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Abstract: For the past 20 years, many authors have focused their investigations on 

wireless sensor networks. Various issues related to wireless sensor networks such as 

energy minimization (optimization), compression schemes, self-organizing network 

algorithms, routing protocols, quality of service management, security, energy harvesting, 

etc., have been extensively explored. The three most important issues among these are 

energy efficiency, quality of service and security management. To get the best possible 

results in one or more of these issues in wireless sensor networks optimization is necessary. 

Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc 

networks) these issues might conflict and require a trade-off amongst them. Due to the high 

energy consumption and data processing requirements, the use of classical algorithms has 

historically been disregarded. In this context contemporary researchers started using  

bio-mimetic strategy-based optimization techniques in the field of wireless sensor 

networks. These techniques are diverse and involve many different optimization 

algorithms. As far as we know, most existing works tend to focus only on optimization of 

one specific issue of the three mentioned above. It is high time that these individual efforts 

are put into perspective and a more holistic view is taken. In this paper we take a step in 

that direction by presenting a survey of the literature in the area of wireless sensor network 

optimization concentrating especially on the three most widely used bio-mimetic 

algorithms, namely, particle swarm optimization, ant colony optimization and genetic 
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algorithm. In addition, to stimulate new research and development interests in this field, 

open research issues, challenges and future research directions are highlighted.  

Keywords: wireless sensor networks; optimization; bio-mimetic algorithms; particle 

swarm optimization; ant colony optimization; genetic algorithm 

 

1. Introduction 

With the advancements in Micro-Electro-Mechanical Systems (MEMS) technology, wireless sensor 

networks (WSNs) have gained worldwide attention in recent years. A large number of applications 

including medical care, habitat monitoring, precision agriculture, military target tracking and 

surveillance, natural disaster relief, hazardous environment exploration and monitoring are all using 

this technology. Wireless Sensor Networks (WSNs) are critically resource-constrained by their limited 

power supply, memory, processing performance and communication bandwidth [1]. Due to their 

limited power supply, energy consumption is a key issue in the design of protocols and algorithms for 

WSNs. Hence, most existing works (e.g., clustering, lifetime prolonging) in the WSN area are dealing 

with energy efficiency. Typically, this energy consumption minimization or efficiency is not a trivial 

task, as in most cases number of conflicting issues need to be considered (e.g., lifetime, coverage). 

Optimization is very helpful in making the appropriate tradeoffs between these conflicting issues to get 

the best possible results [2].  

Like energy efficiency, Quality of Service (QoS) is necessary in a number of WSN applications 

such as Body Area Networks (BANs), Vehicular ad hoc Networks (VANETs), military target tracking 

and surveillance, etc. Obtaining QoS in these highly resource-constrained networks is not an easy task. 

In a number of cases, QoS metrics or parameters might even conflict with themselves. For example,  

in almost all medical applications, timeliness or on time delivery is compulsory, but that may conflict 

with energy efficiency (considering it as a QoS parameter), so the use of optimization is necessary in 

all these conflicting QoS scenarios. Like QoS and energy efficiency, security is another key concern 

for a number of WSN applications. Potential security measures could include a method of assuring that 

the packet/data was generated by a trusted source (sensors), as well as a method of assuring that the 

packet/data was not tampered with or altered after it was generated. Security may conflict with energy 

efficiency and QoS in a number of WSN applications. For instance, to ensure security, the use of 

encryption algorithms is very common, but this may lead to longer processing times that conflict with 

timeliness (QoS) of real-time data delivery, and the energy efficiency of WSN applications.  

Hence optimization is necessary to make a trade-off between these three.  

Unfortunately, most conventional or classical optimization algorithms like the Hessian matrix-based 

methods and gradient-based methods [3,4] are not suitable for WSNs. In conventional optimization 

approaches, the methods need to comply with the structure of the objective function which is to be 

solved [2], but sometimes the derivative of the objective function cannot be calculated. Therefore the 

optimal result becomes hard to find using classical algorithms [5]. For the last two decades  

bio-mimetic strategies have been widely used to solve these issues as they can solve non-differential 

nonlinear objective functions which are really hard to find using classical algorithms.  
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Thus, bio-mimetic optimization algorithms with some degree (low or medium) of computational 

complexity are worth exploring. Conventional or classical optimization algorithms are power hungry 

approaches. They must be restructured to reduce code size and dynamic memory usage due to the 

limited memory capacity of WSN nodes—typically less than 50 KB for code memory and even less 

for data memory. Recently, researchers have addressed these challenges by adopting bio-mimetic 

optimization strategies along with conventional techniques. There exists a diverse range of  

bio-mimetic or metaheuristic algorithms for optimization in wireless sensor networks including 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO),  etc. 

In fact, optimization algorithms are far more diverse than the types of optimization, but the right 

choice of an optimization algorithm can be crucially important in finding the right solutions for a given 

optimization scenario. 

Optimization, especially bio-mimetic strategy-based optimization in WSNs, is a very active 

research area. Papers published in this area are highly diverse in their approaches and implementations. 

To the authors' knowledge, there is no article which provides survey of the area. However, some work 

has been done addressing the various issues individually (e.g., energy efficiency, QoS or security) and 

they tend to overlook the whole scenario of collective optimization approach which encompasses these 

two or three WSN issues. In [6], an extensive survey was done on WSNs taking into account the topic 

of overall computational intelligence, but with some focus on bio-mimetic strategies. The more recent 

survey [7] narrowed down its focus to an ant colony optimization (ACO)-based approach to solve 

several issues in WSNs. Moreover, in [8] the authors discussed a protocol based on ACO, and two 

fundamental parameters, QoS and reputation are used. Both works exclude other popular techniques 

like PSO and GA. In [9], some issues of WSNs have been addressed using only PSO. A number of 

papers have reported works on energy efficient clustering [10–13] and prolonging network lifetime [14] 

in WSNs using PSO. 

Considering these points, we feel that now is an appropriate time to put recent works into perspective 

and take a holistic view of the field. This article takes a step in that direction by presenting a survey of 

the literature in the area of bio-mimetic optimization strategies in WSNs focusing on current,  

‗state-of-the-art‘ research. This paper aims to present a comprehensive overview of optimization techniques 

especially used in energy minimization, ensuring security, and managing QoS in WSN applications. 

Finally, this work points out open research challenges and recommends future research directions. 

Section 2 presents a brief overview on optimization and Section 3 presents the rationale for 

optimization in WSN in details. Section 4 provides an overview of existing approaches of bio-mimetic 

optimizations including hybrid approaches in WSNs. Open research challenges and suggestions for 

future research directions are presented in Section 5. Finally Section 6 concludes the work and points 

to areas of potential future work. 

2. Optimization Strategies 

2.1. What is Optimization? 

Optimization is a term that covers almost all sectors of human life and work; from scheduling of 

airline routes to business and finance, and from wireless routing to engineering design. In fact, almost 
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all research activities in computer science and engineering involve a certain amount of modeling, data 

analysis, computer simulations, and optimization [15]. In a word, it is an applied science that tries to 

obtain the related parameter values which facilitate an objective function to produce some minimum or 

maximum value [2]. In the real world, resources are limited, time and money are always less than 

required, so optimization is far more important in practice [16–18]. 

A typical optimization process consists of three components: model, optimizer and simulator  

(see Figure 1). The representation of the physical problem is done by using mathematical equations 

which can be converted into a numerical model. The formulation of a simple optimization problem can 

be done in many ways [15]. 

Figure 1. A simple optimization process. 

 

For instance, the most popular way to do the formulation is to write a nonlinear optimization 

problem as: 

                            (1)  

subject to the constraints: 

                   (2)  

                      
(3)  

where fi, hj and gk are nonlinear functions. Here the design vector x = (x1, x2, …) can be continuous, 

discrete or mixed in n-dimension [15]. The function fi is called objective function (cost function).  

Here when M is 1, it is a single objective function. But when M > 1, the optimization is multi  

objective [19]. It is possible to combine different objectives into a single objective and in some cases it 

is a useful approach. It can be noted that the problem we formulated here is a minimization problem. 

The maximization problem can be written by simply substituting fi(x) by −fi(x). 
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When K = 0, the optimization turns out to be an equality constrained problem, as we have only the 

equality constraints left. Equality h(x) = 0 can be expressed as two inequalities: h(x) ≤ 0 and −h(x) ≤ 0. 

It is important to mention that a number of formulations in the optimization literature use constraints 

with only inequalities.  

We are dealing with nonlinear constrained problems when all the functions are nonlinear. In some 

particular circumstances when fi, hj, and gk are linear, the problem itself becomes linear. In this case we 

can apply the broadly used linear programming methods. If the problem is of mixed type, meaning 

some design variables take discrete values, while other variables take real continuous values, it is often 

complicated to solve them, especially when the optimization problem is large-scale. 

2.2. Optimization Algorithms 

Choosing a proper algorithm or optimizer is an important step of any optimization. An efficient 

optimizer is vital to make sure that an optimal solution is reached. There is no single algorithm which 

is suitable for all problems. There exist a number of optimization algorithms including  

derivative-based algorithms (also known as gradient-based algorithms), derivative-free algorithms and 

bio-mimetic algorithms. The first two algorithm types are known as classical optimization methods. 

They are generally either Hessian matrix-based methods or gradient-based methods [3,4], whereas 

most of the bio-mimetic algorithms use pattern matrix-based methods which give random solutions to 

the related problems. This method enables the information exchange between the patterns and results 

in significant improvement.  

2.2.1. Derivative-Based Algorithms 

This type of algorithms uses the information of the derivative. As they have proved their 

competence as local search algorithms, they are widely used in many scientific applications and in 

discrete modeling [20,21]. One disadvantage of this method is that, if the problem of interest is not 

convex, they may fall into local optima. For that reason, the objective function should be sufficiently 

smooth and the first or sometimes second derivatives should be present. Some classical examples of 

this strategy are Newton‘s method and hill climbing, which is also a root-finding algorithm. On the 

other hand, one of the modern examples is the conjugate gradient method. This strategy is widely used 

to solve unconstrained optimization problems such as energy minimization [22].  

2.2.2. Derivative-Free Algorithms 

Unlike the previous one, this method only requires the value of the objective function, not the 

information of the derivative. If some discontinuity exists in cost functions, derivative-free algorithms 

may act in a more efficient manner. The Hooke-Jeeves pattern search method is one such method.  

It incorporates the past history of iterations in producing a new search direction [23]. Some other 

examples of this type of algorithms are the trust-region method and the Nelder-Mead downhill simplex 

method [24]. 
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2.2.3. Bio-Mimic Algorithms 

Modern optimization algorithms are often nature-inspired/bio-mimetic, and they are suitable for 

global optimization. There exist a diverse range of bio-mimic or metaheuristic algorithms for 

optimization, including Particle Swarm Optimization (PSO) [25], Genetic Algorithm (GA) [26], Ant 

Colony Optimization (ACO) [27], Cuckoo Search (CS) [28], Bat Algorithm (BA) [29], etc. The right 

choice of an optimization algorithm can be crucially important in finding the right solutions for a given 

optimization scenario. 

3. Rational for Optimization in WSNs 

3.1. Wireless Sensor Networks and Optimization  

A WSN typically has little or no infrastructure. A sensor network is created with a large number of 

sensor nodes, which are deployed either inside the monitoring substance or very close to it (as shown 

in Figure 2) [30]. Unlike traditional networks, a wireless sensor network has its own design and 

resource constraints. Sensor nodes carry very limited, non-replenishable power sources. As a result, 

while traditional networks focus more on achieving high quality of service (QoS), sensor network 

protocols have to focus primarily on power conservation issues. Other resource constraints include low 

bandwidth, short communication range, and limited processing and storage in each node.  

All the above mentioned issues are directly related to the optimization problem. Maximizing the 

lifetime, ensuring the QoS along with security is not an easy task. Furthermore, often these three issues 

contradict each other. If we want to ensure energy efficiency we have to compromise on QoS and 

security. If QoS is assured, then the other two issues may lack proper awareness. 

Figure 2. Architecture of a general wireless sensor network. 
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So, from the optimization point of view of WSNs, the right choice of the optimizer or algorithm for 

WSN problems is very important. The algorithm chosen for an optimization task will largely depend 

on the nature of the algorithm, the type of the problem, the desired quality of solutions, the available 

resources, time constraints, etc. The nature of an optimizer may determine if it is appropriate for a 

particular type of problem. For instance, derivative-based algorithms such as hill-climbing are not 

appropriate for optimization problems whose objective is discontinuous. On the contrary, the type of 

problem we are trying to solve also can play role in determining which algorithm to choose. If the 

objective function of the problem is highly nonlinear and multi modal, the classical algorithms are not 

appropriate, as they are local search algorithms. Most WSNs suffer from huge resource constraints, 

and most of the problems that are to be optimized are NP-hard problems, so the cost of simulators or 

mathematical programming engines used for linear, nonlinear and quadratic programming make them 

unattractive. As the problem size increases, the computational complexity of conventional methods 

grows exponentially. This is the main inspiration for choosing bio-mimetic algorithms (global 

optimizers) such as PSO, GA, ACO, CS, etc.  

3.2. Domains of Optimizations in Wireless Sensor Networks  

As we mentioned earlier, in WSNs there are three key issues that are highly needed to be optimized, 

namely energy efficiency, QoS, and security. Again, these have some conflicting issues. For example, 

if we want to ensure timeliness (QoS), we need to compromise on the lifetime (energy efficiency) of 

the network. The same goes for security-related parameters. If we want to have transaction with highly 

secure data over a network, we need to compromise with either QoS or lifetime, or in some extreme 

cases with both of them, by adopting complex and energy consuming security solutions. Therefore a 

proper trade-off has to be made between these highly sensitive and conflicting areas of wireless sensor 

networks. An insignificant amount of research has been focused in this particular area which 

encompasses the overall optimization of these three issues simultaneously. There are obviously some 

high quality works focusing on each individual area and the progress and pace of research has been 

very fast, but a research loophole exists when it comes to the question of optimizing all three issues to 

make a better wireless sensor network in the real sense. Here we will discuss these issues and try to 

find out whether they can exist in symbiosis or not.  

3.2.1. Energy Efficiency vs. QoS 

Wireless sensor networks are primarily characterized by their small amount and non-replenishable 

energy supply. Advancements in wireless sensor networks have led to a number of new protocols 

explicitly designed for sensor networks where energy awareness is the main consideration. Some of the 

research works have been done focusing on routing protocols since they might differ depending on the 

applications. Routing protocols aim to provide uniform energy dissipation during transmission to the 

sink node. This energy is mainly used for transmitting and receiving sensor readings, which are energy 

hungry operations. If all the sensors want to communicate with the BS directly, then it could result in 

the premature death of the whole network, so without a proper communication reduction strategy the 

whole system might be in jeopardy. Hence, the need for energy efficient infrastructure is becoming 

very important since it impacts the network's operational lifetime.  
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Almost all of the routing protocols can be classified as data-centric, hierarchical or location-based. 

Few of these protocols are aware of QoS. Along with the routing function, they include routing 

approaches that are based on general network-flow modeling and protocols that strive to meet some 

QoS requirements, but keeping in mind the resource constraints, the network QoS may suffer from 

lack of computing and communication resources [31]. As an example, if a number of nodes want to 

transmit l bit of message over the same WSN, they have to compete for the limited bandwidth that the 

network provides. As a result, some data transmissions may experience long delays, resulting in poor  

level of QoS, especially in real time applications. Also due to the limited memory size of the nodes, 

some data packets may be dropped or lost before they even reach the destination/sink. 

Data redundancy is another important QoS parameter related to the issues of energy constraints. 

WSNs are characterized by sensor data high redundancy. However, while the redundancy in the data 

does help loosen the reliability or robustness (QoS) requirements of data delivery, it unnecessarily 

spends much energy. Data compression can be a good solution in providing energy efficiency by 

removing the data redundancy, but this energy efficiency can come at the cost of reduced reliability 

and increased delays and distortion. 

Thus, in a sense QoS is also related to the issues of energy efficiency. In fact, energy efficiency 

itself is a QoS parameter. Somehow these two conflicting but incorporated areas need to be dealt with 

utmost intelligence and in this case biological intelligence can play a vital role. In order to achieve a 

prolonged network lifetime with a proper balance of power and suitable QoS support, energy loads must 

be evenly allotted among all the nodes. As a result, the energy of a single sensor or a small set of sensors 

will not be drained much earlier than others. QoS management must take this factor into account.  

3.2.2. QoS and Security 

Security and QoS are two critical network issues in WSNs. Security mechanisms are used to 

maintain confidentiality, integrity, and availability of the services provided by WSNs. On the other 

hand, in real time applications QoS enables the sensed data to be delivered within a bounded delay 

period. QoS research has focused for several years on problems such as packet loss rate, throughput, 

bandwidth guarantees, jitter, delay, and other performance-related parameters when transmitting data 

over a specific network. But interestingly the issue of security is rarely mentioned. In fact, the earlier 

approaches were such that, if someone wants QoS and network performance for the data traffic, 

security cannot be part of the equation.  

So the question is still out there, whether the network QoS and security are still orthogonal to each 

other or should one consider security as another QoS parameter and integrate it with the  

performance-related QoS parameters. So, the main question is, ―Can QoS and security coexist or not‖? 

Our conjecture is that network QoS and security can coexist if correct security policies are used in the 

right places. 

The mechanisms of security and QoS are interdependent.  Security mechanism choices impact the 

effectiveness of QoS and vice versa. QoS requires security mechanisms to ensure appropriate service 

assignment. A poor level of security measurement selection can massively jeopardize the performance 

of the network. Both services are necessary for safe and sound network operations. If we do not have 

information about QoS requirements, a poor choice of encryption endpoints may reduce the 
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effectiveness of QoS performance. On the other hand, without information on security requirements, a 

poor assignment of QoS performance parameters may lead to denial of service for vital but low 

bandwidth data.So lack of good understanding of these interactions and inappropriate service level 

selection can leak extra information about the importance of packets in the traffic stream, but clever 

manipulation of QoS parameters like data freshness/timeliness might even help to reduce leakage of 

information through channels. Therefore, both services must be considered together when designing 

and implementing a network infrastructure to achieve the best possible security and QoS levels.  

3.2.3. Energy Efficiency vs. Security 

As wireless sensor networks are rapidly growing, the need for effective security approaches are also 

becoming important. Many sensor networks have mission-critical tasks and may interact with sensitive 

data such as military applications, so it is clear that security needs to be taken into account at the time 

of design. While WSNs derive from wireless ad hoc networks, due to inherent resource and  

computing constraints, security in sensor networks poses different challenges than the traditional 

network security.  

All security approaches require some amount of resources for implementation, including data 

memory, storage and energy to run the sensors. However, these resources are very limited in wireless 

sensor nodes and they are non-replenishable, so in order to build an effective security mechanism, it is 

necessary to limit the code size of the security algorithm.  

For example, a common sensor which is relatively cheap and widely used in the research area is the 

TelosB. It has 16-bit, 8 MHz RISC CPU with only 10 KB RAM, 48 KB program memory,  

and 1,024 KB flash storage [32]. With this limitation, the operating system (OS) built for the sensors 

must also be quite small. The total code space of TinyOS, the standard OS for wireless sensors, is 

approximately 4 KB and the core scheduler occupies only 178 B, so, the code size for any  

security- related code must also be small. 

Limited power or energy is the biggest constraint for wireless sensor networks. We assume that 

once the sensor nodes are deployed in a network, they cannot be easily replaced or recharged.  

Thus, charge taken with them to the final location must be conserved to extend the lifetime of the 

individual sensor node along with the sensor network. When implementing a cryptographic function or 

security protocol within a network, the energy impact of the added security code must be also taken 

into account. The extra power consumed by sensor nodes due to the addition of security, is related to 

the processing required for security functions like encryption, decryption, data signing, etc., so a fine 

tuning of these two is essential. 

3.3. Co-existence of Energy Efficiency, QoS, and Security 

After all this discussion the question may arise on the coexistence of these three issues in a WSN 

application. Our conjecture is that it mostly depends on the application type. As an example Body Area 

Network (BAN) applications have significant legal, financial, privacy, safety, and real time 

implications. Hence, data freshness/timeliness, privacy, confidentiality, authentication, authorization, 

and integrity are their most fundamental requirements. Moreover, being a type of wireless sensor 

network, energy efficiency in most applications of BAN is a prerequisite, so the coexistence of energy 
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efficiency, QoS (timeliness), and security is necessary, but as we discussed earlier in most cases these 

are conflicting issues which require a trade-off between them and optimization can be a useful tool in 

making these trade-offs.  

From the pyramid view of Figure 3, we can easily notice the self contradicting nature of the three 

areas of a wireless sensor network in three layers. In the lowest two pyramid view, it is clear that if we 

want to ensure high amount of QoS then eventually the other two parameters will be affected.  

In the middle pyramids we can see the same scenario with security as the most important issue. Like  

the previous one, here QoS and energy needs to be compromised. In the upper two pyramids energy 

efficiency is the most prioritized issue, so QoS and security parameters are highly compromised.  

Figure 3. A pyramid view of how optimizations of Energy Efficiency, QoS and Security in 

a wireless sensor network are related to each other.  

 

4. Survey of Existing Works 

WSNs pose unique characteristics such as extremely resource-constrained, large scale deployment, etc. 

To solve the issues of WSNs with bio-mimetic approaches, researchers have proposed several 

algorithms over the last two decades. In the following subsections we will try to elaborate and give an 

insight into some of the leading methods, namely PSO, GA, ACO, etc., which are widely used in  

the WSN arena. 

4.1. PSO in WSNs 

Particle Swarm Optimization (PSO) was invented by Kennedy and Eberhart in 1995 [25].  

They were trying to simulate the amazing controlled motion of a swarm of birds flying in one 

direction. In PSO, particles regulate their information (flying directions) with its own flying experience 

as well as their neighbors‘ flying experience. In a word it combines self-experience with social 

experience [33], so the basic PSO was a social behavior simulator. It consists of a swarm of s 
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candidate solutions called particles. Several revised versions of PSO have emerged with a range of 

concepts and applications including WSNs. A number of parameters such as inertia weight (w) and 

confidence factors (c1, c2) were added later on [34,35] to improve the efficiency of the method. After 

several improvement processes it was understood that the technique can be used as a population-based 

optimizer and it can solve stochastic nonlinear optimization problems in a cheaper way. A more recent 

study on variations and taxonomy of PSO is presented in [36].  

Generating particles' position and velocities, velocity update, and position update- these three main 

steps defines the PSO algorithm. Here particle refers to a point in a D-dimensional search space that 

updates its position from one point to another based on related velocity updates. The i-th individual 

(particle) of the population, which is called swarm, can be represented in a D-dimensional vector as,

. The velocity or the position change for particle i is represented as 

 and the best previously visited position of this particle is denoted as 

. Symbol 
 
represents the best particle in the swarm and w is the inertia weight. 

The particles are then manipulated according to the following two equations [37]: 

   
        

      
     

     
       

     
     

   (4) 

   
       

     
    (5) 

where d = 1, 2, ..., D, i = 1, 2, ..., N and N is the size of the swarm and n = 1, 2, ... denotes the iteration 

number. Two random numbers r1, r2 which are uniformly distributed in [0, 1] ensure good coverage. 

They also ensure the avoidance of falling into local optima which was a problem of the classical 

approaches. The inertia weight w manipulates the trade-off between exploration and exploitation 

abilities of the flying points. Another two important parameters are c1 (self-confidence factor) and c2 

(swarm confidence factor). The stopping criterion of the algorithm depends solely on which type of 

problem it‘s going to deal with. One of the problems of PSO is the tendency towards a fast and 

premature convergence in mid-optimum points. A lot of effort has been made so far to solve  

this problem. A general pseudo code of PSO is shown in Figure 4.  

Figure 4. Pseudo code of PSO. 

 

 

),...,,( 21 iDiii xxxX 

),...,,( 21 iDiii vvvV 

),...,,( 21 iDiii pppP  g

 1 begin 
2 t = 0; 
3 initialize particles P(t); 
4 evaluate particles P(t); 
5 while (termination conditions  are 
 unsatisfied) 
6 begin 
7  t = t + 1; 
8  update weights 
9  select pBest for each particle 
10  select gBest from P(t-1); 
11  calculate particle velocity 
  P(t); 
12  update particle position P(t) 
13  evaluate particles P(t); 
14 end 
15end 
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Because of its inexpensive resource requirements, less occupation of memory and ability to solve 

stochastic optimization problems in a faster way, PSO is widely used in many types of WSN 

optimizations like energy aware clustering, optimal WSN deployment, node localization, data 

aggregation, etc.  

4.1.1. PSO in Design and Deployment of WSNs 

The ubiquitous nature of wireless sensor networks is useful in performing measurements in harsh 

and inaccessible environments in an efficient way. Bio-mimetic techniques can be very handy in the 

designing and planning the deployment of nodes in such environments. The WSN design and 

deployment problem refers to the optimum positioning of the nodes and base stations (sink nodes) in a 

way that the coverage and connectivity with adequate energy efficiency is achieved [38]. In some 

cases, the sensor nodes that need to be placed are determined beforehand, like in health monitoring 

applications, whereas in disaster monitoring, such positioning is impractical and they are deployed in 

an ad hoc manner. Sensors deployed in an optimal manner can guarantee adequate QoS, prolonged 

lifetime, and secure communication [39].  

Node Positioning in WSN is of two types, namely stationary and mobile node positioning. In [40] 

the authors tried to minimize the area of coverage holes via a centralized PSO-Voronoi algorithm for 

stationary node positioning. In this paper the coverage problem caused by limited sensing range 

(limited number of sensors) has been tackled using PSO and Voronoi diagrams. The method is based 

on the principle that if a sensor covers every point of the region-of-interest (ROI) then the whole ROI 

is covered. The Voronoi diagram is used to assess the fitness of the WSN‘s coverage. Based on this 

fitness, a PSO searches the most optimal position of the sensors. This PSO scheme finds close to 

optimal coverage, but ignores the complexity of determining Voronoi polygons [10]. 

Another work on stationary node positioning is presented by the Hu et al. in [41]. They proposed a 

topological planning method named PSO-Traffic (a binary PSO) for real world traffic surveillance  

(a main subsystem of intelligent transportation systems (ITS)) and the sensors are plotted around the 

2nd Ring Road in Beijing. The concept of small world is used in the study [42]. They used a large 

number of camera-loaded sensor nodes which are situated by the roadside. The PSO method is used to 

calculate the global best distribution of the nodes with the large radius. The target was to find optimal 

allocation of high power transmitters to existing nodes so that maximum coverage is achieved with 

minimized cost. This technique has ensured the symmetric distribution of high power transmitters, 

minimization of system cost and improvement in network performance.  

In [43] a sequential form of PSO is elaborated for a maritime surveillance application. The goal is 

to find out the optimal placement of sonar sensors so that detection coverage is maximized in a fixed 

volume V which represents a maritime region. The article states that the method can achieve about 6% 

better coverage compared to the standard PSO. 

Apart from the stationary node positioning in [44], Li et al. have proposed a hybrid approach for 

positioning stationary and mobile nodes to address the problem of coverage in WSNs. A modified PSO 

named particle swarm genetic optimization (PSGO) is used here. PSGO imports selection and 

mutation operators in PSO to overcome the premature fault of classical PSO. After the initial random 

deployment of nodes, the authors proposed to redeploy the mobile robots according to the node density 
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for repairing the sensing coverage hole. It is shown by the simulation that the WSN employing the 

mobile robots can improve the QoS in sensing coverage by as much as 6% over the stationary WSN, 

but it necessitates mechanisms for obstacle avoidance and location awareness. 

Another approach is presented in [45]. This paper proposes a dynamic deployment algorithm which 

is named ―virtual force directed co-evolutionary particle swarm optimization‖ (VFCPSO).  

This algorithm combines the co-evolutionary particle swarm optimization (CPSO) [46] with the VF 

algorithm. In virtual force (VF)-based dynamic deployment, the sensors iteratively move based on 

virtual attractive forces or repulsive forces from other nodes. The new position of a sensor is computed 

in such a way that it moves in the direction of VF by step size proportional to its magnitude.  

Authors report that the proposed VFCPSO is competent for dynamic deployment in WSNs and has 

better performance with respect to computation time and effectiveness than the VF, PSO and  

VFPSO algorithms. 

Base Station Positioning is another important factor for designing WSNs. The base station is 

usually assumed to have unlimited energy and powerful processing capability. In [47], a two-tiered 

wireless sensor network has been considered (see Figure 5) and an algorithm based on particle swarm 

optimization (PSO) has been proposed for finding the multiple base stations. The two tier network 

consists of nodes that can communicate only with the application nodes they are assigned to. 

Application nodes possess long-range transmitters, high-speed processors, and abundant energy. This 

method aims at determining positions of base stations so that the total of distances of application nodes 

to their nearest base stations is minimum. This deployment requires minimum transmission power and 

assures maximum network life. 

Figure 5. A two tier architecture of WSN. 

 

The proposed algorithm first randomly generates an initial group of particles, with each particle 

representing a possible multiple base-station location solution. Each particle also allocates a velocity 

for changing its state. System lifetime is used as the fitness function to evaluate each particle. Both the 

local optimal value pBest and the global optimal value gBest are then used to guide the search 

direction. When the termination conditions are achieved, the final gBest will be output as the location 

of the multiple base stations. Experiments have also been made to show the performance of the 

proposed PSO approach and the effects of the parameters on the results. In summary, the proposed 

algorithm can help to find good BS locations to reduce power consumption and maximize network 

lifetime in two-tiered wireless sensor networks. 

 

Sensor nodes 

Application Nodes

Base Station

 



Sensors 2014, 14 312 

 

The authors in [48] presented another application of PSO. The target is to achieve the optimal path 

for sink node (base station) movement across the sensor field. The research defines node throughput as 

the average number of data units forwarded by the sensor node in a time slot. The overall throughput 

of the sensor field is the aggregated throughput at a given sink node location. On the other hand, the 

average throughput is the average of the aggregated throughput collected from each point.  

From the simulation it is seen that average throughput degrades notably when the sink is moving with 

a large number of sensor nodes but achieves significant network coverage. Authors in [48] showed 

that, when the number of sensors are 3, the average throughput is 0.12099 and the field radius 

coverage is 0.015 m, but when the number of sensors are 100, the average throughput degrades but the 

coverage is increased to 0.500 m. 

Another work on base station positioning was demonstrated in [49]. Here they focused on one of 

the major issues of WSN that is the trade-off between the total Capital Expenditure (CAPEX) to 

implement the network and quality of service (QoS). The higher the number of base stations (BSs), the 

higher are the chances of availability of the network for the user. In this paper, authors propose to 

adapt the PSO algorithm in a non-conventional way to solve the maximum coverage problem. The 

algorithm determines the placement of the BS taking into account the demand distribution in order to 

maximize the QoS of the WSN.  

In [14] and [50] Latiff et al. proposed two energy-efficient protocols for the movement of mobile 

base stations in WSNs using PSO. In [14] an application specific scenario (environment monitoring) is 

considered. As a result of introducing mobile BS, the energy efficiency, lifetime and data delivery of 

WSNs is greatly improved. Simulation results showed that the protocol can improve the network 

lifetime, data delivery and energy consumption compared to existing protocols. Another  

energy-efficient protocol for the repositioning of mobile base stations using PSO in WSNs named 

PSO-BSP is presented in [50]. This work is concerned with repositioning the BS in a network with 

clustered sensor nodes. The repositioning of the BS can be precious in spreading the traffic by 

increasing hops and the feasibility for achieving the timeliness requirements. Results indicated that the 

proposed protocol showed gains in energy efficiency compared to protocol [11], which did not 

consider the BS repositioning. 

4.1.2. PSO in Node Localization 

Creating location awareness in deployed nodes in WSNs is known as node localization [51].  

An obvious but unattractive method of localization is to equip each node with a global positioning 

system (GPS). Many WSN localization algorithms approximate locations of sensors using a previous 

knowledge of the coordinates of special nodes called beacons. WSN localization is a two phase 

process: ranging phase and estimation phase. In first phase all the normal nodes estimate their 

distances from beacons, the special nodes, using signal propagation time or strength of the received 

signal [52]. Precise measurement of these parameters is not possible due to noise so the result of such 

localization is inaccurate. In the estimation phase, position of the target nodes is estimated using the 

ranging information either by solving equations, or by an optimizer like PSO, which minimizes 

localization error [10]. Node localization is a multidimensional optimization problem and it can be 

handled with bio-mimic methods like PSO. 
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In [53] Gopakumar et al. have proposed a PSO based localization scheme. The objective is to 

estimate x and y coordinates of n nodes in a network of m nodes deployed in two dimensional plane. 

The remaining (m – n) nodes are anchor nodes. Hence for a 2-D localization problem, a total of 2n 

unidentified coordinates, ϴ = [ϴx, ϴy]; where ϴx = [x1, x2, ..., xn] and ϴy = [y1, y2, ..., yn] are to be 

estimated using anchor node coordinates [xn+1, ..., xn+m] and [yn+1, ..., yn+m]. If (x, y) are the coordinates 

of the target node to be determined, then the distance between the target node and the ith anchor node di 

will be: 

          
      

 
   (6) 

The BS runs PSO to minimize the objective function which is defined as: 

       
 

 
                       

 

 

   

 (7) 

where (x, y) is the node location that needs to be determined and (x1, y1) are the coordinates of the ith 

anchor node. M ≥ 3 is the number of beacons or anchor nodes within transmission range of the target 

node. Here     is the measured value of di between the beacon i and a node (calculated under noise 

conditions). The variance of noise affects the localization precision. The method works well if the 

beacons have sufficient range or the beacons are plenty in number. Simulation showed that the 

localization error is more than halved with respect to simulated annealing [54] in all experiments, but  

it needs to be mentioned that in this method BS requires distance estimation from all nodes to all 

beacons. This results in congestion and massive expenditure of energy in WSNs.  

An addition to the above work is that reported in [55] by Kulkarni et al., which uses a bacterial 

foraging algorithm along with PSO. It is focused on range-based distributed iterative node localization. 

In this scenario the target node that has three or more beacons in its hearing range runs PSO to 

minimize the localization error and estimates its own x and y coordinates in a plane mission space. The 

localized nodes act as beacons themselves in the next iteration. This continues iteratively till all the 

nodes get localized. This method can localize all nodes that have three localized nodes or beacons in 

their range. This approach can lessen inaccuracies due to flip ambiguity based on some conditions. The 

work compares PSO with bacterial foraging algorithm with normal PSO. It is reported to show more 

efficiency in terms of searching capability. On the other hand, the bacterial foraging algorithm is 

reported to be less memory intensive and more accurate.  

In [56] Low et al. have proposed a PSO-based distributed localization scheme that does not involve 

beacons. In this paper, a comparatively inexpensive localization scheme is presented. It is based on the 

measurements from a pedometer and communication ranging between neighbouring nodes. For ease of 

testing, a person equipped with a pedometer and an electronic compass is considered as the 

deployment agent. The pedometer provides the distance and the electronic compass gives the angle of 

heading with respect to the magnetic north. The proposed system works well in a sparse network.  

The localization information is obtained through a probability based algorithm that requires the solving 

of a nonlinear optimization problem. To obtain the optimum location of the sensor nodes, the PSO 

scheme that can be realized with a microcontroller for real time application i s investigated in this 

paper. Experimental results show that the localization results of PSO and GNA are only slightly 
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different. For the similar given measurements, both schemes are able to find similar maxima. The 

slight variations are due to the different stopping criteria. From the simulations, the run time is also 

found to be comparable. Nevertheless, it is to be noted that the PSO is more robust as it constantly 

yields a distinctive result whilst the GNA involves matrix inversion during its iteration.  

In another work, Low et al. have proposed a localization scheme for unknown emitter nodes in a 

WSN [57]. This system assumes that there are four beacon nodes with known locations. One or more 

unknown nodes transmit RF signals that can be received by the anchor nodes. A node at location O in 

the sensor field can estimate its distance from a beacon as where P is the power transmitted by the 

beacon and P0 is the power at unit distance d0. The only available information to the system is the 

received signal strength indicator which is in general not very accurate. To obtain better estimated 

sensor node locations, the PSO scheme that can be realized in real time is investigated in this paper.  

It is observed from the experimental results that the calculated loss exponent α (a particle member)  

is between 3 to 5, which is a reasonable value as compared to other published research works.  

In general, the experimental errors are reasonable and are consistent with the simulation results. The 

results also validate that whenever the emitter node is near the centre of the rectangle, the error tends to 

be smaller. However, if the emitter node is moved closer to the area of the rectangle, the error 

increases significantly. 

4.1.3. PSO in Energy Aware Clustering 

WSNs are mainly characterized by their limited energy supply. Hence, the need for energy efficient 

infrastructure is becoming increasingly more important since it impacts the network operational 

lifetime, so balanced usage of energy is a critical issue in WSNs. Typically communication is the most 

energy-expensive act that nodes perform. Energy required to transmit l bits of data varies exponentially 

with transmission distance d, so it is common to use multi-hop communication. Routing in WSN refers 

to the selection of a definite path for a packet to go from a source node to a sink. The hierarchical routing 

has its all nodes clustered into groups. A cluster-head (CH) acts as the main node in a particular cluster 

that collects all the data from other non cluster head nodes. A node that acts as a CH for a long duration 

loses its energy prematurely, so an optimal cluster-head election mechanism is essential. Again, proper 

CH assignment influences network performance and longevity. Heinzelman et al. proposed low energy 

aware clustering hierarchy (LEACH) which is a simple and efficient algorithm [58]. As we already 

know from previous discussion that clustering is an NP-hard problem, which bio mimetic optimization 

methods like PSO can handle efficiently.  

The first PSO approaches in selecting CH efficiently can be found in [10]. Tillet et al. proposed a 

method using PSO that tries to equalize the number of nodes and candidate CH in every cluster of a 

network, with the target of minimizing the energy spent by the nodes while maximizing the data 

transmission. However, no comparison with other benchmark clustering strategies has been addressed.  

In [11] the authors consider both available energy in nodes and physical distances between them 

and their CHs. They defined a new cost function, with the purpose of minimizing the intra-cluster 

distance and optimizing the energy consumption of the network at the same time. Proposed protocol 

selects a high-energy node as a CH and produces clusters that are equally placed throughout the entire 

WSN field. The performance of the protocol is later compared with the well known cluster -based 
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protocols like LEACH and LEACH-C (an improved version of LEACH) and simulation results 

demonstrated better network lifetime and data delivery at the BS. The fitness function for the 

centralized PSO (PSO-C) is defined as cost = β × f1 + (1 – β) × f2, where f1 is the maximum average 

Euclidean distance of nodes to their associated cluster heads and f2 is the ratio of total initial energy of 

all nodes to the total energy of the cluster-head candidates in current round. The key difference 

between the works [10] and [11] is the application of PSO to choose the optimal nodes as cluster heads 

to extend the network lifetime. 

In [59] authors Chunlin et al. proposed a revised PSO to one clustering algorithm named Weighted 

Clustering Algorithm (WCA), in sensor networks. WCA is a recent clustering algorithm, which was 

revised to be suitable for dense mobile nodes distribution here. Then, Divided Range Particle Swarm 

Optimization (DRFSO) algorithm was applied to this revised WCA optimization. The particles were 

divided into groups running in four neighbourhood nodes simultaneously. The approach restricts the 

number of nodes to be catered by a CH to ensure efficient medium access control (MAC) functioning. 

It has also the flexibility of assigning different weights and takes into account a combined effect of the 

ideal degree, transmission power, mobility, and battery power of the nodes. Simulation study showed 

competent and effective results over other methods, especially when the distribution of mobile nodes  

is dense.  

Table 1. Notations used in PSO. 

w inertia weight 

 old velocity calculated for each particle 

 new velocity calculated for each particle 

c1 and c2 self confidence factor and the swarm confidence factor 

r1 and r2 random numbers 

 particles own past best position 

 old position calculated for each particle 

 the best position a particle attained in the whole swarm 

Four variants of PSO were proposed by Guru et al. in [60] for energy aware clustering, namely PSO 

with time varying inertia weight, PSO with time varying acceleration constants, hierarchical PSO with 

time varying acceleration constants, and PSO with supervisor student mode. In variant, the inertia 

weight w is decreased linearly from 0.9 in first iteration to 0.4 in the last iteration. In PSO with time 

varying acceleration constants, inertia weight is set constant, and acceleration constants c1 and c2 are 

varied linearly in every iteration, so the particles move in large steps initially but the step size reduces 

in every iteration. In hierarchical PSO with time varying acceleration constants method, the particle 

update is not influenced by the velocity in previous iteration. Thus, re-initialization of velocity is done 

when the velocity stagnates in the search space. Therefore, a new set of particles is automatically 

generated according to the behaviour of the particles in the search space, until the convergence 

criterion is met. Lastly, the PSO with supervisor student variant updates its position according to 

Equation (8). This method introduces a novel parameter called momentum factor (mc) which updates 

the positions of particles (refer to Table 1 for other notations). In this strategy the velocity of the 

particle is updated only if its fitness at the present iteration is not better than that of previous iteration. 

The velocity acts as a pilot (supervisor) by getting the accurate direction, whereas the position 
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(student) obtains a right step size along the direction. A detailed comparative analysis of the algorithms 

for optimal clustering is presented. This scheme considers only the physical distances between nodes 

and their assigned cluster-heads, but not the energy available to the nodes: 

   
              

        
    (8) 

Cao et al. [61] have considered a slightly different case in which a node and its CH are engaged in a 

multi-hop communication. The proposed algorithm synthesized the intuitionist advantages of graph 

theory [62] and optimal search capability of PSO [63]. They calculated the distance based on minimum 

spanning tree of the weighted graph of the WSN. The CHs were elected by maximum residual energy 

and in turns and by probabilities separately. The best route between a node and its CH is derived from 

all the optimal trees on the basis of energy consumption. The authors concluded that the network 

lifetime has almost nothing to do with the BS location or the residual energy of the node. Once the 

topology of the network is decided, the lifetime is settled. They also mentioned that there are two ways 

to improve the network lifetime. One way is to reduce the energy consumption for transmitter or 

receiver start up. Other way is to optimize the network topology. The performance was compared with 

three mechanisms of CH election: energy-based, auto-rotation-based, and probability-based. The 

results show that the PSO-based clustering methods ensure prolonged network lifetimes. 

4.1.4. PSO in Data Aggregation 

WSNs consist of sensor nodes with sensing and communication capabilities. When a WSN is used 

to monitor a region, each sensor node in the network collects local observations and sends compressed 

or partially processed data (a summary) to the fusion centre. The fusion centre (data aggregation 

center) uses the summary and applies specific decision fusion rule to make the final decision. The main 

goal of data aggregation is to gather and aggregate data in an energy efficient way so that network 

lifetime is improved [64]. Data fusion is a distributed and repetitive process which is quite suitable for 

PSO. Effective data aggregation influences network performance. Therefore, it is reasonable to choose 

PSO to control the parameters of fusion. PSO has provided optimization in several aspects of data 

aggregation as follows.  

In [65], authors address the problem of optimal power allocation through a constrained PSO.  

Their algorithm uses PSO to determine optimal-power allocation in the cases of both independent and 

correlated observations in a Gaussian sensor network. The optimal power scheduling scheme indicates 

that the sensors with poor observation quality and bad channels should be inactive to save the total 

power expenditure of the system. The wireless link between sensors and the fusion centre is assumed 

to undergo fading. The coefficients are assumed to be available at the transmitting sensors.  

The objective is to minimize the energy expenditure while keeping the fusion-error probability under a 

required threshold. The authors presented that the probability of fusion error performance based on the 

optimal power allocation scheme determined by PSO outperforms the uniform power allocation 

scheme, especially in case of a large number of nodes or when the local observation quality is good. 

Veeramachaneni et al. presented a hybrid approach of ant-based control and PSO for hierarchy and 

threshold management for decentralized serial sensor networks in [66]. The performance of the 

decentralized sensor network is sensitive to the design of thresholds for individual sensors and to the 
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communication hierarchy among sensors. The PSO is used to determine the optimal thresholds and 

decision rules (fusion rules) for the sensors while the ant colony optimization algorithm determines the 

hierarchy of sensor decision communication. The results achieved are compared to the fixed hierarchy 

and a traditional approach using the best performing sensor at the top of the hierarchy. Probabilistic 

measures including probability of error and Bayesian risk are adopted to evaluate the performance of 

the sensor network. Results show 40% performance improvements in terms of Bayesian risk value.  

In [67], Veeramachaneni et al. present a binary multi-objective PSO for optimal sensor 

management of multiple sensor networks. PSO is modified to optimize two objectives: accuracy and 

time. PSO searches the configuration space and finds an optimal configuration. An additional objective 

of time has been added to increase the complexity. The particle swarm algorithm is modified to solve 

this multi objective problem for a few different priorities of the objectives. Bayesian decision fusion 

framework as in [68] is used to fuse the decisions from multiple sensors. The output of the algorithm is 

the choice of sensors, individual sensor threshold, and the optimal decision fusion rule. Results show 

the capability of the algorithm in selecting optimal configuration for a given requirement consisting of 

multiple objectives. This algorithm can be used for managing a network of radars, which detect the 

presence of an aircraft, rain clouds, missiles, etc. 

The authors in [69] presented a multi-source temporal data aggregation model in WSNs, including 

feature selection and data prediction. Data aggregation has emerged as a basic approach in wireless 

sensor networks (WSNs) in order to reduce the number of sensor node transmissions. This work 

proposes an energy-efficient multi-source temporal data aggregation model called MSTDA. This 

model is deployed at both the base station (BS) and the node. MSTDA helps to find out potential laws 

according to historical data sets. In this model, a data prediction algorithm based on improved BP 

neural network with PSO (PSO-BPNN) is proposed. Feature selection based on PSO extracts the 

essential data from thousands of sample data, the simplified datasets are then employed by PSO-BPNN 

for prediction. The experiments on the dataset which comes from the actual data collected  

from 54 sensors deployed in the Intel Berkeley Research lab showed good results.  

Jiang et al. in [70] designed a linear decision fusion rule and proposed a way of controlling the 

parameters of the model taking the advantage of the constrained PSO. It is obvious that the  

decision-making capability of each node is different due to the different signal noise ratios and some 

other factors, so a specific sensor‘s contribution to the global decision should be constrained by this 

sensor‘s decision-making capability. Based on this idea, a novel linear decision fusion model for 

WSNs was established. In the model, the integrated contribution of local decisions is computed with a 

linear equation which is made up with local decision weights and local decisions. Then the integrated 

contribution is compared with a threshold in the fusion centre. Later on, according to the comparison 

results, the final decision is made. In order to get the smallest error probability, constrained PSO is 

employed to find out the optimal local decision weight and the threshold. The simulation results 

indicated that the linear decision rule and the parameter optimization method are efficient to get very  

high accuracy.  

Available PSO solutions to the problems discussed so far are summarized in Table 2.  
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Table 2. Summary of PSO approaches in WSNs. 

Authors Literature Main Contributions 
Area of 

Optimization 

Aziz et al. 

Particle Swarm Optimization and 

Voronoi diagram for Wireless Sensor 

Networks coverage optimization [40]. 

1. Minimize the area of coverage holes  

2. Finds close to optimal coverage  

3. Uses centralized PSO-Voronoi algorithm 

Stationary 

Node 

Deployment 

Hu et al. 
Topology optimization for urban 

traffic sensor network [41] 

1. Real world traffic surveillance  

2. Uses binary PSO 

3. Minimization of cost of sensor equipment 

Stationary 

Node 

Deployment 

Ngatchou et al. 

Distributed sensor placement with 

sequential particle swarm optimization 

[43] 

1. Maritime surveillance application 

2. Uses a sequential form of PSO 

Stationary 

Node 

Deployment 

Li et al. 

Improving sensing coverage of 

wireless sensor networks by 

employing mobile robots [44] 

1. Improve the QoS in sensing coverage 

2.Uses particle swarm genetic optimization (PSGO) 

Hybrid 

Deployment  

Wang et al. 

An improved co-evolutionary particle 

swarm optimization for wireless 

sensor networks with dynamic 

deployment [45] 

1. Competent for dynamic deployment in WSNs and 

has better performance and efficiency 

2. Uses virtual force directed co-evolutionary 

particle swarm optimization (VFCPSO) 

Dynamic 

Deployment 

Hong et al. 

Allocating multiple base stations 

under general power consumption by 

the particle swarm optimization [47] 

1. Finds multiple base stations 

2. Assures maximum network life  

Base Station 

Positioning 

Mendis et al. 
Optimized sink node path using 

particle swarm optimization [48] 

1. Target is to achieve the optimal path for sink node  

2. Good approach for sparse deployment 

Base Station 

Positioning 

Nascimento et 

al. 

A Particle Swarm Optimization Based 

Approach for the Maximum Coverage 

Problem in Cellular Base Stations 

Positioning [49] 

1. Focuses on the trade-off between the total Capital 

Expenditure to implement the network and Quality 

of Service (QoS) 

2. PSO algorithm determines the placement of the 

BS 

Base Station 

Positioning 

Gopakumar et al 

Localization in wireless sensor 

networks using particle swarm 

optimization [52] 

1. Minimize localization error 

2. Performs better than simulated annealing 

Node 

Localization 

Kulkarni et al. 
Bio-inspired node localization in 

wireless sensor networks [54] 

1. Uses bacterial foraging algorithm along with PSO 

2. focused on range-based distributed iterative node 

localization 

Node 

Localization 

Low et al. 

A particle swarm optimization 

approach for the localization of a 

wireless sensor network [55] 

1. PSO-based distributed localization scheme 

2. No beacons 

3. Good performance as compared with the Gauss- 

Newton algorithm (GNA) 

Node 

Localization 

Low et al. 
Optimization of sensor node locations 

in a wireless sensor network [56] 

1. A localization scheme for unknown emitter nodes 

2. To obtain better estimated location of the sensor 

nodes PSO is used 

Node 

Localization 

Tillet et al. 

Cluster-head identification in ad hoc 

sensor networks using particle swarm 

optimization [58] 

1. Uses PSO to equalize the number of nodes and 

candidate CH in each cluster 

2. Minimizes the energy spent by the nodes and 

maximizes the data transmission 

Energy 

Aware 

Clustering 
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Table 2. Cont. 

Authors Literature Main Contributions 
Area of 

Optimization 

Latiff et al. 

Energy-aware clustering for wireless 

sensor networks using particle 

swarm optimization [59] 

1. Defined a new cost function 

2. Proposed protocol selects a high-energy node as a CH 

and produces clusters that are equally placed throughout 

the entire WSN field 

Energy 

Aware 

Clustering 

Chunlin et al. 

Particle swarm optimization for 

mobile ad hoc networks clustering 

[60] 

1.Divided Range Particle Swarm Optimization 

(DRFSO) algorithm was applied to the revised 

Weighted Clustering Algorithm 

2. flexibility of assigning different weights to the nodes  

Energy 

Aware 

Clustering 

Guru et al. 

Particle swarm optimizers for cluster 

formation in wireless sensor 

networks [61] 

1. Four variants of PSO were proposed 

2. Considers only the physical distances between nodes 

and their assigned cluster-heads 

Energy 

Aware 

Clustering 

Cao et al. 

Cluster heads election analysis for 

multi-hop wireless sensor networks 

based on weighted graph and 

particle swarm optimization [62] 

1. Node and its CH is engaged in a multi-hop 

communication 

2. CHs were elected by maximum residual energy and in 

turns and by probabilities separately 

Energy 

Aware 

Clustering 

Wimalajeewa et 

al. 

Optimal power scheduling for 

correlated data fusion in wireless 

sensor networks via constrained 

PSO [66] 

1. Addresses the problem of optimal power allocation 

through constrained PSO 

2. Objective is to minimize the energy expenditure while 

keeping the fusion-error probability under a required 

threshold 

Data 

Aggregation 

Veeramachaneni 

et al. 

Swarm intelligence based 

optimization and control of 

decentralized serial sensor networks 

[67] 

1. Hybrid approach of ant-based control and PSO for 

hierarchy and threshold management 

2. 40% performance improvements in terms of Bayesian 

risk value 

Data 

Aggregation 

Veeramachaneni 

et al. 

Dynamic sensor management using 

multi objective particle swarm 

optimizer [68] 

1. A binary multi objective PSO for optimal sensor 

management 

2. PSO is modified to optimize two objectives: accuracy 

and time 

Data 

Aggregation 

Guo et al. 

Multi-Source Temporal Data 

Aggregation in Wireless Sensor 

Networks [70] 

1. A multi-source temporal data aggregation model is 

presented 

2. Proposes an energy-efficient multi-source temporal 

data aggregation model called MSTDA 

Data 

Aggregation 

Jiang et al. 

Linear Decision Fusion under the 

Control of Constrained PSO for 

WSNs [71] 

1. Designed a linear decision fusion rule  

2. Proposed a way of controlling the parameters of the 

model taking the advantage of the constrained PSO  

Data 

Aggregation 

4.2. Ant Colony Optimization 

Like some other swarm intelligence approaches that take inspiration from the social behaviors of 

insects and animals, ants have inspired a number of methods and techniques among which the most 

widely studied is the general purpose optimization technique known as ant colony optimization 

(ACO). ACO is a method which is inspired from the foraging behavior of some ant species. These ants 

deposit pheromonee on the ground in order to mark their paths from the nest to food that should be 
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followed by other members of the colony. This algorithm has a mechanism for solving discrete 

optimization problems in various engineering domains.  

Initially the optimization algorithm was proposed by Dorigo in 1999 [71]. The primary idea has 

since been widely researched and diversified to solve a broader class of numerical problems. The ACO 

heuristic algorithm was later introduced by Dorigo and his collaborators for solving some 

combinatorial optimization problems [72], such as the traveling salesman problem (TSP) [73]. The 

general foraging behavior of ants is described below [27]: 

1. The first ant finds the food source, via any way, and then returns to the nest, leaving 

behind a pheromone trail.  

2. Ants indiscriminately follow possible ways, but the strengthening of the runway makes 

it more attractive as the shortest route.  

3. Ants take the shortest route; long portions of other ways lose their trail pheromones.  

For example if there two paths A and B exist between a nest and a food source (see Figure 6), and 

nA(t) and nB(t) are the number of ants use them at time step t, respectively, then the probability of ant 

choosing path A (PA), at the time step t + 1 is given by the following equation: 

        
         

 

                     
           (9)  

where c is the degree of attraction of an unexplored branch,  PB is the probability of choosing path B, 

and α is the bias to using pheromone deposits in the decision process  (α ≥ 0). An ant chooses between 

the path A or path B using the decision rule: if U(0, 1) ≤ PA(t + 1) then choose path A otherwise 

choose path B. U is a random number having uniform distribution in the range (0, 1). 

Researchers have shown that ACO performs well in solving stochastic time-varying problems (e.g., 

routing in networks) because of its flexibility and decentralized nature. ACO presented many desirable 

features in solving dynamic and distributed routing problem because of their similarities between ants ‘ 

foraging and routing [8]. The following section reviews the recent research and implementation of 

ACO wireless sensor network field.  

Figure 6. Ants follow the minimal path from nest to food source.  
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4.2.1. ACO Based Routing Algorithms 

Bio-mimetic methods like ACO are popular tools used by researchers to address the issue of 

energy-aware routing. Planning of energy-efficient protocols is vital for WSNs because of the 

constraints on sensor nodes‘ energy. Therefore, the routing protocol should be able to achieve uniform 

power dissipation during transmission to the sink node. In [75], an Energy Efficient Ant-Based 

Routing (EEABR) is designed to extend the life time of WSNs by decreasing communication overhead 

in the discovery phase. This is attained by way of two factors: energy and hop count.  In addition, they 

use a fixed ant size to construct energy efficiency routes. Ants are generated proactively in EEABR at 

regular intervals and unicasted to the next hop SNs that is selected by a probabilistic rule. The protocol 

was studied by simulation for several WSN scenarios and the results clearly show that it minimizes 

communication load and maximizes energy savings.  

Almshreqi et al. presented a self-optimization scheme for WSN in [76] which is able to utilize and 

optimize the sensor nodes‘ resources, to achieve balanced energy consumption across all sensors. 

Inspired by the colony of ants, they presented SensorAnt to use a new routing scheme to optimize the 

battery power of sensors participating in the paths to forward the data across the sensor networks. The 

objective function depends on multi-criteria metrics such as the minimum residual energy or battery 

power, hop numbers, and average energy of both route and the network. This method also distributes the 

traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life 

time, and reduced packet loss. Simulation results show that their scheme performs much better than 

Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption and efficiency. Other 

QoS metrics such as throughput, delay and packet loss are not addressed in this method.  

For constructing optimal data-gathering routing structure in WSN and to improve the reliability of 

the tree structure in order to reduce the loss of efficient information, it is important to minimize the 

total energy cost of data transfer from the data-collecting region to a fixed sink for prolonging the 

lifetime of a WSN. To achieve the above two important objectives a Predication mode-based Routing 

Algorithm based on ACO (PRACO) to achieve energy-aware data-gathering routing is presented  

in [77]. Via load balancing in heuristic factors and acnovel pheromone updating rule in artificial ants, 

it can confer to the artificial ants the ability to adaptively detect the energy status of WSN and 

intelligently build the routing structure. Results show that the proposed method can effectively 

reinforce the robustness and effectiveness of routing structure by mining the temporal associability. 

Here ACO balances the total energy cost for data transmission. This contribution can improve the 

robustness of routing mechanism in WSN with the tradeoff between energy-saving effect and reliable 

structure. 

A novel multipath routing protocol (MRP) based on dynamic clustering and ACO is presented  

in [78] for monitoring burst events in a reactive WSN. The authors introduced an objective function to 

carry out dynamic clustering. MRP improves the efficiency of data aggregation, thus, reducing the 

energy consumption. The improved ACO algorithm is used to search the optimal and suboptimal paths 

based on several metrics (e.g., path length and energy consumption of communication) that can 

balance the energy consumption among nodes. Moreover, a load balancing function is presented for 

dynamic selection of a path to transmit data. Test results showed that MRP achieved better load 

balancing and lower energy consumption, and overall maximizes the network lifetime. 
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The authors in [79] introduce routing algorithms implemented using two kinds of ACO and an 

improved ant system algorithm. A performance comparison of the three algorithms is carried out, 

mainly on the average energy consumption and the average delay. The simulation results show that the 

routing algorithm implemented by ACO can reduce effectively energy consumption. ACO proves to be 

an effective way to reduce the energy consumption and maximize the lifetime in WSNs.  

In [80] a routing protocol defined as Biological inspired self-organized Secure Autonomous 

Routing Protocol (BIOSARP) is proposed to enhance the limitations of Secure Real-Time Load 

Distribution (SRTLD). SRTLD uses broadcast packets to perform neighbor discovery for every packet 

transfer every hop, and thus consumes high energy. The BIOSARP routing protocol depends on the 

optimal forwarding decision obtained by ACO. The pheromone value in ACO is computed based on 

end-to-end delay, residual energy, and packet reception rate metrics similar to SRTLD. The proposed 

BIOSARP has been designed to reduce overhead broadcast packet in order to minimize the delay, 

packet loss, and power consumption in WSN. In simulation study BIOSARP normalized overhead  

is 12.1% less as compared to E&D ANTS and achieves 14% higher delivery ratio with 9% less power 

consumption when compared to SRTLD. 

The demand for real-time application in WSN is increasing day by day. So the quality of service 

(QoS)-based communication protocols are becoming a hot research area, specially in the case of 

wireless multimedia sensor networks (WMSNs). In WMSNs the transmission of imaging and video 

information requires both energy efficiency and QoS assurance (e.g., bandwidth, packet loss and delay 

constraints). In order to achieve the balance between energy-efficiency and QoS improvements  

Song et al. [81] presented a multiple QoS metrics hierarchical routing protocol (2ASenNet), with a 

combination of an improved ACO and artificial fish swarm optimization (AFSO) [82]. It adopted 

hybrid ant behavior to produce diverse original paths, while adding AFSO for the iterative process of 

the improved ACO and the optimization path was explored according to multiple QoS constrained. 

Experimental results indicated the efficiency of this novel approach, while simultaneously reducing the 

consumption of constrained resources as much as possible. 

4.2.2. ACO in WSN Deployment 

Most of the previous works assume that in WSNs a sensing field is an open space. In [83]  

Wang et al. considered the sensing field as an arbitrary-shaped region with possible obstacles. They 

eliminated the constraints of existing results by assuming a random relationship between the 

communication range and the sensing range. In the Forbidden City of China, Li et al. [84] 

demonstrated a real application of a WSN system for relic protection. The authors developed a 

hardware named the EasiNet and the corresponding mesh-architecture of the system was constructed. 

A sensor deployment optimization tool based on ant colony optimization technology (DT-ACO) is 

proposed which guarantees the network connectivity, full optimized WSN sensing coverage, as well as 

minimized number of sensor nodes. A novel power-aware cross-layer scheme (PACS) is designed 

towards the challenge of adjustable lifetime and surveillance accuracy. It enables satisfactory system 

lifetime and surveillance accuracy in general applications. PACS was implemented into both sensing 

nodes and the sink. The sensing nodes use PACS to measure the degree of over-consumption, save the 

transmissions by data prediction, and adaptively adjust prediction accuracy. The sinks use PACS to 
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cooperate with the sensing nodes when the prediction algorithm proceeds. The mesh architecture of the 

system achieves prolonged lifetime and an improvement on the data delivery rate than traditional 

methods [85,86] during real applications. 

Li et al. have another relatively recent work [86] published in 2010, where they formulated the 

minimum-cost CGP k coverage problem in real sensor network system. An improved ant colony 

algorithm EasiDesign is proposed to achieve the approximate solution to this optimization problem. 

They mainly focus on two kinds of practical problems: optimizing the routing hops and avoiding 

obstacles. They first gave a new pheromone updating rule which considers not only the number of 

sensors but also the routing cost in the constructed solution, and then they designed an obstacle 

detection component to guide the ants to go around the obstacles. The obstacle avoidance and the 

routing cost trade off strategies ensure that the EasiDesign can work efficiently. The simulation results 

show that EasiDesign uses less sensor nodes than the existing works in the same scenario.  

The optimum configuration of key parameters in EasiDesign proves that it achieves better performance 

than the traditional ant colony algorithm. With routing optimization method, EasiDesign largely 

reduces system routing cost by a small number of redundant sensors. Like previous research work they 

have demonstrated the performance through a real sensor network system for the environment 

monitoring in the Forbidden City. 

In [87] the authors considered the problem of sensor deployment to achieve complete coverage of 

the service region and maximize the lifetime of WSNs. They modeled the deployment problem as the 

multiple knapsack problem. The ACO algorithm provides a natural and intrinsic way of exploration of 

search space for multiple knapsack problems (MKP). Their proposed node deployment scheme based 

on ACO algorithm addressed five deployment scenarios for performance evaluation. The simulations 

show that the network lifetime can be increased by increasing the energy and density of the sensors 

closer to the sink. Also it was claimed that this deployment scheme can perform better than other 

existing schemes and can prolong the network lifetime significantly in any WSN scenario. 

The problem of minimum cost and connectivity guaranteed grid coverage (MCGC) is one of the 

most critical issues for the implementation of WSNs. In [88], a novel algorithm, ant colony 

optimization with three classes of ant transitions (ACO-TCAT) is proposed to solve this problem.  

The goal of the algorithm is to improve the quality of the solution space and raise the searching speed. 

Simulation results are conducted to demonstrate the effectiveness of the proposed approach and they 

showed better performance than other algorithms like EasiDesign [86] (discussed before). Average 

steps by an ant for an iteration in ACO-TCAT is much less than that in [86]. It is because in  

ACO-TCAT, three classes of ant transitions are applied to lessen the candidate points and redundant 

steps as soon as possible. 

4.2.3. ACO in Energy Efficient Clustering 

There are a number of works covering the area of energy efficient clustering in WSNs using ACO. 

Salehpour et al. proposed an efficient routing algorithm for the cluster-based large scale WSNs using 

the ant colony optimization [89]. The technique uses two routing levels: intra-cluster and inter-cluster. 

In the first level cluster members send data directly to their cluster head. In the second level, the cluster 

heads use ACO to find a route to the base station. As only cluster heads participate in the inter -cluster 
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routing operation, the method can provide a smooth operation more effectively. As a result this method 

leads to a shorter convergence time and less routing overhead. To assess the efficiency of the proposed 

method it was compared with two other algorithms: a cluster-based routing without optimization [58] 

and an ACO-based routing algorithm without clustering. The results show lower power consumption 

and more load balancing for the proposed algorithm. 

In [90], the authors present a new energy aware clustering protocol, Ant Colony Optimization for 

Clustering (ACO-C). Using appropriate cost functions (at the base station), the protocol is said to 

minimize and distribute the cost of long distance transmissions and data aggregation among all sensor 

nodes evenly. The ACO-C protocol was successfully compared with other well known clustering 

algorithms like LEACH, LEACH-C and PSO-C over both network lifetime and data delivery to the 

base station. Their future work will deal with multi-hop routing schemes to improve the lifetime of the 

network. 

In order to improve the energy efficiency and achieve the network load balance, a novel energy 

efficient unequal clustering scheme for large scale WSNs is proposed in [91]. On the one hand, an 

improved fuzzy unequal clustering routing (IFUC) algorithm is used to determine one node‘s chance 

of becoming cluster head and estimate the cluster-head radius. On the other hand, the ACO is used in 

energy aware routing between cluster heads (CHs) and base station (BS). It reduces the ener gy 

consumption of CHs and solves the hot spots problem which occurs in multi-hop WSN routing in large 

scales. The experiment results have indicated that the proposed clustering scheme has more superior 

performance than other methods such as LEACH [58] and EEUC [92]. 

Another work where an uneven clustering routing algorithm for WSNs based on ACO was 

proposed is [93]. It utilized the dynamic adaptability and optimization capabilities of the ACO to get 

the optimum route between the CH. Clusters closer to BS had smaller sizes than those far away from 

the BS, thus the closer CHs could preserve energy for the inter-cluster data forwarding. Simulation 

result indicates that the algorithm significantly improved in average energy consumption and survival 

rate, and extended the network lift cycle compared to LEACH. 

4.2.4. ACO in Data Aggregation 

A centralized approach to data gathering and communication for WSNs is presented in [94].  

The method clearly partitions the work for the BS and sensor nodes according to their different 

functions and capabilities. A near-optimal chain named AntChain is achieved by using an ACO 

method running in the BS. The algorithm significantly simplifies the work of sensor nodes. It lowers 

the communication and computation workload. The authors claim that the AntChain algorithm  

out-performs LEACH and PEGASIS by eight times and two times, respectively.  

In 2006, Misra et al. introduced an ant aggregation algorithm for optimal data aggregation in  

WSNs [95]. They observed that aggregation energy efficiency depends on the number of sources.  

The results of simulation reveal that optimal aggregation saves energy up to 45% and 20%, 

respectively, for moderate numbers of source nodes and large numbers of source nodes.  

Another scheme for solving the maximum lifetime data gathering problem in distributed intelligent 

robot networks (DIRNs), as a kind of wireless sensor and actuator network (WSAN), supporting 

multimedia traffic is developed in [96]. The previous methods used for multimedia traffic provided 
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ineffective exploitation of network resources. With this scheme network lifetime is maximized by 

jointly optimizing data aggregation variables based on ACO algorithm using bionic swarm 

intelligence. Furthermore, experimental results demonstrate that the proposed methods attain 

significant improvements (24% better) in system lifetime compared to other conventional methods 

such as Minimum Energy Gathering Algorithm (MEGA). 

As we have mentioned several times before, that one of the biggest problems of WSN is energy. A 

few solutions exist to the problem such as LEACH and PEGASIS protocols. While LEACH selects 

CHs in random manner, the PEGASIS protocol forms a chain of all the nodes in the network, each 

node taking rounds in transmitting to the BS. In [97] authors discussed about an energy efficient 

protocol which can enhance the performance of LEACH and PEGASIS. As the nodes are deployed 

randomly in the area and the BS is located at a distance from them, it is clear that the nodes would 

actually dissipate energy during their transmission to the BS. The inter-nodal distance also plays a role 

in unequal energy dissipation of the nodes. This energy difference keeps on increasing resulting in 

poor network performance. In this scheme, authors claim to nullify the differences occurring due to 

these above mentioned causes. ACO is used for chain construction instead of the greedy algorithm to 

enhance the network performance. Extensive simulations have been carried out which showed 

significant improvement over other schemes. 

A new cluster formation technique named energy-efficient data gathering algorithm (EDGA) is 

discussed in [98], which integrates the advantages of hierarchical routing, chain, and multi-hop 

routing. A node, according to the degree of support from neighbors and its residual energy, makes its 

decision to compete for becoming a CH independently. Later, the CH adapts ACO to schedule access 

sequence of nodes (chain). Simulation results show that EDGA provides lower energy consumption 

and longer network lifetime than that of conventional algorithms. Xie et al. have designed three 

dynamic ACO based algorithms: SinkDistComb, ResidualEnergy, and SinkAggreDist with improved 

heuristic rules and node selection rules integrated with in-network data aggregation [99]. They refined 

the heuristic function and the aggregation node selection method to maximize energy efficiency and to 

extend network lifetime. Two proposed algorithms are shown to yield longer maximum lifetime and 

another algorithm is shown to have improved scalability than the conventional algorithms.  

4.3. Genetic Algorithm 

Genetic algorithm (GA) is an evolutionary algorithm which is based on the abstraction of  

Darwin‘s evolution of biological systems, pioneered by Holland and his colleagues in the 1960s  

and 1970s [100]. GA is a particular class of evolutionary algorithm which is categorized as a global 

search heuristic. GA uses random search in the decision space via selection, crossover and mutation 

operators in order to reach its goal and attempts to obtain a possibly global optimum answer. Another 

operator of GA is elitism. Its job is to store the best or elite chromosomes (with best fitness values) for 

the next generation. Genetic algorithms are implemented and presented using simulations.  

Here population is the abstract representation known as chromosomes and the candidate solutions are 

known as individuals or phenotypes. Later these are transformed into an optimization problem.  

GA has mainly two advantages over traditional algorithms which are: the capability of handling 

complex problems and parallelism. GA can deal with all sorts of objective functions whether they are 
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stationary or transient, linear or nonlinear, continuous or discontinuous. Multiple genes can be suitable 

for parallel implementation. In GA, basically, the solutions are coded and quantized as binary s trings 

consisting of 0‘s and 1‘s. From a population of randomly generated individuals the evolution initiates. 

In each successive generation, the fitness of every individual in the population is evaluated. From this , 

multiple individuals are stochastically selected according to their fitness and they form a new 

population by possible combinations and mutations. The new population is then used in the next 

generation. The genetic algorithm is summarized in Figure 7. The stopping criteria of GA could be 

either a predefined number of iterations or convergence during a predefined number of iterations.  

Figure 7. A simple procedure of Genetic Algorithm 

 

4.3.1. GA in WSN Clustering 

In WSN clustering, the total energy consumption is closely related with the number of cluster heads 

and their positions, so it is important to find out an energy-efficient clustering technique that can 

optimize the energy consumption which is directly related to network lifetime. The first works of 

clustering in WSNs using genetic algorithms can be found in [101]. Jin et al. have used a GA-based 

method to minimize communication distance in sensor networks via clustering. In their work, GA was 

used in formation of a number of pre-defined clusters which helped in reducing the total minimum 

communication distance. The cluster heads (CHs) were adjusted based on fitness function.  

The algorithm was able to find an appropriate number of cluster-heads and their locations. Results 

indicate that the number of CHs is about 10% of the total number of nodes. The pre-defined cluster 

formation also decreased the communication distance by 80% as compared with the distance of direct 

transmission. In one hand it was able to quickly find good solutions; on the other hand, this algorithm 

is applicable to both uniform and non-uniform network topologies. 

In [102] Hussain et al. proposed a genetic algorithm (GA) that was used to create energy efficient 

clusters for routing in WSNs. In their work, the sink node performed the simultaneous optimization of 

total dissipated transmission energy and delay by clustering the nodes. The simulation results show 

that the proposed energy-efficient hierarchical clustering protocol performs better than the traditional 

cluster- based protocols. The gradual energy depletion in sensor nodes is also investigated. 

In another work Hussain et al. [103] improved their idea proposed in [102] by improving the fitness 

function used for GA. This fitness function is based on parameters like cluster size, energy 

consumption, number of clusters, direct distance to sink etc. They extended their work using GA to 

obtain the optimum number of clusters, CHs, cluster members and transmission schedule. It was 
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shown that their updated method conserves relatively more energy than the method proposed by  

Jin et al. in [101]. They also compared their proposed method with the LEACH protocol in different 

layouts along with increased number of nodes in the sensor network.  

The results of energy saving approaches can vary significantly depending on the number and size of 

clusters and the distance among the sensor nodes. The authors in [104] aim to find an optimal cluster 

formation by applying a GA based method in which the chromosome contains the information about 

the relative position of the nodes. They proposed a location-aware two-dimensional genetic algorithm 

(LA2D-GA) that performs more efficient in gene evolution than general approach with  

one-dimensional genetic algorithm (1D-GA). It gives unique location information to each node 

(chromosome). Thus, when crossover and mutation operations are performed, the optimal clusters can 

be searched effectively by using this information. The simulation results indicate better performance 

against LEACH and 1D-GA. 

In [105] the authors examine the GA as a dynamic technique to find optimum states. As a simple 

framework it proposes a mathematical formula, which increases coverage against lifetime.  

This technique makes a tradeoff between energy consumption and distance parameter. Finally, the 

proposed algorithm performs better than some traditional cluster-based protocols.  

In [106] GA is used for dynamic clustering which is similar to the works we have discussed  

in [102] and [103]. They used slightly different parameters such as residual energy of the nodes, 

required energy to send a message toward the sink node, and number of clus ter heads. In order to 

evaluate the algorithm, they simulated the protocol and compared it to LEACH protocol. The 

simulation results show the effectiveness of the proposed mechanism.  

An optimal method of clustering homogeneous WSNs using a multi-objective two-nested GA 

(M2NGA) is presented in [107]. The network is assumed to be static. The GA is implemented in two 

levels. In the top level a multi-objective genetic algorithm is used whose goal is to obtain optimum 

network lifetime for different delay values. In the low level, GA is used for multi hop intra-cluster data 

transmission, which is not possible in most heuristic clustering methods. The advantage of M2NGA 

compared with LEACH and other GA based heuristic methods like two tiered GA, is its generality.  It 

is shown that the proposed algorithm yields more efficient clustering schemes in networks in which 

transmission energy is considerably greater than energy consumed in the electronic circuitry.  

4.3.2. GA in WSN Deployment 

Due to the energy and other resource constrains in WSNs, activating all the nodes deployed to cover 

a particular area is not efficient, so activating only the necessary number of nodes at any instance is an 

efficient way to save the overall energy of the system. To eradicate this problem and extend the 

network lifetime, a novel searching algorithm, Energy-efficient Coverage Control Algorithm (ECCA), 

inspired by the multi-objective genetic algorithms (MOGAs [108]), is proposed in [109]. The ECCA 

have a number of advantages, including very less computation time and one-time resetting of the 

working state of the sensor nodes. Simulation results showed that the algorithm achieved balanced 

performance with the same number of deployed sensors on indifferent types of detection sensor 

models while maintaining high coverage rates. 
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In [110] Konstantinidis et al. investigated the multi-objective deterministic pre-Deployment and 

Power Assignment Problem (DPAP). DPAP is typical in applications which invoke a limited number 

of expensive sensors, where their operation is significantly affected by their position and 

communication [111]. The main motivation of their work was to provide a set of high quality solutions 

for the DPAP without any prior knowledge on the objectives preference. A multi -objective 

Evolutionary Algorithm based on Decomposition (MOEA/D) is designed and showed its superiority 

against MOGA [108] in terms of quality of solutions and convergence speed.  

Another GA based multi-objective methodology was implemented for a self-organizing wireless 

sensor network in [112]. The authors demonstrated the use of GA based node placement methodology 

for a WSN. The fitness function of the method was designed with taking in account the parameters 

such as network density, connectivity and energy consumption. In a word they tried to incorporate the 

network characteristics and application specific requirements in the performance measure of the GA. 

Along with clustering schemes and transmission signal strengths; GA optimizes the operational modes 

of the sensor nodes. Dynamic application of the method in WSN layout design can lead to the 

extension of the network‘s life span, while keeping the application- specific properties of the network 

close to the optimal values. 

A proper node deployment scheme can reduce the complexity of several parameters in WSNs such 

as routing, data fusion, communication, etc. In [113], Poe et al. proposed and investigated random and 

deterministic node deployments for large-scale WSNs. The performance metrics for the evaluation 

were: coverage, energy consumption, and message transfer delay. They have considered three 

competitors: a uniform random, a square grid, and a pattern-based Tri-Hexagon Tiling (THT) node 

deployment. A simple energy model is formulated to study energy consumption for each deployment 

strategy. Among the three, THT overall outperforms the other two for energy consumption and  

worst-case delay. On the other hand the square grid strategy is better than others for coverage 

performance. They also compared the random deployment strategy with the popular square grid 

deployment for the worst-case delay. 

4.3.3. GA in WSN Routing 

Energy efficient routing in WSN is also another area where GA has been implemented. The primary 

works can be found in [114]. Rahmani et al. proposed a parallel GA method in WSN routing. The 

method aims to find an energy efficient data routing scheme in sensor networks. Simulation results 

show that the proposed scheme has improved the load balancing and traffic spreading over the 

network, through the usage of proposed scheme with optimum parameters.  

In some WSNs, high energy sensors called relay nodes may form a network among themselves to 

route data towards the BS. Higher power relay nodes can be used as cluster heads in two-tiered sensor 

networks to achieve improved network lifetime. In the work [115], the lifetime of a network is 

determined mainly by the lifetimes of these relay nodes. In this paper, authors proposed a solution, 

based on a genetic algorithm (GA) for scheduling the data gathering of relay nodes. The proposed 

algorithm quickly converges to the optimal solution for smaller networks. However, unlike routing 

formulations based on integer linear program (ILP) [116], the current approach is efficient and is 

capable of handling much larger networks. Experimental results demonstrated that, compared to other 
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traditional routing schemes (without considering energy dissipation of the nodes) , the approach can 

significantly extend the lifetime of the network by nearly 200% on average. 

In [117] the authors considered a two-tiered wireless sensor network, with n relay nodes acting as 

cluster heads and BS (sink). The assumption was taken that each sensor node belongs to exactly one 

cluster and the routing schedule is calculated by BS (not power constrained). Sensor nodes transmit 

their data directly to their respective relay nodes (CH). The relay nodes then perform the initial fusion 

of the received data and send them to the BS by the routing tree. In order to optimize QoS parameters 

(delay and reliability) and energy consumptions of WSN, the BS determines a routing tree accordingly 

based on the residual energy of the node, requested delay and reliability. The proposed protocol 

reduces average power consumption of nodes and in effect extends the lifetime of the network.  

An algorithm called a Quantum Genetic Algorithm (QGA)-based QoS Routing Protocol for WSNs 

was proposed in [118]. In this paper, they proposed a QoS-based protocol for wireless sensor 

networks, which can run efficiently with best effort traffic. QGA-QoS is the first quantum genetic 

algorithm-based QoS routing protocol in wireless sensor networks. QGA can balance between 

exploration and exploitation easily and effectively. In [119] the authors presented an updated survey 

and comparative study of some genetic algorithm-based multicast routing techniques. Localization, 

mobility, query based, energy efficiency, data aggregation and QoS are the metrics used for the genetic 

algorithm-based multicast routing in wireless sensor networks classification. 

In [120], a genetic algorithm-based routing scheme called Genetic Algorithm-based Routing (GAR) 

is presented that considers the energy consumption issues by minimizing the total distance travelled by 

the data in every round. Based on the current network state, this GA-based approach can quickly 

compute a new routing schedule. The computational efficiency of GA to quickly find a solution to the 

problem is utilized here. The experimental results demonstrate that the proposed algorithm is better 

than the existing techniques in terms of network life time, energy consumption, and the total distance 

covered in each round. The experimental results of the simulation showed that it outperforms the  

Minimum Hop Routing Protocol (MHRM) [121] algorithm by extending the network life time by 

approximately 230% in contrast to 200% as reported in the GA-based algorithm [115]. However, the 

algorithm lacks the consideration of residual energy of the relay nodes for energy efficiency.  

A new method of clustering (CRCWSN) to transmit data from general nodes to CH and from CH to 

BS in sensor networks was presented in [122]. The algorithm is based on genetics and re-clustering. 

These CHs (selected by GA) have been used individually in each round to transmit data. Considering 

distance and energy parameters, authors have created a target function which has more optimum 

conditions, compared to previous techniques. Results showed that, at the end of each round, the 

number of survived (alive) nodes increases, compared to previous methods, resulting in increased 

network lifetime. 

4.3.4. GA in WSN Data Aggregation 

As we discussed previously, the fundamental challenge in the design of WSNs is to maximize their 

lifetimes especially when they have a limited energy supply, so a good data aggregation scheme can 

change the scenario immensely. In [123] the authors present a genetic algorithm-based approach to 

generate balanced and energy efficient data aggregation spanning trees for WSNs. In the algorithm, the 
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gene index determines a node and the gene‘s value identifies the parent node.  In the data gathering 

round, a single best tree consumes the lowest energy among all nodes but assigns more load to selected 

sensors. The chromosome fitness is determined by four factors: residual energy, transmission, received 

load, and the distribution of load. Results showed that proposed GA outperforms a few other data 

aggregation tree-based approaches in terms of extending network lifetime.  

In [124], Al Karaki et al. presented Grid-based Routing and Aggregator Selection Scheme 

(GRASS). GRASS is said to provide good solutions for the data gathering and routing problem with 

in-network aggregation in WSNs with a focus on the joint problem of optimal data routing with data 

aggregation. They claim that the method can achieve low energy dissipation and low latency without 

sacrificing quality. GRASS embodies optimal approaches as well as heuristic approaches like 

Clustering-Based Aggregation Heuristic (CBAH). These algorithms are used to find the minimum 

number of aggregation points while routing data to the BS. When compared to other schemes,  

GRASS improves system lifetime with acceptable levels of latency in data aggregation without 

sacrificing data quality. With 100 nodes CBAH provides almost two times better performance then 

PEGASIS and almost 1.5 times better performance then LEACH when aggregation is used. Without 

aggregation the performance of CBAH slightly decreases. Results also demonstrate that the CBAH can 

increase the system lifetime of large WSNs. 

Commonly, the data aggregation tree concept is used to find an energy efficient solution and is 

largely accepted by the researchers in this area, but fair load sharing is missing in most of these works.  

To address this issue Norouzi et al. [125] presented a method that utilizes genetic algorithm to find 

routes which balance energy and data load in a network. In this study, nodes monitor the area to 

aggregate data and then remove the redundant nodes in order to aggregate them according to the data 

aggregation spanning tree. GA is used here to create an efficient data aggregation tree in which any 

node has a value property. Like some other methods, the fitness function is determined on the basis of 

residual energy, number of transmission, and received data packets from individual nodes.  

The technique is suitable for a homogeneous WSN environment monitoring. Simulation results 

indicated that this method practically increases the network lifetime compared to other works [112].  

4.4. Hybrid Approaches 

Hybrid approaches are also becoming popular nowadays. In [126], the authors propose a hybrid of 

PSO and GA for optimization in TDMA scheduling. The performance of this method is compared with 

PSO, max-degree-first coloring algorithm, and node-based scheduling algorithm. The results show that 

hybrid algorithm is marginally better (644 mJ of energy) than the schedules determined by  

max-degree-first coloring algorithm and node-based scheduling algorithm, which consume 740 mJ and 

666 mJ, respectively. Moreover, the proposed method can easily make tradeoffs between the time and 

energy objectives by a proper weight factor.  

Another hybrid approach was presented in [127] called LEACH-GA, which has basically the same 

set-up and steady-state phases of LEACH for each round, with the addition of a preparation phase. In 

preparation phase optimization is done by GA genetic algorithm-based adaptive clustering protocol 

with an optimal probability prediction to achieve good performance in terms of lifetime of network in 

wireless sensor networks. The preparation phase is performed only once before the set-up phase of the 
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first round. This LEACH-GA hybrid method showed almost 40% better lifetime compared to LEACH, 

almost 400% better lifetime compared to minimum transmission energy (MTE), and nearly 600% 

better lifetime compared to direct transmission (DT).  

4.5. Problem Specific Comparison of Existing Bio-Mimic Strategies  

From the above study, it is clear that researchers so far tried to implement bio-mimic optimization 

strategies in a number of problem domains of WSNs. Every approach addressed in this work attempted 

to solve a specific problem with their own specific set of parameter configurations, their own set of 

rules, and claimed to show better results with regard to some previous traditional approaches. Also 

some researchers used hybrid strategies to solve a single problem. But to our knowledge, there is no 

extensive work, which addresses the comparative study between two or more bio-mimic strategies to 

solve WSN related problems, so a comparison between these strategies in problem specific view  

is not a trivial task. In Figure 8, we summarize PSO, ACO, and GA based optimizers that are used in 

WSNs and their addressed areas. Table 3 summarizes the key features of the aforementioned  

bio-mimic optimization techniques. Finally, based on the above study and the summary in Table 3,  

we have summarized our conjecture on problem specific comparison of bio-mimic optimization 

strategies in Table 4.  

Table 3. Advantages and disadvantages of major bio-mimetic optimization algorithms. 

Algorithm Name Advantages Disadvantages 

PSO 

- Easy to implement 

- Few parameters to adjust 

- Efficient in global search 

- Iterative nature can prohibit it's use for high-

speed real-time applications 

- If optimization needs to be carried out frequently 

it's not that convenient 

- Requires large amounts of memory, which may 

limit its implementation to resource constraint 

base stations 

- Easily drops into regional optimum or local 

minima 

ACO 

- Inherent parallelism 

- Can be used in dynamic applications 

- Positive Feedback leads to rapid discovery of good 

solutions 

- Distributed computation avoids premature 

convergence 

- Theoretical analysis is difficult 

- Probability distribution changes in every 

iteration 

- Convergence is guaranteed, but time to 

convergence uncertain 

- Coding is not straightforward 

GA 

- It can solve every optimization problem which can 

be described with the chromosome encoding 

- GA is not dependent on the error surface, so we 

can solve multi-dimensional, non-differential,  

non-continuous, and even non-parametrical 

problems.  

- Genetic algorithms are easily transferred to 

existing simulations and models  

-Longer running times 

- It cannot assure constant optimization response 

times 

- It cannot handle a population with a lot of 

subjects 

 



Sensors 2014, 14 332 

 

Figure 8. Summary of PSO, ACO and GA based optimizers in WSNs. 

 

 

  

  Optimizers 

Problem Domains 

Areas Covered 

 

Optimal WSN 

Deployment 

PSO 

[39-41], [43-45], [47-51] 

ACO 

[83],[84], [87-89] 

GA 

[110], [111], [113], [114] 

· Static node 

positioning 

· Mobile node 

positioning 

· Base station 

positioning 

Data Aggregation in 

WSN 

PSO 

[67], [71], [72] 

ACO 

[95-100] 

GA 

[124-126] 

· Allocate 

optimal 

transmission 

power 

· Determine local 

threshold 

· Sensor 

configuration 

Energy Efficient 

Clustering and Routing 

PSO 

[60-64] 

ACO 

[75-81], [90-92], [94] 

GA 

[102-108], [115], [116], 

[118-121], [123] 

· Minimum intra 

cluster distance 

· Maximum 

network 

longevity 

· Optimal routing 

 

Sensor Node 

Localization 

 

PSO 

[52-54], [56-58] 

ACO 

[136] 

 

GA 

[137-139] 

· Minimum 

localization 

error 
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Table 4. Strengths of major bio-mimetic optimization algorithms in solving WSN problems. 

Optimization Strategies ► PSO ACO GA 

Problem 

Domains 

Optimal 

WSN 

Deployment 

Centralized nature of PSO 

minimizes the area of 

coverage holes of stationary 

node positioning.  

Distributed nature of 

ACO is better in solving 

mobile node deployment 

issues. 

Good for random as well 

as for deterministic node 

deployments. 

Data 

Aggregation 

in WSN 

Data aggregation is a 

repetitive process which is 

quite suitable for PSO. 

In case of large scale and 

dynamic WSNs it can 

perform better. 

Suitable in finding 

minimum number of 

aggregation points while 

routing data to the BS. 

Energy 

Efficient 

Clustering 

and Routing 

PSO shows better 

performance in selecting 

the high energy node as 

CHs in each round and can 

find optimal route 

effectively. 

Performs better in 

maximizing both 

network lifetime and 

data delivery to the base 

station. 

GA is used in formation 

of a number of  

pre-defined clusters, 

which helped in reducing 

the overall minimum 

communication distance. 

Sensor 

Node 

Localization 

Minimizes the localization 

error effectively 

Improves the accuracy of 

the unknown node 

location. 

Global searching 

capability of GA obtains 

better estimated location 

of the sensor nodes. 

5. Open Research Issues and Future Directions 

Key findings of the study have been summarized in Table 5. In summarizing, characteristics such as 

node positioning, node localization, data aggregation, clustering, etc. are considered. The issues are 

shown as addressed or not addressed. Figure 9 presents the total number of research works considered 

in this survey (non-exhaustive list) in recent years covering the optimization techniques in WSN.  

Table 5. A summary of major bio-mimetic optimization methods in WSNs. 

Optimization Methods ► 

Areas Covered  

(Issues addressed) ▼ 

PSO ACO GA 

Stationary Node Deployment (QoS) Addressed Addressed Addressed 

Hybrid Deployment (QoS) Addressed Not addressed Addressed 

Dynamic Deployment (QoS) Addressed Not Addressed Addressed 

Base Station Positioning Addressed Not addressed Not addressed 

Node Localization (EE) Addressed Addressed Addressed 

Energy Aware Clustering (EE) Addressed Addressed Addressed 

Data Aggregation and fusion (Data Security) Addressed Addressed Addressed 

Cross Layer Optimization Addressed Addressed Not addressed 

Optimal Routing Addressed Addressed Addressed 
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Figure 9. A representation of number of papers published addressing optimization 

problems in WSN using bio-mimetic methods (non-exhaustive). 

 

Although the bio-mimetic optimization techniques presented herein address many issues of WSNs 

(Table 5) such as design and deployment, optimal routing and clustering, localization, security, data 

aggregation, and QoS management, there are still some open research challenges. In particular, 

research is needed in the area of integration of energy efficiency, QoS, and security. In addition, most 

previous works view optimization in WSN from a single perspective only. Hence, research in this area 

addressing the coexistence of all three key issues is limited.  

• Integration of QoS, Energy Efficiency, and Security: Although the presented approaches 

address many issues associated with optimization in WSNs, some research questions remain 

relatively unexplored, such as support for and integration of QoS, energy efficiency and 

security. In number of WSNs applications such as Body Area Networks, Vehicular ad hoc 

Networks, etc. integration of QoS and security along with energy efficiency will be 

necessary. So integration of these issues in WSNs using metaheuristic algorithms could be a 

potential future direction.  

• Cross-layer Design: Generally, issues considered to be optimized are supported by different 

layers of the network protocol stack of a WSN. For instance, energy efficiency is an issue 

that needs to be at every layer of the protocol stack, so instead of a strict layered approach, a 

cross-layer design is desirable. As an example, incorporation of resource awareness in 

compression schemes, for example dependency on remaining energy, requires coordination 

between application layer compression and the physical layer. Very little work has been 

done in cross layer based optimization [128,129]. Exploration of this aspect of compression 

in WSNs is necessary.  

• Novel Bio-mimetic Algorithms: Bio mimetic algorithms which have been recently developed 

could be better alternatives to the existing algorithms. The Firefly Algorithm (FA) is such a 
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novel algorithm which was developed by Xin-She Yang in 2007 [132,133]. It is based on the 

flashing patterns and behavior of fireflies. A discrete version of FA can efficiently solve  

NP-hard scheduling problems [132], while a detailed analysis has demonstrated the 

efficiency of FA over a wide range of test problems, including multi objective load dispatch 

problems [133]. 

• Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms, developed 

in 2009 by Yang and Deb [28]. CS is based on the brood parasitism of some cuckoo species. 

In addition, this algorithm is enhanced by a special type of randomization named ―L‘evy 

flights‖ [134], rather than by simple isotropic random walks. Recent studies show that CS is 

potentially far more efficient than PSO and GAs [135]. Bat-inspired algorithm is another 

novel bio-mimic optimization algorithm developed by Yang in 2010. This bat algorithm is 

based on the echolocation behavior of micro bats with varying pulse rates of emission and 

loudness [29]. So the consideration of these novel approaches in WSNs for optimization 

purposes can be a future direction. 

• Real Implementation: From the above study it is found that many bio-mimetic optimization 

methods have outperformed conventional methods under certain environments.  

However, most existing bio-mimetic optimization works are simulation-based and only a a 

few have been evaluated in real WSN environments. Implementation of these methods in 

real WSN environments or test-beds could be a fruitful future research direction. 

• Placement of Implementation: The implementation of most existing bio-mimic algorithms 

are in base station or sink (centralized), which need communication between the nodes.  

This communication can be very frequent and expensive in dynamic WSNs environment. 

Distributed implementation of these algorithms in lightweight form could be a potential 

future direction. 

6. Conclusion and Future Work  

Development of effective optimization algorithms is the key to improve the utilization of the 

limited resources of WSNs (energy, bandwidth, computational power). A large number of diverse  

bio-mimetic algorithms have addressed issues such as design and deployment, localization, security, 

energy efficient routing and clustering, scheduling, data aggregation, and fusion etc. In this work, we 

have made an effort to put these works into perspective and to present a holistic view of the field.  

In addition, a general review of current state-of-the-art is presented along with their advantages and 

limitations, which can be served as a future guide for using bio-mimetic algorithms for WSNs. 

In doing this, we have provided a comprehensive overview of the three main existing approaches, 

namely PSO, ACO, and GA. Each category has a number of variants, which are presented accordingly. 

Some hybrid approaches and few novel bio-inspired approaches are also discussed as future research 

directions. Cross-layer design and parameter learning in optimization is envisioned to be another 

interesting new research area in WSNs. Most issues arise from cross-layer incompatibility and high 

physical intervention is needed for parameter setting and adjustment, so more sophisticated learning 

platforms and paradigms are necessary rather than specific solutions. 
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Although the presented approaches address many issues associated with optimization in WSNs, 

some research questions remain relatively unexplored, such as support for and integration of QoS, 

energy efficiency and security. There is significant amount of scope for future work in these areas. 

Realizing the importance of these issues in WSNs, our future endeavors will focus on developing a 

framework which integrates QoS-awareness, energy efficiency and security for WSNs. The diverse 

applications of WSNs demand support for a diverse set of QoS requirements. A single technique will 

not be optimal for all applications. Along with the abovementioned points, a secondary objective will 

be to determine the best possible technique for a particular application taking into account the limited 

available resources. We also have the intention to explore the possibilities of cross-layer design 

approaches in WSNs. 
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