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Abstract: The time-average method currently available is limited to analyzing the specific 
performance of the automatic gain control-proportional and integral (AGC-PI) based 
velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory 
gyroscope, since it is hard to solve nonlinear functions in the time domain when the control 
loop reaches to 3rd order. In this paper, we propose a linearization design approach to 
overcome this limitation by establishing a 3rd order linear model of the control loop  
and transferring the analysis to the frequency domain. Order reduction is applied on the 
built linear model’s transfer function by constructing a zero-pole doublet, and therefore 
mathematical expression of each control loop’s performance specification is obtained. 
Then an optimization methodology is summarized, which reveals that a robust, stable and 
swift control loop can be achieved by carefully selecting the system parameters following a 
priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm 
complementary metal oxide semiconductor (CMOS) process, and experiments carried out 
on a gyroscope prototype verify the optimization methodology that an optimized stability 
of the control loop can be achieved by constructing the zero-pole doublet, and disturbance 
rejection capability (D.R.C) of the control loop can be improved by increasing the  
integral term. 
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1. Introduction 

Due to their wide applications in inertial navigation, automotive stability control and robots, MEMS 
gyroscopes have drawn tremendous attention of researchers in both academia and industry [1–4]. Most 
MEMS gyroscopes are based on the Coriolis force effect. The Coriolis force is proportional to the 
angular rate only on the premise of a constant vibration velocity in the drive axis. As a result, 
automatic gain control (AGC) based velocity-controlled closed-loops are commonly built to keep  
the primary resonator vibrating at its resonant frequency with constant amplitude [5–12]. The  
velocity-controlled closed-loop always introduces stability problems, which are the primary concern in 
its design process.  

The time-average method is widely applied in the stability analysis of control loops [7,9,13–15]. In 
the time-average method, the controlled amplitude is considered as a constant in one vibratory period 
to simplify the nonlinear equations of the control loop, since the variation rates of the controlled 
amplitude are usually much slower than the vibratory rate. In [9,13], the nonlinear equations are 
simplified by using the time-average method and the effects of AGC parameters on the response of the 
linearized dynamics are revealed. Similar work is also done in [14,15], which use a Lyapunov function 
to obtain a good transient response. However, in all these works, no quantitative stability criterion is 
given. In [7], a nonlinear mathematical model in time domain of a AGC-PI closed-loop is linearized by 
firstly using a time-average method. Then the mathematical expression of the stability criterion is 
derived by applying the Routh-Hurwitz criterion to the characteristic equations. Specific transient 
response performance is discussed when the control loop is a 2nd order system with only the 
proportional controller. In reality, in order to improve the loop control accuracy, an integral function is 
imported into the controller of the closed-loop, and the AGC-PI closed-loop structure is widely used in 
the driving circuit of MEMS vibratory gyroscopes which is a 3rd order system. Nevertheless, the 
specific transient response performance of a 3rd order system can hardly be attained using the  
time-average method due to the difficulties in solving the complicated nonlinear functions [7].  
In summary, the time-average method has two main drawbacks: firstly, the entire stability analysis 
process is tedious and exhausting as it solves nonlinear functions “in the time domain”; secondly, it 
can not be used to analysis the specific performance of the 3rd order controlled loop. 

To overcome these two drawbacks of the time-average method mentioned above, a linearization 
design approach is presented in this paper. A fully linear system model of the 3rd order closed-loop  
is established and thereafter the stability and performance are analyzed in the frequency domain. 
Compared to the conventional time-average method, the proposed linearization design approach has 
the following advantages: first, the stability criterion of the closed-loop can be simply obtained  
by applying a zero-pole method on the linear model; second, the mathematical expression of each 
performance specification is obtained by applying order reduction on the 3rd order linear model, so 
that the dilemma in [7] mentioned above is solved; third, an optimization methodology is summarized, 
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which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the 
system parameters following a priority order. The proposed optimization methodology is verified by 
both numerical simulations and experiments. 

This paper is organized as follows: Section 2 presents the overall linearization design approach, 
including building the linear model, revealing the stability criterion, analyzing the control loop’s 
performance through mathematical expressions and numerical simulation results, and summarizing an 
optimization methodology. In Section 3, the implemented AGC-PI based closed-loop drive circuits are 
introduced briefly and detailed experimental results on a gyroscope prototype are presented to verify 
the proposed optimization methodology. Finally, a conclusion is given in Section 4. 

2. Linearization Design Approach  

The topology of the AGC-PI based velocity-controlled closed-loop for the drive mode of MEMS 
gyroscope is shown in Figure 1. The displacement of sense comb fingers induces an alternating 
current, which is converted to voltage by the trans-impedance amplifier (TIA). The voltage is fed  
into the variable gain amplifier (VGA) to generate the excitation signal. The TIA, VGA and  
primary resonator of the gyroscope form an electromechanical oscillator. The vibratory velocity of this 
electromechanical oscillator is controlled to a target value Vref by an AGC, which consists of rectifier, 
low pass filter (LPF), proportional and integral (PI) controller and VGA. In the AGC, the rectifier and 
LPF extract the amplitude information of the vibratory velocity and then compare it with the target 
value Vref to obtain an error signal Verror. The error signal is amplified and integrated by the PI 
controller and then transmitted to adjust the gain of the VGA. The control loop achieves a steady state 
until the error signal is zero.  

Figure 1. AGC-PI based velocity-controlled closed-loop for the drive mode of MEMS 
vibratory gyroscope. 

  

The kinetic equation of the drive mode in gyroscope is described as: 

2x ext
x

x

Fx x x
Q m
ω ω+ + =  (1) 

where x is the displacement of the resonator, ωx is the natural frequency, Q is the quality factor, mx is 
the mass and Fext is the driving force. 
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2.1. Linear System Model 

The velocity-controlled closed-loop is a nonlinear system, which processes the amplitude information 
of the sinusoidal resonance signal. It is hard to analyze the behavior of a nonlinear system, especially 
when the system usually reaches a 3rd order. Fortunately, a 3rd order linear model of the closed-loop 
can be built by linearizing two nonlinear modules in the loop, as shown in Figure 2. In the figure, KC/X 
and KF/V

2 model the gain from displacement to capacitance and the gain from the squared excitation 
voltage to the force, respectively. KV/C models the gain of capacitance-to-voltage in TIA and KVGA 
represents the gain coefficient of VGA. In the amplitude information control path, a rectifier detects 
the envelope of the resonance signal with gain Krect, and then the LPF and PI controller process the 
amplitude signal with their correspondence transfer functions. 

Figure 2. 3rd order linear system model of the velocity-controlled closed-loop. 
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The nonlinearity of the closed-loop generates arises from two modules: the primary resonator and 
the VGA. As the phase perturbation term is negligible compared with ωx/(2Q) in most MEMS 
vibratory gyroscopes, Equation (1) can be reduced to a first-order system [5], expressed as: 

_

1
2 / 2
ω

ω
=

+
amp x

ext amp x

X
F k s Q

 (2) 

where Fext_amp and Xamp is the amplitude of Fext and x respectively, k is the spring constant. The 
nonlinearity of the VGA comes from the multiplication of its input and the gain control signal, both of 
which reflect the amplitude information of the vibration velocity. When the control loop gain is high 
and the perturbation term is small compared to the velocity amplitude, the error signal is close to zero 
and the magnitude of the VGA input Vin_amp can be approximated as Vref/Krect [8]. As a result, with 
respect to the amplitude information control, the electromechanical resonating loop is broken at the 
VGA’s input and only a linear velocity-controlled loop exists. 



Sensors 2013, 13 12568 
 

 

The control loop is a negative feedback system. As shown in Figure 2, defining the small signal ac 
component of the reference voltage Vref as input Vin and the amplitude of the vibration velocity as 
output Vout, the closed-loop transfer function can be illustrated as: 

( )
1 ( )

loopout

in loop

H sV
V H s

=
+

 (3) 

where the feedback factor is 1, and the open-loop transfer function of the linearized control loop can 
be expressed as: 

2 / //

1( )
2 / (2 )

lpfx I
loop C X V C VGA ref dc PF V

x lpf

KH s K K K K V V K
k s Q s s

ωω
ω ω τ

⎛ ⎞= ⋅ ⋅ ⋅ +⎜ ⎟+ + +⎝ ⎠
 (4) 

where Vdc is the DC voltage across the drive comb fingers, ωlpf is the pole of LPF, KP is the 
proportional term and KI is the integral term in the controller, τ is the loss of integrator. 

The built linear system model shown in Figure 2 can be extended to arbitrary higher-order control 
loops by obeying the following rule: calculating all the significant zeros and poles into the linear 
model, which usually are located within ten times the control loop’s bandwidth. 

2.2. Stability Criterion  

Figure 3 shows the three poles and the single negative zero in Equation (4). Based on the zero-pole 
method, as the phase margin compensation characteristic of negative zero, the zero should be located 
within the largest pole among the three to promise a stable loop. Therefore, the stability criterion of the 
control loop can be simply written as: 

max( , , )
2

xI
lpf

P

K
K Q

ωω τ<  (5) 

Figure 3. Zero-pole map of the 3rd order velocity-controlled closed-loop. 
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2.3. Optimization Methodology 

Specifications including loop gain, bandwidth and phase margin are commonly used to evaluate the 
performances of a negative feedback system in the frequency domain. Mapping these specifications to 
the provided control loop, their influence on the control loop’s performances is illustrated as follows. 
The loop gain determines the disturbance rejection capability of the control loop against the parameter 
variance in both mechanical structures and circuits. The bandwidth determines the recovery speed of 
the control loop and the phase margin reflects the stability of the control loop. These specifications 
correspond with transient response specifications in the time domain in [7], referred to as setting time, 
rising time and overshooting. The mathematical expressions of these three performance specifications 
are derived as follows: firstly, the loop gain of the control loop can be obtained by substituting s = 0 in 
Equation (4), expressed as: 

2(0) I
loop total P

x

KQH K K
ω τ

⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

 (6) 

where: 

2 / // 2
x

total C X V C VGA ref dcF V
K K K K K V V

k
ω= ⋅  (7) 

The expressions of the bandwidth and phase margin can be calculated by solving a third-order 
equation generated from Equation (4). However, the solution process is very complex. Let the negative 
zero KI/KP equal to the pole ωx/(2Q). As a result, a zero-pole doublet is constructed and the 3rd order 
system is reduced to a second-order system. The validity of the order reduction will be revealed in 
following numerical simulations. The order-reduced transfer function from Equation (4) can be 
rewritten as: 

( ) lpf P
loop total

lpf

KH s K
s s

ω
ω

= ⋅ ⋅
+

 (8) 

in which the integrator is considered as ideal and its loss is ignored. Then the expression of bandwidth 
a phase margin can be calculated as: 

( )1 4 / 1

2
lpf total P lpfK K

BW
ω ω+ −

=  (9) 

and: 

1 4 / 1
arctan

2 2
total P lpfK K

PM
ωπ ⎛ ⎞+ −

⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (10) 

According to Equation (6), Equations (9) and (10), each performance specification variation  
trend versus the primary system parameters are summarized in Table 1. As shown in the table, the 
performance specifications of the control loop contradict each other. Increasing the loop gain improves 
the disturbance rejection capability and the control accuracy of the system, while sacrificing the phase 
margin as well as the stability. Extending the bandwidth increases the response speed of the control 
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system, but may reduce the phase margin and cause an unstable oscillation. As a result, some trade-
offs should be made to achieve a precise, stable and swift control loop.  

Table 1. Performance specifications of the control loop versus primary system parameters. 

Parameters Loop Gain Bandwidth Phase Margin 
↑PK  ↑  ↑  ↓  

IK ↑  ↑  −  −  

lpfω ↑  →  ↑  ↑  
Q ↑  ↑  −  −  

totalK ↑  ↑  ↑  ↓  
↑ Increase; ↓ Decrease; → no change; − unknown. 

The order of the consideration on the performance specification optimization is usually  
loop gain > phase margin > bandwidth. The reason can be illustrated as follows: because the 
mechanical parameter variations are dominant in the control loop and most parameters of the primary 
resonator, like quality factor Q, fluctuate slowly but with a wide range [16]. To suppress these 
mechanical parameter variations and maintain a constant vibration, the loop gain of the control loop 
should be considered first. When the gyroscope is under an external disturbance, a low phase margin 
of the control loop would introduce a large overshoot and cause a large fluctuation at the sense part of 
the gyroscope. As a result, the phase margin should be considered secondly and the bandwidth is  
the last. 

Numerical simulation results of both the 3rd order control loop linear model and corresponding 
nonlinear model are provided in the following paragraphs for three reasons: first, it is intended to 
reveal the validity of the order-reduction; second, it is used to verify the derived results in Table 1; 
third, it is used to supply the effects of parameters KI and Q on bandwidth and phase margin, which are 
missing in Table 1 due to the order-reduction.  

The parameters of the control loop used in the simulations are listed in Table 2, where Vp is the 
biased voltage on the movable mass of the resonator and Vmid is the biased voltage on the drive comb 
fingers. The difference of Vp and Vmid determines the Vdc in Equation (4). To compare the simulation 
results with experiment results, the resonance frequency ωx and quality Q are especially chosen the 
same as ones in experiments. 

Table 2. Parameters of the control loop simulated in Matlab. 

Parameters (unit) Value Parameters (unit) Value 
KF/V

2 (N/V2) 3.7e-8 ωx (rad/s) 8063 × 2π 
KC/X (F/m) 1.2e-8 k (N/m) 29.6 
KV/C (V/F) 2.4e12 Q 1,368 
KVGA (/V) 20 ωlpf (rad/s) 100 × 2π 
Vref (V) 0.2 KP 5 
Vp (V) 12 KI 200 

Vmid (V) 2.5 τ 1 

The numerical simulations are carried out in Matlab. The simulation results of the transfer function 
in Equation (4) are shown in Figures 4–8a with varying KP, ωlpf, KI, and Q. The corresponding step 
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responses at the LPF output terminal of the proposed closed-loop linear model are also given in 
Figures 4–8b. To verify the validity of the proposed linear model, a nonlinear model is built by 
Simulink and step responses at the LPF output terminal of corresponding nonlinear model are shown 
in Figures 4–8c. As a 1st-order low pass filter is used in the nonlinear model, the curves in Figures 4–8c 
contain residual resonance-frequency related components and seem noisy.  

Figure 4. (a) Bode diagrams of the control loop (b) step responses of the linear model  
(c) and step responses of nonlinear model varying with the proportional term KP. 
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Figure 5. (a) Bode diagrams of the control loop (b) step responses of the linear model  
(c) and step responses of nonlinear model varying with the cut-off frequency ωlpf. 
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Figure 5. Cont. 
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Figure 6. (a) Bode diagrams of the control loop (b) step responses of the linear model  
(c) and step responses of nonlinear model varying with the integral term KI. 
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Figure 7. (a) Bode diagrams of the control loop (b) step responses of the linear model  
(c) and step responses of nonlinear model varying with the quality factor Q. 
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Figure 8. (a) Bode diagrams of the control loop (b) step responses of the linear model  
(c) and step responses of nonlinear model varying with the VGA gain coefficient KVGA. 
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Figure 8. Cont. 
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The validity of the order-reduction is proved in Figure 4. In Figure 4a, the variation trend of the 
phase margin first increases and then decreases when KP is doubled. It is noticed that the best phase 
margin is achieved when the zero-pole doublet is created at KP = 10, referring to the resonator 
parameters ωx and Q in Table 2. This result indicates that the optimized stability of the control loop is 
achieved when the zero-pole doublet is created, and therefore demonstrates that the validity of the 
order-reduction. The smallest overshoot in Figure 4b at KP = 10 also verifies the conclusion.  

Figure 6a shows that increasing the proportional term KI is an effective way to enlarge the loop 
gain. However, it causes an obvious decrease in the phase margin and only a little increment in 
bandwidth. The trends of curves in Figure 7a are identical to those in Figure 6a, but the phase margin 
and bandwidth variation quantity is less than those in Figure 6a, which indicates that the stability and 
recovery speed of the control loop is more robust under the variation of quality factor Q than that of 
KI. It is believed that the phenomenon is decided by zero and poles locations. This conclusion is 
verified by simulations with different parameter settings, but not shown as the long paragraph. The 
curve trends in other figures all agreed with the results in Table 2. 

The step responses of the nonlinear model in Figures 4–8c are similar to those of the linear model in 
Figures 4–8b. However, the simulation responses of the nonlinear model have shorter rise time and larger 
overshoot than those of the linear model. The difference is probably caused by fixing VGA input as its 
final value Vref/Krect, which dismisses the action of drive loop in the actual nonlinear model.  

Combining the theoretical and simulation results with the specification optimization order presented 
above, an optimization methodology of system parameters selection can be summarized as follows: to 
achieve a robust, stable and swift control loop, it is better to increase KI or KVGA to achieve a large loop 
gain and good disturbance rejection capability first, and then pursue an optimized stability by creating 
a zero-pole doublet through adjusting KP.  

3. Circuit Design and Experiments 

To verify the proposed optimization method on a practical gyroscope prototype, AGC-PI based 
closed-loop drive circuits with flexible system parameters adjustment are designed. The block diagram 
is presented in Figure 9. In the drive circuits, an adjustable gain stage is designed to match the 
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mechanical gain variation of different resonators. The PI controller adopts a Gm-C structure, which 
provides convenient and sufficiently tunable properties of KP and KI [17]. Two high pass filters (HPFs) 
are designed for DC offset cancellation. 

Figure 9. Block diagram of the implemented AGC-PI based closed-loop drive circuits. 

  

The drive circuits are implemented in a 0.35 μm CMOS technology. The supply voltage is 5 V. A 
symmetrical doubly decoupled z-axis gyroscope is tested, which adopts an electrostatical drive and 
capacitive sense. The gyroscope is vacuum-packaged and mounted on a printed circuit board (PCB) 
with the implemented drive circuits chip and other necessary external resistances and capacitances, as 
shown in Figure 10. The resonant frequency and the quality factor of the resonator are measured as 
8.063 kHz and 1,368, respectively. 

Figure 10. Test board of the gyroscope prototype. 

 

To verify the proposed optimization methodology accurately, the velocity-controlled closed-loop 
should be tested working as a linear system during the experiments. Carefully investigating the linear 
model, the input of the VGA module is approximated as the final steady value Vref/(2/π). However, in 
the start-up period, the input of the VGA is nearly zero and the gain of VGA is fixed at the maximum 
value due to the overlarge error signal fed into the PI controller. As a result, the velocity-controlled 
closed-loop is broken at the VGA module and the analysis on the linear model above fails. Therefore, 
snatching start-up waveforms as described in [7] cannot be used in our work. 
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In our experiments, a 10 mV step-up signal is applied on the target voltage Vref when the control 
loop is in a steady state. As the step is very small, the VGA input signal can be considered as a 
constant and the velocity-controlled closed-loop is believed to work as a linear system. The LPF’s 
output waveform, which reflects the vibration velocity of the resonator, is then recorded with a varied 
proportional term KP and integral term KI. KP and KI in the PI controller are decreased gradually  
by changing the off-chip resistances and capacitances [14]. Figure 11 shows the measured step-up 
waveforms of the LPF’s output varied with KP. As KP is increased from 2.5 to 10, the overshoot is 
smoothed gradually, and the rising time and the setting time are improved. When KP is set as 20, the 
overshoot is increased as expected. The test results prove that an optimized stability of the control loop 
is achieved at situation of KP = 10 and KI = 200, when a zero-pole doublet is almost formed, referring 
to the tested resonators’ parameters above. This is exactly the same as the simulation result. The tested 
rising times are given in Table 3 and compared with the simulation results of both linear and nonlinear 
models in Figure 4b,c. It is seen that the simulated nonlinear model’s rising times are identical with the 
tested results. As expected, due to the approximation in VGA during the linearization, the rising times 
of linear model show some “delay” compared with the test results. However, their variation trends are 
the same, which also verifies the conclusions in Table 1 in the time domain. Figure 12 shows the 
measured step-up waveforms of the LPF’s output varied with KI and the measurement and simulation 
results of rising time are shown in Table 4. It can be seen that decreasing KI improves the overshoot of 
the control loop, but increases the rising time and decreases the settling time, which are also in accord 
with the simulation results. 

Figure 11. Measured step-up waveforms of the LPF’s output with different proportional 
terms KP. 
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Table 3. Comparison of simulation and measurement rise times with different proportional term KP. 

 KP = 2.5 KP = 5 KP = 10 KP = 20 
Simulated rise time with 

linear model (ms) 
16.4 12.8 7.4 3.7 

Simulated rise time with 
nonlinear model (ms) 

12.0 8.6 5.1 2.8 

Tested rise time (ms) 12.4 8.9 5.3 3.0 

Figure 12. Measured step-up waveforms of the LPF’s output with different the integral 
term KI. 
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Table 4. Comparison of simulation and measurement rise times with different proportional 
term KI. 

 KI = 800 KI = 400 KI = 200 KI = 100 
Simulated rise time with 

linear model (ms) 
7.3 9.7 12.8 17.0 

Simulated rise time with 
nonlinear model (ms) 

5.7 7.1 8.6 10.2 

Tested rise time (ms) 5.2 7.0 8.9 10.4 

Disturbance rejection capability (D.R.C.) is an important performance specification of the control 
loop, which is inversely proportional to the loop gain of the negative feedback control loop. To 
evaluate the D.R.C. of the control loop against system parameter variation, experiments are carried out 
by varying the bias voltage Vp on the mass. Because the voltage Vdc and the electrical-mechanical 
conversion parameters KV/C in Equation (6) are related to Vp, changing the value of Vp can imitate the 
system parameter variation in the control loop. As the TIA’s output signal’s amplitude, which reflects 
the resonator vibration velocity, is controlled by the negative feedback loop, the variations of Vdc and 
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KV/C will be projected on the amplitude of the drive signal. As a result, the D.R.C. of the control loop 
can be calculated as: 

( ) _
10

_

. .
. . 20 log

. .
Dr amp

TIA amp

V P
D R C dB

V P
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, (11) 

where V.P.Dr_amp and V.P.TIA_amp are the variation percentage of drive signal’s magnitude and TIA’ 
output signal’s magnitude under different Vp values. 

Both the magnitude of the drive signal and the TIA’s output are recorded in Table 5 with three 
different values of KI and under different Vp ranging from 16 V to 22 V. The percentages of variation 
of these two signals are calculated by setting Vp = 19 V as reference and D.R.C.s are calculated from 
Equation (11). As shown in Table 5, the D.R.C. is increased 6 dB when KI is doubled from 100 to 200. 
This result shows a close agreement with both the theoretical and simulation results. When KI is 
increased from 200 to 400, the D.R.C. is increased only about 3.6 dB. As the minimum stable bit is the 
sub-mV bit in the AC magnitude measurement, it is believed that the improvement of D.R.C. is limited 
by the noise in the control loop. Figure 13 shows normalized magnitude of drive signal and TIA’s 
output with different KI by varying Vp. The benefits of the control loop’s D.R.C. can be observed 
directly in Figure 13.  

Table 5. Measured D.R.C of the velocity-controlled closed-loop with different KI by varying Vp. 

Cond. Vp (V) 16 17 18 19 * 20 21 22 V.P. (%) D.R.C. (dB)

KI = 100, 
KP = 5 

Mag. of Drive 
Sig. (mV) 

419.8 372.0 332.8 299.8 272.6 249.6 229.8 63.4 36.2 

Mag. of TIA’s 
Outp. (mV) 

60.4 60.5 60.6 60.7 60.8 60.9 61.0 0.99  

KI = 200, 
KP = 5 

Mag. of Drive 
Sig. (mV) 

416.0 368.0 329.0 296.8 269.6 246.2 227.0 63.7 42.1 

Mag. of TIA’s 
Outp. (mV) 

59.8 59.9 59.9 60.0 60.0 60.1 60.1 0.5  

KI = 400, 
KP = 5 

Mag. of Drive 
Sig. (mV) 

416.6 369.0 330.4 297.4 270.4 247.6 227.8 63.5 45.7 

Mag. of TIA’s 
Outp. (mV) 

59.9 60.0 60.0 60.0 60.1 60.1 60.1 0.33  

* V.P. Variation Percentage (set Vp = 19 V as reference). 

Figure 13. Normalized magnitude of drive signal and TIA’s output with different KI by 
varying Vp. 
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4. Conclusions 

This paper presents a linearization design approach of the 3rd order velocity-controlled closed-loop 
for MEMS vibration gyroscope. As benefits of the built linear model, tedious stability analysis in the 
time domain can be transferred to the frequency domain and the design process of the control loop is 
simplified. The stability criterion and the mathematical expression of each performance specification 
of the 3rd order control loop are presented in this paper. Moreover, an optimization methodology 
which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the 
system parameters following a priority order is summarized. Experiments carried out on a gyroscope 
prototype verify the optimization methodology that an optimized stability of the control loop can be 
achieved by canceling the pole of the resonator with the zero in the PI controller, and disturbance 
rejection capability (D.R.C) of the control loop can be improved by increasing the integral term KI. It 
is also found that noise in the control loop limits the D.R.C. of the control loop. As a result, the noise 
performance of the control loop will be studied in the future work. 
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