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Abstract: The integrated navigation system with strapdown inertial navigation system 

(SINS), Beidou (BD) receiver and Doppler velocity log (DVL) can be used in marine 

applications owing to the fact that the redundant and complementary information from 

different sensors can markedly improve the system accuracy. However, the existence of 

multisensor asynchrony will introduce errors into the system. In order to deal with the 

problem, conventionally the sampling interval is subdivided, which increases the 

computational complexity. In this paper, an innovative integrated navigation algorithm 

based on a Cubature Kalman filter (CKF) is proposed correspondingly. A nonlinear system 

model and observation model for the SINS/BD/DVL integrated system are established to 

more accurately describe the system. By taking multi-sensor asynchronization into account, 

a new sampling principle is proposed to make the best use of each sensor’s information. 

Further, CKF is introduced in this new algorithm to enable the improvement of the filtering 

accuracy. The performance of this new algorithm has been examined through numerical 

simulations. The results have shown that the positional error can be effectively reduced 

with the new integrated navigation algorithm. Compared with the traditional algorithm 

based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is 

improved, making the proposed nonlinear integrated navigation algorithm feasible  

and efficient. 
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1. Introduction 

In modern marine navigation, the strapdown inertial navigation systems (SINS) is widely used due 

to its advantages of being more compact and autonomous. However, accumulated navigation errors are 

inevitable in SINS and may become considerably conspicuous in the long-term. Consequently, it is 

often aided with other sensors, e.g., global positioning system (GPS) and Doppler velocity log (DVL) 

etc. The accuracy of the integrated system can thus be effectively improved owing to the redundancy 

and complementarity of the measurements [1–3]. Nowadays, the GPS-aided SINS integrated system is 

the most popular marine navigation system. Besides GPS, GLONASS, Gallileo, and another satellite 

navigation system named Beidou (BD) is being developed, which can provide precise position 

information via the double-star positioning theory [4,5]. This study focuses on the SINS/BD integrated 

system and further integrates DVL into the SINS/BD system to maintain and improve the system 

accuracy in poor BD or BD denied environments [5,6]. 

One outstanding feature of BD is that it is an active inquiry-response positioning system. The user’s 

position information is sent to the ground central control system through two satellites and then 

processed by the ground central control system. Then, the processed information is sent back to  

the satellites, and finally the estimated user’s position is sent to the user by the satellites [7,8]. 

Accordingly, the signals are transmitted multiple times between the ground receiver and satellites. 

With the additional processing time of the calculation center, time-delays appear in the user’s position. 

This causes the asynchronous phenomenon in a SINS/BD/DVL integrated navigation system, which 

will degrade the accuracy of the system. Therefore, an advanced asynchronous algorithm with small 

computational cost and high accuracy is important for SINS/BD/DVL integrated navigation.  

To solve the multi-sensor asynchronous problem, a SINS/Beidou/STAR integrated navigation 

system based on the federal filtering algorithm was built up [9]. Prior delayed information was 

recorded to correct the estimated states and their covariance matrix. In [10] an algorithm of weighted 

covariance for centralized asynchronous fusion (WCCAF), which fused the latest predicted state vector 

with the existing estimated state vector was proposed. The simulation results showed that the maximal 

position RMSE was 6 m in 90 s with the proposed method. Although these two methods could dampen 

the estimation error due to the asynchronization among multiple sensors, both of them are based on 

Kalman filters, so they are only suitable for linear systems. Since almost all actual systems are 

nonlinear, nonlinear filters should be used for multi-sensor information fusion [11–18]. In [11] an 

information fusion algorithm based on the Extend Kalman Filter (EKF) was introduced to solve 

nonlinear problems in multi-sensor integrated navigation, but the precision is limited because of the 

Taylor expansion and the EKF needs to calculate the fussy Jacobian matrix which increases the 

computational load. With the presented algorithm, 80% of errors in estimation are within 16 m in 50 s. 

The authors of [18] proposed an integrated navigation algorithm based on Unscented Kalman Filter 

(UKF) which was applied to a SINS/CNS (Celestial Navigation System)/GPS integrated system.  
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In [18], the local UKF was used to estimate the nonlinear integrated system and the federated Kalman 

filter was used to fuse the predictions of local filters, but in high-dimensional systems, the computation 

load is still heavy, thus, the filter converges slowly. In 2009, Arasaratnam and Haykin [19] proposed a 

more accurate nonlinear filtering solution based on a Cubature transform named Cubature Kalman 

filter (CKF) which can avoid linearization of the nonlinear system by using Cubature point sets to 

approximate the mean and variance. The third-order accuracy of the system can be achieved with this 

method. Because of its high accuracy and low calculation load, the CKF is widely used in attitude 

estimation and navigation [20–22]. 

In this paper a novel asynchronous algorithm for the SINS/BD/DVL integrated navigation system is 

proposed on the basis of CKF. Meantime, new nonlinear system and measurement models are also 

established for the measurements from SINS, BD and DVL. Taking multi-sensor asynchronization into 

account, a new sampling principle is proposed to make the best use of individual measurements. Even 

better, CKF can not only reduce the computational complexity, but also improve the accuracy of the 

navigation solution. The results from simulations showed that the proposed algorithm is superior to the 

conventional one. The rest of the paper is organized as follows. The description of the error differential 

equations of the SINS/BD/DVL integrated navigation system and the nonlinear filter named CKF are 

presented in Section 2. Section 3 shows the new sampling principle and the new asynchronous 

integrated navigation algorithm. Numerical examples along with specfic analysis are given in Section 4. 

Section 5 concludes this manuscript. 

2. Sensor Error Models and Nonlinear CKF 

2.1. Nonlinear Error Model of SINS  

Traditional linear differential equations are obtained under the assumption that the misalignment 

angles are small, so modeling errors are inevitable due to the nonlinearity of the true error model [3]. 

To improve the accuracy of the system model, a nonlinear error model of large azimuth misalignment 

angle for SINS is considered in this paper. 

In this paper, i , b , e , n  and n  denote the inertial coordinate system, the body coordinate system, 

the earth coordinate system, the navigation coordinate system, and the calculation coordinate system of 

SINS, respectively. Suppose that n  can be transformed to n  by turning z , x and 
y  successively, 

wherein 
T

x y z        is the Euler error angle vector, the direction cosine matrix from n  to n  is n

nC
 . 

Using is , ic   , ,i x y z  denote  sin i  and  cos i , respectively, n

nC
  can be describled as follows: 

y z y x z y z y x z y x

n

n x z x z x

y z y x z y z y x z y x

c c s s s c s s s c s c

C c s c c s

s c c s s s s c s c c c

           

    

           



   
 

  
   

 (1) 

The nonlinear attitude error equation of SINS can be derived as follows: 

 1 1ˆn n n n n b n b

n in n in b b gC I C C C C C W             
 

 (2) 
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wherein n

bC
  denotes the direction cosine matrix from b to n , b  and b

gW  are the gyro constant drift 

vector and the zero-mean Gaussian white noise vector, respectively, ˆ n

in  is the gyro measurement 

vector, n

in  is the rotating angular rate vector of n  relative to i , n

in  is the calculated error vector of 
n

in . The gyro measurement vector is equal to ˆ n n n

in in in    . C  is an intermediate matrix as follows: 

cos 0 sin cos

0 1 sin

sin 0 cos cos

y y x

x

y y x

C

  



  

 
 

  
 
 

 (3) 

The SINS velocity error equation is given by: 

     ˆ ˆ ˆ ˆˆ2 2n n b n b n b n n n n n n n n

b b b ie en ie env C f C f C f v v v g        


            (4) 

wherein ˆ bf  and bf  denote the specific force vector and its corresponding error vector respectively, 

ˆ n

ie  is the calculated Earth’s rotating angular rate, ˆ n

en  is the calculated angular rate vector, n

ie  and 
n

en  indicate the error vectors of ˆ n

ie  and ˆ n

en  respectively, ˆnv  and nv denote velocity measurement 

vector and its corresponding error vector, ng  is the gravity acceleration error, and n n n

b n bC C C


 . 

Suppose that bf is composed of the constant bias error b  and the zero-mean Gaussian white 

noise vector b

aW . If ng  is ignored, Equation (4) can be rewritten as follows: 

ˆ ˆ ˆ ˆˆ(2 ) ( ) (2 )n n b n b n b n n n n n n n n b

b b b ie en ie en b av C f C f C v v v C W      


             (5) 

Because both of the gyro and accelerometer errors are composed of a constant error vector and a 

zero-mean Gaussian white noise vector, their differential equations are:  

0

0

b

b

 

 

 (6) 

The position error equations comprise the longitude error   and the latitude error  : 

tan sec secx x

N N

y

M

v v

R R

v

R


    





 



 


 (7) 

wherein MR  and NR  are the Earth’s radii of the meridian circle and the prime vertical circle, 

respectively;   and   are the longitude and latitude of a point of interest; xv  and 
yv  are the east and 

north velocities with their velocity errors xv  and 
yv , respectively. 

2.2. Error Model of BD 

The location information can be received directly from BD. The major error sources which affect the 

measurement accuracy of BD are the error of the BD receiver, the track error and the multi-path effect. 

To focus on the asynchronicity problem of multi-sensor systems, only the clock error of a BD receiver 

is taken into account here, including the clock bias and the clock frequency drift [6]. Despite the fact 

that the clock bias consists of constant and random components, only the constant bias is taken into 
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account here for simplification. Normally, one uses t  and t  to denote the clock constant bias and 

the clock frequency drift. So the shaping filter of the BD receiver’s clock error is described as follows: 

t

t

t

t W



 

 


   
 (8) 

wherein   is the correlation time and W  is the white noise. 

2.3. Error Model of DVL 

The DVL functions as a sensor that measures the frequency shift of an acoustic signal, either 

transmitted or received by a moving object, which is proportional to the velocity of the moving  

object [2,23]. It can not only provide high accuracy absolute velocity, but aslo have satisfactory  

anti-interference performance, hence, DVL is widely deployed in marine navigation systems. The 

working principle of a DVL is based on the Doppler effect and the principle is described in Figure 1. 

Figure 1. The schematic of the velocity errors measured by the DVL. 




dK

K

z

E

NN 

heading

 

In Figure 1, K  means the true heading, dK  is the heading with the drift angle  , the drift of the 

angle error is denoted by  , and z  indicates the azimuth misalignment angle. By using dV   to 

denotes the velocity vector measured by the DVL, the following velocity equations are satisfied: 

  1d d dV C V V      (9) 

    

    

1 sin

1 cos

dx d d d z

dy d d d z

V C V V K

V C V V K

   

   

      


      

 (10) 

where C  indicates the scale factor error, dV  and dV  denote the true velocity vector and the velocity 

drift error vector, respectively. dxV   and 
dyV   are the components of dV  . Since both z  and   are small 

enough, the Equation (10) can be rewritten as follows: 

 

 

sin sin sin sin

cos sin cos cos

dx d d d d z d d d d

dy d d d d z d d d d

V V K V K C V K V K

V V K V K C V K V K

   

   

        


        

 (11) 

From Figure 1, one can also obtain: 
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sin

cos

x d d

y d d

v V K

v V K





 (12) 

According to the working principle of the DVL, one can obtain the velocity and the drift angle 

relative to the seafloor. Thus, the measurement errors include the velocity drift error dV , the scale 

factor error C  and the drift angle error   [2,4]. The DVL error model is as follows: 

0

d d d dV V W

W

C

  

  



 

   

    




 (13) 

where 1

d
 , 1 


 denote the correlation times of dV  and   respectively; dW , W  are the 

corresponding white noises.  

2.4. Cubature Kalman Filter  

Consider the following discrete-time nonlinear state-space model: 

 

 

1 1k k k

k k k

x f x W

z h x 

   


 

 (14) 

wherein kx  and kz  are the state vector and the measurement vector at time k , respectively;  f   and 

 h   are specific known nonlinear functions; and 1kW   and k  are the noise vectors from two 

independent zero-mean Gaussian processes with their covariance matrices 1kQ   and kR , respectively. 

CKF is proposed to solve this nonlinear filtering problem on the basis of the spherical-radial 

cubature criterion. CKF first approximates the mean and variance of probability distribution through a 

set of 2N  (N is the dimension of the nonlinear system) Cubature points with the same weight, 

propagates the above cubature points through the nonlinear functions, and then calculates the mean and 

variance of the current approximate Gaussian distribution by the propagated cubature points [19]. 

A set of 2N Cubature points are given by  ,i i  , where i  is the -i th  cubature point and i  is the 

corresponding weight: 

 1

1

2

i i

i

N

N





 






 (15) 

wherein 1,2,...2i N . 

Under the assumption that the posterior density at time -1k  is known, the steps involved in the time-

update and the measurement-update of CKF are summarized as follows [19]: 

Time-update: 

1 1 1 1 1 1

T

k k k k k k
P S S

     
  

, 1 1 1 1 1 1
ˆ

ii k k k k k k
X S x
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 , 1 , 1 1i k k i k k
X f X

  
  

2

1 , 1
1

1
ˆ

2

N

k k i k k
i

x X
N



 


   

2

11 , 1 , 1 1 1
1

1
ˆ ˆ

2

N
T T

kk k i k k i k k k k k k
i

P X X x x Q
N

 

    


    

Measurement-update: 

1 1 1

T

k k k k k k
P S S

  
  

, 1 1 1
ˆ

ii k k k k k k
X S x

  
   

 , 1 , 1i k k i k k
Y h X

 
  

2

1 , 1
1

1
ˆ

2

N

k k i k k
i

y Y
N

 


   

2

1 , 1 , 1 1 1
1

1
ˆ ˆ

2

N
zz T T

kk k i k k i k k k k k k
i

P Y Y y y R
N

    


    

2

1 , 1 , 1 1 1
1

1
ˆ ˆ

2

N
xz T T

k k i k k i k k k k k k
i

P X Y x y
N

    


   

With the new measurement vector kz , the estimated of the state vector ˆ
k k

x  and its covariance 

matrix k k
P  at time k  can be obtained by the following equations: 

 
1

1 1

xz zz

k k k k k
K P P



 
  

 1 1
ˆ ˆ ˆ

k kk k k k k k
x x K z z

 
    

1 1

zz T

k kk k k k k k
P P K P K

 
   

wherein kK  is the filter gain at time k . 

CKF uses cubature rule and 2N cubature point sets  ,i i   to compute the mean and variance of 

probability distribution without any linearization of a nonlinear model. Thus, the modeling can reach 

the third-order or higher. Furthermore, this filtering solution does not demand Jacobians and Hessians 

so that the computational complexity will be alleviated to a certain extent.  

3. Novel Nonlinear Integration Algorithm for Nonlinear SINS/BD/DVL Based on CKF 

3.1. Nonlinear Model of SINS/BD/DVL  

The nonlinear model for a SINS/BD/DVL integrated navigation system is established under the 

large azimuth misalignment angle in this paper. Considering the following error states: the longitude 

error  , the latitude error  , the east velocity error xv , the north velocity error 
yv , the Euler 

angle errors x , 
y  and z , the accelerometer zero-biases x , 

y , the constant gyro drifts x , 
y , z ; 
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the clock constant bias t  and the clock frequency drift t  of the BD clock error, the velocity drift 

error dV , the scale factor error C  and the drift angle error   of DVL, the state vector is built up  

as follows: 

T

x y x y z x y x y z t dX v v t V C                     

The corresponding state equation is written as: 

 1 1k k kX f X W    (16) 

The state function  f   can be obtained from Equations (1)–(13) and [3]. Futher, the process noise 

vector is given by: 

1 2 1 60 0 0
T

ax ay gx gy gz dW W W W W W W W W  
     

wherein axW  and 
ayW  are the white noises of accelerometer; 

gxW , 
gyW  and 

gzW  are the white noises of 

gyroscopes drifts; W  is the white noise; dW , W  are the white noises of dV  and  , respectively. 

To solve the problem of asynchronism, a new method is proposed to establish the measurement 

equations. The multi-sensor measurements can be pre-processed separately. Then, the central fusion 

blends all of the pre-processed data to obtain the optimal state vector. Here, the measurements are 

divided into two groups: pseudo-ranges and pseudo-range rates as the measurements for the SINS/BD 

filter, and the velocity errors as measurements for the SINS/DVL filter.  

The measurement equation for the SINS/BD filter is [8]: 

    
  

   

2

1 3

2 1 1,

1 2 1 2 3 1,

sin cos sin sin 1 cos

            cos cos cos sin

sin cos sin cos sin cos cos

i N i i N

N i i c i

i x i i y i i i c i

R e e R f

R e e v t

v e e v e e e v





      

     

           

     



    


         


 (17) 

wherein 1,2,3,4i   is the number of satellites, i  and i  are the pseudo-range residual and the 

pseudo-range rate residual between SINS and BD receiver, respectively, cv  is the velocity of light, 

1 2 3, ,i i ie e e  are the direction cosine from the user to the -i th  satellite, 
1,i  and 

1,i  are the measurement 

noise vectors.  

The velocity error measurements between the SINS and the DVL are as follows: 

2, 2,

2, 2,

sin

cos

x x y z y x d d x

y y x z x y d d y

Z v v v v C V K

Z v v v v C V K

     

     

      


     
 (18) 

wherein 
2,x , 

2, y  are the DVL measurement noises. 

3.2. Nonlinear Integration Navigation Algorithm Based on CKF  

In this subsection, a CKF-based novel nonlinear algorithm is structured to solve the asynchronicity 

problem. In general, the smaller the sampling interval one uses, the higher system accuracy one can 

achieved, but accompanied with a larger calculation burden. A proper sampling interval should be 

designed accordingly. Now, a new sampling principle is presented. If the sampling interval of SINS, 
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BD and DVL are 1T , 
2T  and 

3T  respectively, the greatest common divisor (GCD) of 1T , 
2T  and 

3T  is 

denoted as  1 2 3, ,GCD T T T . Thus, the sampling interval of the integrated navigation system T  is set 

as below: 

 

 
1 2 3

1 2 3

min , ,

, ,

T T T
T

GCD T T T
   

Using this sampling criterion T  is the maximal sampling interval which can sample all of sensors’ 

measurements. So the system accuracy can be improved without the expense of calculation burden. 

The sampling principle of the SINS/BD/DVL integrated navigation system is described as Figure 2. 

Figure 2. The sampling principle of SINS/BD/DVL integrated navigation system. 

3T

T

BD

DVL

 Integrated

System

2T

SINS
1T     '  ,

 /  

at this time received BD s measures

process SINS BD system

    '  ,

 /  

at this time received DVL s measures

process SINS DVL system

    '   '  ,

 / /  

at this time received BD s and DVL s measures

process SINS BD DVL system

    '  ,

  

at this time only SINS s information

process SINS system
 

(a) If only the measurements from SINS and BD are available at time k , the local SINS/BD states 

can directly be estimated using CKF. For more details on this please refer to Section 2.2. Based 

on the locally estimated state vector 
1X̂  and its covariance matrix 1P , the state vector of the 

SINS/BD/DVL integrated navigation system at time k  can be estimated as follows: 

, 1,
ˆ ˆ

f k kX X  

(b) Similarly, if only the measurements from SINS and DVL are available at time k , the local 

SINS/DVL states are also directly estimated using CKF. From the locally estimated state vector 

2X̂  and its covariance matrix 2P , the state vector of the SINS/BD/DVL integrated navigation 

system at time k  can be determined by 

, 2,
ˆ ˆ

f k kX X  

(c) If all measurements from SINS, BD and DVL are available at time k , the local states for 

SINS/BD and SINS/DVL are estimated using their own CKF respectively. Thus, one can first 

estimate the local state vectors 
1X̂ , 

2X̂  and their covariance matrixes 1P , 2P , and then combine 

the locally estimated state vectors by sensor nodes: 

, 1 1 2 2
ˆ ˆ ˆ

f kX D X D X   

wherein 1D  and 2D  are the corresponding weighting matrices for both of the subsystem: 

SINS/BD and SINS/DVL. Suppose that the sensors are independent, the individual suboptimal 

estimations of the state vectors can be obtained. After the minimum variance principle, the 

weighting matrices can be determined, which is explained in details in [12]. Finally, the 
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weighted state vector of the SINS/BD/DVL integrated navigation system at time k  is  

deduced as: 

2
1

, , , ,

1

ˆ ˆ
f k f k f k i k

i

X P P X



   

with:  

2
1 1

, ,

1

f k i k

i

P P 



  

(d) If no measurement is available at time k , the time-update can be performed to predict the state 

vector from the previous time. Thus, the state vector of the SINS/BD/DVL integrated 

navigation system is: 

 ,
ˆ ˆ 1f kX X k k   

Figure 3 illustrates the proposed nonlinear algorithm based on CKF. 

Figure 3. Flow chart of novel algorithm based on CKF. 

 

The solution accuracy of the SINS/BD/DVL integrated navigation system can be improved 

enormously via CKF whilst the asynchronous problem is solved by this method. Besides, the 

computational cost of the BD control system of the ground center can also be reduced by using this 

sampling principle. 
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4. Simulations and Results 

Simulations were performed in this work. Their results are presented in this section. Suppose that 

the swing dynamic model of a marine vehicle is given by: 

sin( )

sin( )

sin( )

m k

m k

m k

t

t

t







   

   

   

 


 
  

 

where  ,   and   are pitch, roll and yaw angles, respectively; the swing amplitudes were set up as 

5m   , 3m   , and 8m   ; the swing periods were 8T s  , 6T s  , 10T s  ; and the initial 

attitudes were 0k k    , 30k   . The vehicle’s motion states are listed in Table 1. The total time 

of each simulation was 10,800 s, and the sailing track of the vehicle is shown as in Figure 4. 

Table 1. Motion states of the marine vehicle. 

Motions States Time (s) Acceleration (m/s
2
) 

1. Mooring 0–300 ax = ay = 0 

2. Accelerated motion 300–620 ax = 0.025, ay = 0.035 

3. Uniform motion 620–1,620 ax = ay = 0 

4. Accelerated motion 1,620–2,100 ax = −0.04, ay = 0.005 

5. Uniform motion 2,100–3,100 ax = ay = 0 

6. Accelerated motion 3,100–3,700 ax = 0.007, ay = −0.035 

7. Uniform motion 3,700–5,200 ax = ay = 0 

8. Accelerated motion 5,200–6,200 ax = 0.018, ay = 0.015 

9. Uniform motion 6,200–10,800 ax = ay = 0 

Figure 4. Sailing track of the marine vehicle. 
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The initial conditions of different sensors are presented as follows:  

(1) The initial latitude and longitude: 45.7796 , 126.6705     ; their errors: 0.5   , 

0.5   ; 

(2) The initial velocity components: 0, 0x yv v  ; their errors: 0.8 /xv m s  , 0.8 /yv m s  ; 

(3) The acceleration due to the gravity: 2

0 9.7805 /g m s ; 

(4) The initial misalignment angles: 1 , 1 , 5x y z        ; 

(5) The SINS gyro constant drifts: 0.01 /x y z h      ; 

(6) The SINS gyro random noises: 0.005 /gx gy gzW W W h    ; 

(7) The SINS accelerometer constant biases: 4

010x y g   ; 

(8) The SINS accelerometer random noises: 5

010ax ayW W g= ; 

(9) The constant bias of the BD clock error: 30t m  ;  

(10) The frequency drift of the BD clock error: 0.01 /t m s  ; 

(11) The correlation time: 30 min  ; 

(12) The DVL velocity drift error: 0.05 /dV m s  ; 

(13) The DVL scale factor error: 410C  ; 

(14) The DVL drift angle error: 1   ; 

(15) The correlation times of dV  and  : 1 15 , 15d min min  

  . 

Under the same simulation conditions, the nonlinear algorithm based on CKF was used to estimate 

state vectors for the SINS/BD/DVL integrated navigation system. The solution was compared with the 

CKF solution only using the measurements from SINS/BDor from SINS/DVL. Assume the sampling 

intervals of BD and DVL are 0.5 s and 0.1 s, respectively, while the sampling interval of the fusion 

center is 0.05 s. First, the alignment lasted 15 min, and then the navigation was performed. The 

simulation results are presented in Figure 5 and Table 2. Here the north position error, the east position 

error and the position error are used to describe the performance of the simulation results in which the 

location error is as follows: 

   
2 2

      position error north position error east position error   

Figure 5 and Table 2 show that the north position error, the east position error and the position error 

from the SINS/BD/DVL integrated solution were much smaller than the errors from the subsystems: 

SINS/BD and SINS/DVL respectively. Besides, the position error converged rapidly with the proposed 

algorithm. By using the redundant and complementary measurements from the SINS/BD/DVL 

integrated navigation system, the novel algorithm can reduce the impact of the asynchronous problem. 

Thus, the position error can be decreased availably, and the navigation accuracy can be increased 

significantly. Since it was assumed that all sensors were independent in this research, the estimation 

results were suboptimal. The equipment errors, such as the gyro drifts, the accelerometer biases, and 

the misalignment angles, can also bring errors to the navigation solution. Considering the above 

reasons, the delivered results are acceptable and reasonable. 
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Table 2. Simulation Results with different sensor data. 

Different Sensor Data 
Maximal Errors (m) 

North Position Error East Position Error Position Error 

SINS/BD 275.1 −183.4 219.8 

SINS/DVL −314.5 −185.9 202.3 

SINS/BD/DVL −118.6 −98.7 109.1 

Figure 5. (a) The north and east position errors compared with the ones from the individual 

subsystems; (b) The position errors compared with the ones from the individual subsystems.  
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To prove the superiority of the proposed nonlinear asynchronous fusion algorithm based on CKF, 

another simulation was carried out with the traditional fusion algorithm based on EKF introduced  

in [11]. The simulation conditions were the same as indicated above. The simulation results are given 

in Figure 6 and Table 3. 

Figure 6. (a) The north and east position errors compared with the ones from the traditional 

algorithm; (b) The position errors compared with the ones from the traditional algorithm. 
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Table 3. Simulation results with different filters. 

Different Filters 
Maximal Errors (m) 

North Position Error East Position Error Position Error 

EKF −384.4 −255 284.5 

CKF −118.6 −98.7 109.1 

As can be seen from Figure 6 and Table 3, compared with the traditional nonlinear fusion method 

based on EKF, the north position error, the east position error and the position error of the 

SINS/BD/DVL integrated navigation system are smaller with the new algorithm based on CKF. With 

the traditional method based on EKF the maximal position error was about 284 m as the one with the 

proposed integration algorithm was nearly 109 m. That is, the position error was decreased by 61.6%. 

As CKF uses cubature rule and 2N cubature point sets  ,i i   to compute the mean and variance of 

probability distribution without any linearization of a nonlinear model, the filtering accuracy can be 

improved significantly. Hence, the higher navigation accuracy can be obtained based on CKF. 

5. Conclusions 

In this manuscript, a novel nonlinear integrated navigation algorithm based on CKF was proposed 

in order to solve the multi-sensor asynchronicitybproblem and reduce the high calculation load of the 

SINS/BD/DVL integrated navigation system. The main focus of this work was on establishing of a 

nonlinear system model and proposing of a new sampling principle to take multi-sensor asynchronism 

into account. The superiority of CKF was analyzed theoretically for the situation with the nonlinear 

system and measurement models. To verify the new navigation algorithm, numerical simulations were 

carried out. The results showed that the proposed nonlinear fusion algorithm based on CKF cannot 

only solve the asynchronicity problem of the SINS/BD/DVL integrated navigation system, but also 

significantly improve the navigation accuracy of the nonlinear system without imposing any additional 

calculation burden. However, under the assumption made in this study that all sensors in the integrated 

system were independent, the fusion results were suboptimal. Our future work will focus on a fusion 

algorithm that is suitable for multi-sensor asynchronous systems with the correlated noises.  
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