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Abstract: This paper presents a low-cost hyperspectral measurement setup in a new
application based on fluorescence detection in the visible (Vis) wavelength range. The aim
of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these
images, fluorescent and non-fluorescent impurities in the viscous materials can be detected.
For the illumination of the measurement object, a narrow-band high-power light-emitting
diode (LED) with a center wavelength of 370 nm was used. The low-cost acquisition
unit for the imaging consists of a linear variable filter (LVF) and a complementary metal
oxide semiconductor (CMOS) 2D sensor array. The translucent wavelength range of the
LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements
of fluorescent viscous materials with a non-fluorescent impurity have been performed and
analyzed. With the presented setup, measurement surfaces in the micrometer range can be
provided. The measureable minimum particle size of the impurities is in the nanometer
range. The recording rate for the measurements depends on the exposure time of the used
CMOS 2D sensor array and has been found to be in the microsecond range.
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1. Introduction

Today, fluorescence measurements are established in various applications and have a broad spectrum
of functionality. The main focus of current fluorescence setups can be found in the fields of
biology, food technology and medicine. The quality control of fruits, for example, is realized with
fluorescence measurements [1,2]. Most of these fluorescence measurement systems are based on image
scanning with grayscale resolution without a separation of wavelengths. Damages and variances at
the measurement surface can be detected in recorded images, due to the grayscale resolution. Other
measurements with fluorescence in reflection are developed for the detection of skin cancer and are
currently tested on animals, like mice or chickens [3,4]. The use of such measurement setups has some
drawbacks. One of them is that at the moment, only solid and liquid materials can be investigated.
Another drawback is the low scanning speed of the currently available measurement setups. A further
problem is the integration of the measurement setups into a running operation. Actually, this is
not possible with low effort. In addition, the current measurement setups are very expensive and
massive. Thus, at the moment, there is no opportunity to get the information of a fast moving object
or to integrate the setups into an established process. Yet, there are some approaches for small
and cheap fluorescence spectrometers. These spectrometers, for example, consist of a combination
of a linear variable filter (LVF) and a complementary metal oxide semiconductor (CMOS) 2D
sensor array [5,6].

In this paper, a small and low-cost setup for fluorescence measuring of hyperspectral images with the
option for moving measurements in a new application is presented. This concept is based on the method
of hyperspectral imaging [7,8]. There are three well-known implementation possibilities: push-broom
scan, optical bandpass filter and Fourier transform spectroscopy. For the presented setup, the push-broom
method that analyzes one image per line was used. This method is currently established in aerospace
applications and in scanning environmental pollution [9,10]. An advantage of this method is that
spectral information corresponding to the location may be obtained. The evaluation of the measurement
setup was made with viscous materials. So far, no approaches for fluorescence measurements with
viscous materials have been published. At the moment, quality controls for viscous materials are
realized by controlling the acoustic sounds or signals [11]. This method takes a lot of time and is
very expensive, because in most of the cases, the evaluation is realized in laboratories and not directly
in the production process or application site. In addition, this method does not enable continuous and
contactless measurements. The consequence is that only random samples can be evaluated, and no
statement for the complete product during a process can be made.

Hence, for this application, a small, low-cost and universally-usable measurement setup with
illumination in the ultraviolet (UV) range was developed. The recorded images show hyperspectral
fluorescence spectra in a desired wavelength range of a measurement surface of a viscous material.
With this setup, a separation between the location and the wavelength in the recorded image is possible.
Furthermore, a relationship between the measurement surface and the corresponding spectra in the image
can be established. The consequence is that fluorescent and non-fluorescent impurities in the viscous
material can be located and evaluated. Further, the quality of the viscous materials can be validated. In
addition, the setup is arranged and constructed for a later integration into moving production processes.
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2. Materials and Methods

This section covers the fundamentals of the measurement system presented in this work. Firstly,
the idea will be explained, followed by the measurement setup, system characterization, calibration
and analysis.

2.1. Idea

The setup of an LVF spectrometer is a special type of an optical acquisition unit. Compared to a
grating spectrometer, LVF spectrometers feature several differences. LVFs have a huge aperture at high
transmissivity. In a hyperspectral configuration, the dispersive element is mounted directly on the top
of a CMOS 2D sensor array. Thereby, an optical hyperspectral spectrometer consisting of an LVF and
a CMOS 2D sensor array is set up. This low-cost combination is the essential advantage for use as an
optical adjustment unit for static fluorescence measurements on viscous materials. Figure 1 describes the
idea of the developed method. The setup is explained in Section 2.2. As described in Section 1, similar
methods are known from satellite-based remote sensing in the application of the push-broom principle.

Figure 1. Representation of the described idea. The UV light source illuminates the
viscous material (not in the figure). The resulting fluorescence of the measurement surface
is denoted at an exemplary location. In addition, the spectral fluorescence imaging of the
viscous material is denoted for an exemplary line array on the complementary metal oxide
semiconductor (CMOS) 2D sensor array. The hyperspectral spectrometer, consisting of
a linear variable filter (LVF) and a CMOS 2D sensor array, interrogates the transmitted
intensity synchronously to the illumination duration of the measurement surface.
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In our setup, a fluorescent viscous material was provided in a notch with a constant thickness of
200 µm. A UV light source illuminates the measurement object. The fluorescence is captured by the
LVF/CMOS configuration. In order to give spectral information to the regarded measurement surface,
an adjustment of the lenses is used. Due to the spectral characteristic of the detection system, the spectra
of a fluorescent measurement object over the location can be obtained. In addition, the existence and
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location of fluorescent impurities with their corresponding wavelength range can be proven. Further,
non-fluorescent impurities can be measured through the decrease of the resulting fluorescence spectra.

The readout of all 1,280 × 1,024 CMOS 2D sensor array elements was synchronized with
the illumination duration of a high power UV-LED. An external hardware trigger signal starts the
measurement at a manually defined time. If the trigger signal is changing from a high (5 V) to a low
(0 V) level, an image with the LVF/CMOS configuration is made. The duration of the recording depends
on the adjusted exposure time of the CMOS 2D sensor array. After a successful data acquisition, several
spectra of different points on the measurement surfaces are recorded in an image. Each hardware trigger
leads to a new spectral capture of the fluorescent viscous material. The recorded image has a complete
spectrum in the visible (Vis) wavelength range in each row. Each column represents a narrow-band
wavelength range. The wavelength range occurs by the characteristics of LVF, which is in front of the
CMOS 2D sensor array. All values in a recorded image are intensity values and are illustrated in an
eight-bit gray resolution. The hyperspectral imaging is realized by the spatial resolution over the rows
and the wavelength resolution over the columns on the CMOS 2D sensor array. The spot size of the
measurement surface on the CMOS 2D sensor array depends on the adjudication of the lenses used in
the setup. To find the best lens adjudication for the measurement setup, a simulation with the optical
simulation tool Zemax was done before. In the simulation, the spot size was changed by variations of
the position of the used plan-convex spherical lens. The criterion for the final lens adjudication was that
all rays are still collimated as best as possible for the largest possible measurement area.

Compared to grating spectrometers, hyperspectral sampling can be realized very fast; thus,
in combination with the huge aperture, it leads to an enormously reduced measurement time.
In relation to the currently available hyperspectral imaging systems, this setup features higher efficiency
and little adjustment effort at a low price. Due to the wafer scale production of the LVF and CMOS
2D sensor array, an enormous cost reduction is achieved. The adjustment effort is drastically reduced
because of the solid-state nature of the spectral apparatus. In addition, this measurement setup is
useable for other applications in which measurement objects are fluorescent. The replacement of optical
components, like optical filters and light sources, is very simple, because all components in the setup are
constructed modularly.

2.2. Measurement Setup

A high-power UV-LED is used to illuminate the measurement object at an angle of 45◦. The
measurement object in this case is a fluorescent viscous material. The light-emitting spot on the
measurement object is limited by a 750 µm slit. The resulting fluorescence is nearly collimated by the
plano-convex spherical lens, L1, with the focal length f1 = 20 mm. Through a slight shift out of the focal
point by ∆x1 = 1 mm, an imaging of an area on the measurement object is possible. A plano-convex
cylindrical lens, L2, with the focal length f2 = 25 mm is placed at the distance d = 30 mm. The curved
side of this lens is orientated in the same direction as the slit above the measurement object. In this
dimension, the plano-convex cylindrical lens images the parallel parts to the direction of the slit onto
the CMOS 2D sensor array. Due to the characteristic of this lens, there is no effect of the light in the
other dimension. Thus, all light rays of one point on the measurement surface are distributed in this
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dimension. The material of the two used lenses is borosilicate glass (BK7). The optical acquisition unit
consists of an LVF (wavelength range: 400 nm–700 nm) mounted atop a CMOS 2D sensor array and is
orientated in the direction of the slit atop the viscous material. The used CMOS 2D sensor array features
1,024 × 1,280 pixels with a sensitive area of 6.66 mm × 5.32 mm and has a parallel read-out capability.
The size of one pixel on the CMOS 2D sensor array is 5.2 µm × 5.2 µm. The analog digital converter of
the sensor has a resolution of eight bits and the exposure time can be chosen between 35 µs and 980 ms.
The complete measurement setup in the plan and side view is shown in Figures 2 and 3.

Figure 2. Illustration of the proposed hyperspectral fluorescence spectrometer based on an
LVF/CMOS 2D sensor array configuration. In the top view of the measurement setup, the
ray path of the fluorescence with the spectral information is shown. The lens adjustment
consisting of a plano-convex spherical lens and a plano-convex cylindrical lens enlarges
the information of the fluorescent measurement object over the complete CMOS 2D sensor
array. Due to the assembly of the plano-convex cylindrical lens, this dimension contains the
spectral information to a corresponding location of a considered measurement object.
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Figure 3. Illustration of the proposed hyperspectral fluorescence spectrometer based on an
LVF/CMOS 2D sensor array configuration. In the side view of the measurement setup, the
ray path of the fluorescence with the spatial information is shown. The lens adjustment
consisting of a plano-convex spherical lens and a plano-convex cylindrical lens images the
fluorescent measurement object onto the CMOS 2D sensor array. Due to the imaging through
the plano-convex cylindrical lens, this dimension contains the spatial information of the
considered measurement object.
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2.3. System Characterization

To adjust the measurement setup, a resolution measurement of the LVF and a measurement of the
pixel linearity on the CMOS 2D sensor array had to be carried out. The resolution of the LVF was
analyzed in a previous work [12]. Considering the resolution of the LVF and the pixel size of the CMOS
2D sensor array, the system resolution is 1.6% of the LVF center wavelength. Thus, the measurement
setup can measure impurities that are larger than ten nanometers. The pixel linearity of the CMOS 2D
sensor array was determined with a light-emitting film in the visible wavelength range, which illuminated
the complete CMOS 2D sensor array with a constant intensity. This measurement was done with and
without the LVF atop the CMOS 2D sensor array. The intensity of the illumination was adjusted by two
polarization filters in constant rotation steps of 5◦. For each measurement step, the maximum variance of
the mean pixel intensity over all pixels was lower than 3.1%. Furthermore, for each pixel, the maximum
variance from the ideal linearity over all intensity values was lower than 1.4%. Due to the results of
the measurement characterization, it has to be stated that all pixels on the CMOS 2D sensor array show
nearly linear characteristics. In addition, the signal-to-noise ratio (SNR) of the measurement setup was
calculated as 59.

2.4. Calibration and Measurement Process

A wavelength calibration of the complete measurement setup is necessary for an interpretation and
evaluation of the fluorescence data. The wavelength range is defined by the used LVF and CMOS 2D
sensor array. For the wavelength calibration, a mercury lamp was used as the illumination, emitting four
distinctive peaks in the range of the LVF. The four peaks are located at 406 nm, 436 nm, 546 nm, and
578 nm. The detected wavelengths of each pixel on the CMOS 2D sensor array are filtered by the LVF
and change with little shifting of the position of the LVF. Hence, the specific combination of the LVF and
CMOS 2D sensor array has to be calibrated with respect to its wavelength distribution. Because of the
linear wavelength characteristic of the LVF, each row of the CMOS 2D sensor array was calibrated by
applying a linear fit algorithm to the measured wavelengths of the characteristic peaks. The wavelength
calibration method is described in more detail in [13]. After a successful wavelength calibration, it
is possible to allocate for each intensity value the corresponding wavelength, and the LVF/CMOS
configuration can be integrated into the measurement setup. In addition, it is possible to create a complete
spectrum for each row of the CMOS 2D sensor array. Due to the eight-bit intensity resolution of the
CMOS 2D sensor array, there is no additional intensity calibration for the system necessary.

A measurement process of the fluorescence spectra consists of four phases. First, the parameters for
the illumination duration of the UV-LED, the frequency for the external hardware trigger, the exposure
time of the CMOS 2D sensor array and the periodic time of one measurement have to be set. These
settings are necessary, so that the images have no overexposure and the fluorescence intensity does not
decrease through a warm-up of the viscous material. In the second phase, the data acquisition starts by
the manually defined hardware trigger. Then, data processing is deployed with respect to the recorded
measurement signals. Finally, an analysis and interpretation of the resulting data is realized.

In summary, the described measurement setup is a hyperspectral fluorescence spectrometer where the
spatial information along the direction of the slit is detected in one dimension of the CMOS 2D sensor
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array. The other dimension of the CMOS 2D sensor array shows the corresponding spectral information
divided by the LVF.

2.5. Analysis

Due to the different concentrations and properties of the fluorescent components of the viscous
materials, it is important that no fluorescence decreasing effects during the measurements exist. One
of these effects occurs especially at static measurements, where the measurement surface is illuminated
for an extended time and warm-up. Thereby, the molecules in the viscous materials obtain stronger
vibrations, and the collision probability increases with rising object temperature. This is known as
the quenching effect and leads to a decrease of the fluorescence signal [14]. For our case, the effect
can be classified at the dynamic fluorescence extinction and can be described with the Stern–Volmer
Equation [15]. This equation can be written as:

F0

F
= 1 + KD[Q] (1)

where F0 and F are the fluorescence intensities in the absence and presence of the quencher and Q is the
concentration of the quencher. The dependency of the temperature in the equation is represented by the
Stern-Volmer constant, KD. The value of KD is inversely proportional to the temperature of the viscous
fluorescent materials.

The root-mean-square error (RMSE) between a reference and measured fluorescence spectrum gives
the difference of both in the quantity being measured (in this case, % fluorescence) and can be written as:

RMSE(j) =

√∑n
i=1(Fi,ref − Fi,j)2

n
(2)

where n is the number of sampling points of the spectrum and j is the row number of the CMOS 2D
sensor array with a complete spectrum.

3. Results and Discussion

In this section, exemplarily static fluorescence measurements are presented, and a discussion of the
obtained results is carried out. The efficiency of the complete system is demonstrated by fluorescence
measurements with and without impurities in a viscous material.

In the first measurement, a fluorescent viscous material with no impurity was used. The measurement
surface was illuminated with the wavelength of 370 nm (10 nm full width at half maximum, FWHM).
The resulting fluorescence spectra included a wavelength range from 380 nm to 550 nm. The sample
thickness was in all places 200 µm. A reference measurement was carried out by a commercial
UV-Vis-spectrometer. The measured spectra started at a wavelength of 400 nm. Due to the optical
properties of the LVF, the wavelength was restricted on a range of 400 nm to 700 nm. Figure 4 shows
the results of the measured fluorescence spectra for three exemplary rows on the CMOS 2D sensor
array. The locations of the three rows are on both sides and in the middle of the relevant area on the
CMOS 2D sensor array. The regarded area on the CMOS 2D sensor array for the hyperspectral imaging
was restricted through the dimensions of the LVF. The relevant area comprised row 400 to 700 and all
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columns (6.66 mm × 1.56 mm). Furthermore, Figure 4 illustrates a reference fluorescence spectrum of
a UV-Vis-spectrometer.

Figure 4. Static measured hyperspectral fluorescence spectra of a viscous material without
an impurity. Exemplarily, spectra of rows 400, 550 and 700 and a reference spectrum of a
UV-Vis-spectrometer are illustrated. The location of the three rows is on both sides and in the
middle of the relevant area on the CMOS 2D sensor array. The intensities of all fluorescence
spectra are specified in arbitrary units (a.u.).
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The results of the three exemplary fluorescence spectra show a good accordance between one
another. The reference spectrum of the UV-Vis-spectrometer is almost equivalent to the three exemplary
rows. The variances between the reference spectrum and the exemplary spectra were calculated with
Equation (2). The differences amount to 1.75% (row number: 400), 1.69% (row number: 550) and
1.42% (row number: 700). In order to prove that all rows on the CMOS 2D sensor array have the same
fluorescence spectrum, a RMSE trend was calculated. As a reference spectrum, the middle row (row
number: 550) on the CMOS 2D sensor array was chosen. In Figure 5, the RMSE trend of all other
relevant rows to the reference row is illustrated.

The results agree well with the presumption that the measured viscous material contains no impurities,
which leads to a constant fluorescence over the complete measurement surface. The highest RMSE
of all relevant rows is 0.65% at row 442. The average RMSE of the considered rows is 0.55%.
Minor differences in the measured spectra compared to the reference row can be explained with small
irregularities in the used optical components.

After the successful proof of the idea presented in Section 2.1 by references to fluorescent viscous
materials, another measurement with a non-fluorescent impurity at a known location was performed. In
this measurement, the same area on the CMOS 2D sensor array as in the previous measurement was
considered. In Figure 6, the fluorescence spectra of three exemplary rows are shown. The locations of
the exemplary rows correspond to the investigated rows of the first measurement.
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The results in Figure 6 demonstrate two identical fluorescence spectra and a fluorescence spectrum
with a lower intensity. This confirms that in the area of row 400, a non-fluorescent impurity is included,
thus enabling the measurement and location of non-fluorescent impurities in viscous materials based on
the hyperspectral imaging with a small and low-cost LVF-spectrometer.

Figure 5. Root-mean-square error (RMSE) trend between a reference row and all other rows
of the CMOS 2D sensor array. The chosen rows (row number 400 to 700) show a maximal
RMSE of 0.65% to the reference row (row number: 442).
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Figure 6. Static measured hyperspectral fluorescence spectra of a viscous material with
a non-fluorescent impurity. Exemplary fluorescence spectra of rows 400, 550 and 700.
The non-fluorescent impurity is in the area of row 400 on the CMOS 2D sensor array.
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Besides measurements of a non-fluorescent impurity in viscous materials, it is possible to use the
system for measurements in viscous materials with a fluorescent impurity. The expected results of the
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spectra for the area without an impurity should be similar to the spectra in Figure 4. For the area with the
fluorescent impurity in the viscous material, an increase in the fluorescence intensity over the complete
wavelength range is expected. This is different from the non-fluorescent impurity, where a decrease of
the fluorescence intensity over the complete spectrum exists.

A first step in order to increase the robustness and accuracy of the system is to integrate the LVF
directly atop the CMOS 2D sensor array. Further, it is desirable to increase the area of the CMOS
2D sensor array, which is covered with an LVF. Moreover, measurements with higher resolutions of the
CMOS 2D sensor array up to twelve bits can be tested. In addition, the setup can be modified for moving
measurements of viscous materials or other applications.

Other possibilities are measuring different viscous materials and investigating different impurities
in one sample. An aim of such a measurement can be, e.g., the identification and location of several
fluorescent impurities in one sample by variations in the fluorescence spectra.

4. Conclusions

A new approach and application for static hyperspectral fluorescence measurements has been
presented. The main idea is to build a universally useable, contactless, online, small and low-cost
LVF-spectrometer. The acquisition unit with lens adjustment is mounted vertically above the sample.
The light source illuminates the viscous material at an angle of 45◦ at a wavelength of 370 nm. By
an appropriate synchronization between the illumination time and the exposure time of the CMOS
2D sensor array, it is possible to get static fluorescence spectra of a measurement surface separated
in location and wavelength.

Exemplary static measurements of a fluorescent viscous material with and without a non-fluorescent
impurity show the efficiency of this approach. A good agreement with a reference fluorescence spectrum
of a UV-Vis-spectrometer was achieved. In addition, the accordance between the relevant fluorescence
spectra at the CMOS 2D sensor array in a non-fouled fluorescent sample was illustrated. The possibility
to detect and locate a non-fluorescent impurity on a measurement surface of a viscous material
through the fluorescence spectra has been proven. Actually, the minimum cross-section dimension for a
successful detection of an impurity in the measurement system is about 75 nm. The maximum size for
the impurity is limited through the dimension of the slit in the system.

The implementation of this approach for moving measurements of fluorescent samples is conceivable
due to small changes in the presented setup and software. The described technology enables a
cost-effective and high-speed monitoring of the production processes of viscous materials based on
fluorescence. Such an application has not been developed until now.

By replacing the optical components, like LVF and the light source, with identically constructed
components with other optical parameters, it is possible to use this setup in other applications where the
measurement objects are fluorescent. Further investigations will show the suitability of this setup for the
detection and location of different kinds of impurities in fluorescent viscous materials. In addition,
the efficiency of the approach for moving fluorescence measurements and other applications will
be determined.
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