076 m. Milan et al. [48] reported that the resulting error in uncorrected 

bathymetry points can be depth dependent. The systematic error arises from refraction at the air-water 

interface [45]. The returns should be validated to ensure that they are coming from the benthic layer 

and not from the water column or the water surface. In addition, suitable incidence angles must be 

studied in more detail. The method has limitations, but the results indicate that it may be possible to 

use laser range measurement for collecting bathymetry data. In particular, the use of the green 

wavelength laser could improve the results because water absorbs green wavelengths at a slower rate 

than red wavelengths. In earlier studies related to laser scanning, the use of the green wavelength laser 

has been implemented in airborne bathymetry systems (e.g., [49]). Smith et al. [45] have studied the 

use of static through-water TLS (532 nm wavelength). In that study, a wide range of potential 

applications and limiting factors are discussed. In addition, we show that intensity values are useful for 

detecting the shoreline in MLS data (Section 3.2.3). The use of intensity values to differentiate wet and 

dry areas is also demonstrated by Milan and Heritage [50].  

The last step of our data processing chain was a ground point classification. We used an iterative 

TIN-based method to classify ground points [13]. The results were compared to the manually classified 

data and we achieved a 90% balanced accuracy rate for separating ground and vegetation points. The 

most difficult landscapes to classify were rocky areas, small channels or cracks on the surface and 

areas, where the slope of the ground is near vertical. The selection of classification parameters also 

played a significant role in the performance of the classification. The classification and filtering 

algorithms developed for ALS data could be used for MLS if higher point density and different 

scanning geometry were taken into account. However, there is still a need to develop methods which 

are more suitable for MLS data. 

In this work, the river environment was measured by one trajectory and our approach was to  

use spherical reference targets for controlling MLS data quality. The presented results of the z- and  
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xy-coordinates indicate very small errors. The RMSE of the z- and xy-accuracies of the BoMMS point 

cloud were 1.0 and 2.3 cm, respectively, in comparison to the reference sphere targets. However, by 

using for example a TLS point cloud as reference [39], the systematic tendencies of elevation error can 

be identified spatially through error surfaces. Furthermore, overlapping scanning lines or point clouds 

could be used for evaluating measurement repeatability (i.e., [32]). Our map of the spatial variations of 

the ground point density (Figure 7) indicates that the density is strongly dependent on the scanning 

range. Other factors affecting the point density are the measurement speed, scanning frequency and 

point measurement rate. The results show that after classification the ground point density varied 

between 10 and 1,000 pts/m². 

The MLS approach allowed an effective survey angle for sloped river banks, which is difficult to 

achieve with airborne or terrestrial scanning [38]. Mapping range and data coverage of BoMMS are 

dependent on line of sight visibility. In the present study, the maximum mapping range was around 50 m. 

If the data coverage needs to be enlarged, a low-altitude airborne system and a backpack MLS [32] 

would be a viable option. In recent years, UAV-based remote sensing has also provided promising 

results for environmental mapping. In riverine environments, the necessity to fly within line-of-sight 

might become a limitation for these systems. BoMMS can provide a more effective way to acquire 

data. UAV-based photography might also have difficulties in finding sufficient features for matching 

in areas of complex vegetation or homogeneous texture [51].  

6. Conclusions 

We developed a new BoMMS data processing chain that was shown to be capable of producing 

terrain and vegetation points from river environment by using automatic methods if the data 

characteristics such as intensity, point density and multipath reflections are identified. We obtained 

fairly good accuracy (90% balanced accuracy rate) for BoMMS ground point classification compared 

to manually classified data. Our evaluation of data quality also demonstrated the spatial variations of 

the ground point density. The accuracy assessment of BoMMS data indicated absolute accuracy level 

of some centimetres (horizontal RMSE 2.3 cm and elevation 1.0 cm). We demonstrated the use of 

intensity data for delineating the shoreline. Furthermore, the study indicates a possibility to collect 

bathymetry information in shallow (0–1 m) and clear water when the scanner is mounted on a boat and 

near the water surface. In further studies, the generated data is used to map changes in topography  

and vegetation structure [52,53]. We presume that future research dealing with LS data will 

increasingly turn to multi-temporal data investigation, updating different databases and change 

analysis applications. Hence, the development of effective data management, quality assessment, and 

of registration and monitoring methods for larger data sets will need to be considered as well.  
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