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Abstract: A new data dimension-reduction method, called Internal Information 

Redundancy Reduction (IIRR), is proposed for application to Optical Emission 

Spectroscopy (OES) datasets obtained from industrial plasma processes. For example in a 

semiconductor manufacturing environment, real-time spectral emission data is potentially 

very useful for inferring information about critical process parameters such as wafer etch 

rates, however, the relationship between the spectral sensor data gathered over the duration 

of an etching process step and the target process output parameters is complex. OES sensor 

data has high dimensionality (fine wavelength resolution is required in spectral emission 

measurements in order to capture data on all chemical species involved in plasma 

reactions) and full spectrum samples are taken at frequent time points, so that dynamic 

process changes can be captured. To maximise the utility of the gathered dataset, it is 

essential that information redundancy is minimised, but with the important requirement 

that the resulting reduced dataset remains in a form that is amenable to direct interpretation 

of the physical process. To meet this requirement and to achieve a high reduction in 

dimension with little information loss, the IIRR method proposed in this paper operates 

directly in the original variable space, identifying peak wavelength emissions and the 

correlative relationships between them. A new statistic, Mean Determination Ratio (MDR), 

is proposed to quantify the information loss after dimension reduction and the effectiveness 

of IIRR is demonstrated using an actual semiconductor manufacturing dataset. As an 

example of the application of IIRR in process monitoring/control, we also show how etch 

rates can be accurately predicted from IIRR dimension-reduced spectral data. 
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1. Introduction 

As indicated in recent International Technology Roadmap for Semiconductors reports [1], the future 

fabrication cost per-unit-area of integrated circuits (IC) will be decreased by moving to larger-diameter 

semiconductor wafers in the fabrication process, however, this move will require more sophisticated 

and precise process control mechanisms to ensure that process yields are preserved. Hence, driven by 

practical future manufacturing requirements, the design of process control mechanisms continues to be 

an active research topic in the IC manufacturing domain.  

Plasma etching is a key processing method employed in IC fabrication steps. By first masking areas 

of the silicon wafer being processed, subsequent exposure to plasma yields the required etched features 

on the surface of the wafer. The process is fundamentally complex from a physical and engineering 

control perspective and sensitive to an array of process parameters [2]. As there is currently an 

incomplete understanding of the underling physics and chemistry to allow for pre-determined process 

control, etching processes are often developed empirically [3]. Critical to empirical control (and to the 

development of further fundamental understanding of the process) is the development of mechanisms 

for plasma monitoring by sensor data collection and analysis. 

Generally, there are two types of plasma diagnostic sensors: intrusive sensors and non-intrusive 

sensors. One popular intrusive technology is the Langmuir probe [4], which is immersed directly into 

the plasma. Although direct measurements of targeted plasma parameters may be made, the direct 

immersion of the probe into the process environment results in changes in the temperature, density, 

and potential of the plasma and ultimately affects etching process results. Non-intrusive plasma 

process monitoring technologies include impedance monitoring [5], reflectometry sensing [6] and  

OES [7]. Due to the abundant information that can be extracted from the data and the direct (although 

complex) relationship of the data to the etching process, OES is widely applied to IC fabrication [7]. 

The richness of OES data is also a potential hindrance to effective interpretation and utility of the data. 

Of particular concern is data dimensionality. For example, a miniature Ocean Optics USB4000 fibre 

optic spectrometer, as used in the present work, provides intensity measurements of 2,048 wavelengths 

from 178.31 nm to 874.27 nm [8]. Full spectrum samples are typically taken every 0.7 s over typically 

40 s of a dynamically changing process and datasets from hundreds of such process runs are taken for 

statistical analysis. 

Previous research on OES measurements of plasma etching processes has largely focused on the 

use of OES data for particular target applications, for example, virtual metrology methods [9,10], 

automatic process end-point detection strategies [11,12], and system condition monitoring [13]. In this 

paper the focus is more directly on the fundamental dimensionality problem of OES data, so that such 

applications can be better facilitated. In the next section, our general approach to an appropriate 

dimension-reduction for the specific data type in question is introduced and our approach is 

distinguished from existing dimension-reduction methods. Section 3 describes our proposed Internal 

Information Redundancy Reduction (IIRR) method in detail. Section 4 demonstrates that little 



Sensors 2014, 14 54 

 

 

information content is lost when the method is applied to a dataset from a real semiconductor 

manufacturing environment. Additionally, practical problems relating to the particular spectroscopy 

data are addressed, namely data pre-processing steps to deal with sensor output saturation and data 

time-stamp uncertainty. As an example of the application of IIRR in process monitoring/control, we 

also show how etch rates can be accurately predicted from IIRR dimension-reduced spectral data. 

Finally, Section 5 gives our conclusions and future work ideas. Abbreviations used in the remainder of 

this paper are listed in Table 1. 

Table 1. Acronym table. 

Acronym Definition 

ANN Artificial Neural Network 

APS Absolute Peak Selection 

FA Factor Analysis 

IC Integrated Circuit 

ICA Independent Component Analysis 

IIRR Internal Information Redundancy Reduction 

IRP Iterative Ranking Process 

MDR Mean Determination Ratio 

MAPE Mean Absolute Percentage Error 

MLR Multiple Linear Regression 

OES Optical Emission Spectroscopy 

OPS Optimized Peak Selection 

PC Principal Component 

PCA Principal Component Analysis 

PLS Partial Least Square 

PMF Probability Mass Function 

SPCA Sparse Principal Component Analysis 

SNR Signal to Noise Ratio 

2. Motivation for Approach to OES Dimension Reduction 

Our overall approach to the design of an effective dimension-reduction method for OES data is 

guided by the following factors: (i) at a fundamental level, emission spectra from chemical species in a 

plasma are composed of emissions at discrete wavelengths only. Thus, we wish to isolate and work 

with only peak wavelength intensities in our spectral data, the assumption being that non-peak 

intensities represent only noise; (ii) as emission lines from each chemical species are highly correlated 

we expect considerable data redundancy within spectra; (iii) to maximize the utility of the  

dimension-reduced data, we wish to avoid transforming the data to an abstract variable space (as is 

common in many dimension-reduction methods), instead working directly with wavelength variables; 

(iv) as plasma processing is a dynamic process, it is important to preserve time domain information, 

that is, our focus is on dimension reduction in the wavelength domain only. 

From a plasma-etching viewpoint, there has been little focus on dimension and redundancy 

reduction of the OES dataset per se. Most previous research has been focused on application of the 

dataset (e.g., for process fault detection) where dimension reduction is used as a data pre-processing 
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step but is not the focus itself. In [14], principal component analysis (PCA) (in conjunction with a 

hidden Markov model) is used for process end-point detection in plasma etching processes. In [15], a 

weighted PCA method is proposed for fault detection and classification in plasma etching. Besides 

OES data, other plasma diagnostic datasets were also used such as chamber impedance measurements 

and gas flow measurements. In order to reduce data dimensions, the original data is replaced by several 

summary statistics, such as averages, standard deviations, maxima, minima. In [16], Sparse PCA 

(SPCA) is used to select signature OES variables. In [17], Partial Least Squares (PLS), support vector 

machines, and rules ensemble methods are compared with each other for process yield prediction. 

Dimensionality of the input data is reduced using PLS and rules ensemble within the prediction process.  

A general feature of these previous applications of dimension reduction of OES data is that generic 

methods (e.g., PCA, SPCA, or use of summary statistics) are applied directly to the full set of input 

wavelength variables, without regard to the specific nature of the dataset and these methods can have 

difficulty in finally isolating important variables in the original variable space. For example, it is not 

possible to trace back to individual wavelength measurements at a certain time point when only 

summary statistics are the output of the method [15]. In PCA-based methods, every Principal 

Component (PC) is a linear combination of all original variables. This is a problem if quantification of 

the contribution by each variable to certain PCs is required [18]. SPCA is a possible solution to this 

problem [19], but the grouping effect (equal weights tend to be given to highly correlated variables) is 

a weakness, leading to difficulty in final variable selection [16]. 

Other general dimension-reduction methods also have disadvantages for direct application to the 

problem at hand. Ensemble methods have been shown to be successful in identifying important 

variables in the original space [20], however ensemble learning methods (e.g., boosting, bagging [21], 

rules ensembles [20]) need to be supervised by knowledge of output variables, which in our case 

would be actual etch-rate measurements, which are normally not available. Other supervised learning 

methods are similarly unsuitable in the current context. Factor Analysis (FA) [22], projection  

pursuit [23], Artificial Neural Networks (ANN), and Independent Component Analysis (ICA) all have 

their own particular issues. In [24], a number of problems are highlighted for the FA method, where it 

is often possible to extract too few or too many factors and factor stability can be a concern. For 

projection pursuit [23], high computational intensity is a disadvantage [25]. Compared with PCA, 

ANN gave a better dimension reduction result in [26], however, ANN can suffer from relevantly high 

computational load, the over-fitting problem, and the empirical nature of model development [27]. 

ICA has a similar information transformation strategy as PCA and FA but can have difficulty in 

determining component number and component order [28]. Both problems will lead to a high 

computational cost and difficulty for further interpretation of components.  

Based on the above mentioned difficulties in directly applying general dimension-reduction 

methods in our specific domain, we propose in this paper a new method, called Internal Information 

Redundancy Reduction (IIRR). A central feature of the method is the importance of peak values of the 

wavelength variables comprising the dataset, and consequently the opportunity to remove variables 

which do not exhibit significant peaking. Secondly, high correlation between certain groups of peak 

variables is known to exist, given the nature of the physical emission process. This helps us  

in designing our method to maximise redundancy reduction. We develop our method in the  
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following sections, showing that a large reduction in the number of variables is possible with little 

information loss. 

3. Dataset Description and Method Overview 

A complete dataset of OES data is comprised of time-stamped spectral scans collected over multiple 

etching process runs. There are N process runs made and a spectral scan is taken at each time instance 

tj, j = 1, 2, …, M, during each run. Each spectral scan yields a set of wavelength intensity 

measurements {Ik:k = 1, 2, …, K}. The K wavelengths measured {k:k = 1, 2, …, K}are equally 

spaced, typically across a range from 1 = 178.31 nm to k = 874.27 nm, with K = 2,048 total 

wavelength values. Process run durations typically span approximately 40 s with spectral scans taken 

approximately every 0.7 s. Thus the complete dataset is the set of N  M  K data points, which we 

denote by the vector: 

                                                   (1) 

We note here that the sensor employed in OES measurement can saturate its output value at certain 

wavelengths that are prominent in the process. A method to deal with de-saturation is described in 

Appendix 1. We additionally note that, in the raw OES input data, time stamps from one process run to 

another may not always exactly align (the time between scans can vary during each process run). Also, 

the number of time points recorded for each process run is not necessarily the same. Thus, we must  

re-align/normalize the data in time before it is inputted to the IIRR procedure. This is done using the 

method described in Appendix 2 to yield data with an equal number of time points M for all process 

runs, with time points fixed to standard time instances tj, j = 1, 2, …, M (with tj–tj-1 constant) for all 

process runs. We assume de-saturated and time-synchronized data in the above and further definitions 

and descriptions in this section. 

Given the above data as input, our proposed method is a dimension-reduction method with  

three sub-steps: 

(1) Absolute Peak Selection (APS), 

(2) Iterative Ranking Process (IRP), 

(3) Optimized Peak Selection (OPS). 

Together they comprise the Internal Information Redundancy Reduction (IIRR) workflow, depicted 

in Figure 1. Firstly, APS identifies peak wavelength variables in the (de-saturated and normalized) 

input OES dataset d. The output of APS for a time point tj is the set of wavelength indices for which 

peaks in wavelength intensity occur, at time point tj, during any of the N process runs. Formally, the 

output of APS is the collection of sets of peak wavelength indices, denoted: 

        
     

       
  (2) 

where     
 = {k  {1, 2, …, K}: Ik is a peak wavelength intensity at time tj in at least one process run}. 

Next, the IRP algorithm takes each set of peak wavelengths     
 and ranks each peak wavelength 

variable in the set based on how well it can be predicted from other peak intensity values in     
. Peaks 

that are poorly predicted by others are assumed to hold more significant information and are ranked 

more strongly. Repeating the procedure for each time point, the output of IRP is a dataset of the same 
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dimensions as    containing wavelength indices in order of ranking, i.e., a dataset         
     

       
 , 

where: 

    
                                                                  

 (3) 

Finally, at each time point, the OPS algorithm calculates a measure of how well the first r  

top-ranked peak wavelength variables can predict the full set of original wavelength variables, at each 

time point tj. An aggregate statistical measure Mean Determination Ratio (MDR) is used to summarize 

the prediction quality for different r and a minimal value of r is determined under a constraint on the 

MDR value. The procedure is repeated at each time point and the final output of OPS is a time series 

of the minimized peak wavelength sets, denoted   . The details of these three stages of the IIRR 

procedure are given in the subsections below, accompanied by basic results illustrating the properties 

of each stage. Results in Section 4 then show that the whole procedure results in a high level of data 

reduction for a sample OES dataset, without significant loss of predictive power of the reduced set  

of variables. 

Figure 1. Workflow of IIRR. 

 

3.1. Absolute Peak Selection 

Absolute Peak Selection (APS) is a simple method to identify wavelength intensity variables that 

are relatively higher in value than neighboring wavelength intensities, while accounting for noise in 

wavelength intensity measurements. The noise accompanying each wavelength intensity measure is 

represented as a mean bias value B, which is derived from the specifications of the spectrometer. In our 

case, the USB4000 Spectrometer signal-to-noise ratio is quoted as 300:1 at full signal [8] and the 

appropriate value for B is derived from this in Appendix 1. APS operates independently at each time 

point tj and, for each process sample, identifies a wavelength variable as a peak wavelength if its 

intensity is greater than the intensities of neighboring wavelengths plus the bias value. Let di.tj be the 

set of wavelength intensity values {Ik:k = 1, 2, …, K} measured at time point    during process run i. 

Then peak wavelengths within this set are identified by the set: 

      
                            . (4) 

Having found       
 for all process runs 1, 2, …, N, all peak wavelength variables are then 

aggregated as:  

    
        

 

 

 (5) 

APS IRP OPS
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Finally, iterating this procedure at each time point, the complete output of APS is  

        
     

       
   We note that the rationale for this aggregation in the above equation is that the 

data gathered from each process run is an independent sample of an (ostensibly) fixed etching 

procedure, thus the process state should be similar for all samples at the same time point and so 

aggregation can achieve data reduction without significant loss of information content. 

Based on our OES dataset from a semiconductor etching process, we have found APS reduces the 

original 2,048 wavelength variables to a relatively small number of peaks at each time point, ranging 

from 22 to 113 peaks (averaging ~47.7 peaks). Over all time points, 178 distinct peak wavelengths  

are detected. 

3.2. Iterative Ranking Process 

The ultimate goal of the Iterative Ranking Process (IRP) and Optimal Peak Selection (OPS) 

methods is to identify which subset of the peak wavelength variables can best represent the remaining 

variables, so that the set of peak wavelengths can be reduced with minimal information loss. This is 

done by the ranking procedure of IRP followed by a selection from top-ranked variables performed by 

the OPS procedure (Section 3.3). 

Each set of peak wavelength intensity samples     
 is treated separately by IRP, as follows. For each 

wavelength intensity variable Ik, k      
, an ordinary least squares linear regression is performed: 

   =                                                    (6) 

where       are the regression coefficients and k the error term. IRP then calculates the coefficient of 

determination (the R
2
 value) of the prediction     of Ik, which we denote by Rk. The lowest ranked 

wavelength in     
 is then identified as having the largest R

2
 value: 

             
           

      

      (7) 

that is, the ranking number assigned to wavelength k is equal to the total number of peaks in     
. This 

wavelength k is then removed from the pool of peak wavelengths and the process is repeated on the 

new set     
–k to yield the next ranked wavelength (rank number      

    . The process repeats until 

only one wavelength remains in the pool, which is assigned the highest ranking (rank number 1). The 

complete output of the IRP process (for the time point tj) is then the ordered set of wavelength indices: 

    
                                                                  

 (8) 

This IRP process is repeated for each time point to yield the final output: 

        
     

       
   (9) 

The rationale for the method is that peaks that are removed from the pool early (low ranked peaks) 

can be well predicted by the remaining pool of peaks and so hold relatively less information. Peaks 

that remain in the pool are less correlated with others and are ranked higher. We note that in our IRP 

method, removing peaks and reiterating the evaluation with a decreasing pool size should improve the 

sensitivity of the ranking between peaks. Particularly, in very highly redundant datasets, a simpler 



Sensors 2014, 14 59 

 

 

method of ranking based only on a single evaluation of R
2
 over the full pool can yield all R

2
 values 

very close to 1, giving only a weak distinction between peaks. 

We apply IRP to the APS output of the OES test dataset mentioned in Section 3.1. Figure 2 shows 

samples of the IRP output for four example time points during the etching process. The curves show 

the maximal coefficients of determination Rk as the procedure iterates, that is, the R
2
 value of the peak 

to be removed from the pool at each iteration. At the start of the procedure the R
2
 values are very close 

to 1 and towards the end of the procedure, only the highest ranked peak variables, with lower R
2
 

values, remain. In terms of identifying an opportunity for data reduction, it can be seen that only 

relatively few high rank peaks have lower R
2
 values. This general pattern was observed at all time 

points in the IRP output. 

Figure 2. R
2
 values of regression of the remaining peaks in the pool on the peak to be 

removed in each IRP iteration (a) at time 6 s, (b) at time 18 s, (c) at time 20 s, and  

(d) at time 34 s, as a function of remaining number of peaks in pool. 

 

3.3. Optimal Peak Selection 

Having ranked peak wavelength variables using IRP, the Optimal Peak Selection (OPS) procedure 

selects a top-ranked subset of the peak variables. The number of peaks in this subset is minimized 

under the constraint that the prediction of all wavelength variables by the subset of peak variables 

meets a specified prediction quality target. More formally, let      be the ranked set of peak wavelength 

indices k1, k2, k3, …, for time point tj, and let K’ be the size of this set. For each r  {1, 2, …, K’}, 

the OPS procedure regresses wavelength intensity variable {Ik:k = 1, 2, …, K} on the set of peak 

wavelength variables Ik1, Ik2, …, Ikr, to yield prediction    , and calculates how well     predicts Ik by 

way of the R
2
 value denoted Rr,k. (Similarly to the IRP procedure, an ordinary least squares linear 

regression is used). An aggregate measure of how well the set of peak variables Ik1, Ik2, …, Ikr 
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predicts the full set of wavelength variables {Ik:k = 1, 2, …, K} is calculated, by way of our Mean 

Determination Ratio (MDR) metric, defined as: 

     
     

 
   

 
. (10) 

Finally, an optimal value of r, denoted    , is determined (as explained below), which selects the final 

reduced set of peak wavelength variables     
     

    
        

  for this time point tj.  

Empirically, we have found that as r is initially decreased from its maximum value of K’, the 

prediction quality (MDR value) remains at a high value and decreases very slowly. Eventually, as r 

approaches 0, the MDR begins to drop off quickly. (Figure 3 illustrates this pattern for our test OES 

dataset). Thus, we have chosen to use a threshold on the slope of MDRr to determine the optimal value 

    that gives a small variable set but with still high MDR value, that is, in the OPS procedure r is 

decreased from its maximum value until: 

                         (11) 

where mthreshold is chosen to achieve a desired trade-off between prediction quality and the number of 

remaining peak variables. The above process is repeated for each time point to yield the final output of 

the IIRR procedure as         
     

       
 : 

Figure 3. The MDR values for differently sized candidate peak sets (r values less than 40 

shown) (a) at time 6 s, (b) at time 18 s, (c) at time 20 s, and (d) at time 34 s. 

 

Figure 3 illustrates typical output of the OPS stage, at four example time points. We have again 

used our sample OES data (preprocessed by APS and IRP) and set an MDR slope threshold of 0.01 for 

the OPS selection criterion. Even at a small slope threshold it can be seen that only few peak variables 

remain in the final selected set and so good data reduction is achieved. Over all time points,     values 
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have been observed to be low, spanning the range of 1 to 10 with an average of 5.46 remaining peaks 

per time point (compared to 47.7 variables on average after only the APS stage). 

4. Experimental Results and Discussion 

In the previous section we have shown that, when applied to our test data set, the IIRR method can 

reduce the number of input variables by a large degree without a significant loss in prediction accuracy 

from the remaining variables to the full set of original input variables. To further validate the method, 

in this section we quantify the prediction quality of the reduced set of variables produced by IIRR 

when predicting an independent output variable, the etch rate. Although this measurement is not 

normally available from plasma etch process monitoring, for our particular test dataset of spectral data 

from a real semiconductor etching process, we have a corresponding final etch rate measurement for 

each process run. Our validation procedure is as a follows. 

We have 900 process samples (process runs) which we split equally into a training group and a 

testing group. A process sample contains the time series OES data for the process run plus one final 

etch rate measurement. The distribution of all etch rate samples in each group is shown in Figure 4. 

The IIRR procedure is used to find a reduced set of wavelength measurements using only the 

training OES sample group. We note that the etch rate variable is not part of the IIRR training input, 

only the OES training samples. 

Figure 4. Estimated Probability Mass Function (PMF) of etch rates for (a) training group 

and (b) testing group. 

 

A sample of the OES measurements before and after the IIRR process is shown in Figure 5, for a 

typical process run. It can be seen that data dimension is reduced significantly. Across all samples, less 

than 0.27% of the original 2,048 wavelength measurements remain after IIRR.  

We next compare the prediction accuracy of the IIRR reduced dataset to the prediction accuracy 

when using the full set of OES data (we note that the full data set is first de-saturated and time 

normalized, see Appendixes 1 and 2), resulting in input data with 1,807 wavelength variables, of a 

possible 2,048, over 41 time points). In either case, wavelengths (or peak wavelengths) at each time 

point are treated as independent parameters for prediction. Three popular prediction methods are tested 

to provide a regression-independent result: multiple linear regression (MLR), PLS, and ANN.  
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Table 2 summarizes the results. For comparison, also included in the table are predictions of the 

training data from itself. 

Figure 5. (a) Sample of original OES data and (b) a sample of the selected peaks after 

IIRR for a complete etching process. 

 

Table 2. Etch rate prediction accuracy comparison between original (full) OES dataset and 

the IIRR reduced dataset (with mthreshold = 0.01 in OPS procedure). 

Regression 

Method 

Input Dataset 

(Total Number of Input 

Variables) 

Training Prediction 

Accuracy 

Testing Prediction 

Accuracy 

R
2
 MAPE R

2
 MAPE 

MLR 

IIRR Reduced Dataset (224) 0.9930 0.0024 0.9430 0.0070 

Complete Dataset 

(2,048 × 41) 
0.9944 0.0021 0.9329 0.0074 

PLS 

IIRR Reduced Dataset (224) 0.9802 0.0041 0.9705 0.0051 

Complete Dataset 

(2,048 × 41) 
0.9805 0.0041 0.9676 0.0053 

ANN 

IIRR Reduced Dataset (224) 0.9710 0.0042 0.9049 0.0084 

Complete Dataset 

(2,048 × 41) 
Input too large for computation 

We can see very good R
2
 and MAPE scores for the predictions. Interestingly, for the prediction of 

the testing dataset, there is better prediction accuracy (for MLR and PLS cases) when using the IIRR 

reduced dataset compared to using the full dataset. We attribute this improvement to the noise 

reduction effect of IIRR. We additionally note that PLS achieves the best result. It has been noted 

previously, in [28], that PLS is a more suitable method than MLR when the data dimension is large 

and there is high redundancy. In addition to good overall R
2
 and MAPE values, there is very good 

prediction accuracy across all individual samples, as shown in the Figure 6. 
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Figure 6. Individual etch rate predictions from the IIRR reduced dataset using PLS. 

 

5. Conclusions and Future Works 

We have presented a new Internal Information Redundancy Reduction (IIRR) method for reducing 

the dimension of time series samples of OES measurements and, by use of real sample data from a 

plasma semiconductor process, have shown that the method can effectively reduce the number of 

wavelength intensity measurements required to accurately represent the data. As validation, we 

showed that prediction of an independent output variable (etch rate) can be done very effectively with 

the reduced set of variables, which comprise less than 0.27% of the original variables. In fact, 

prediction accuracy was slightly improved, compared to prediction with the full set of input variables. 

We note that our IIRR operates in the original variable space, rather than a transformed variable 

space, which would make the method useful for OES analysis methods whose goal relates to physical 

interpretation of the data and process, for example in virtual metrology methods. We would also expect 

the method to be effective for application to high-dimensional spectral data from other processes, 

where the dataset represents a set of time series, each of which is an independent sample from the same 

fundamental process. Although the APS step of the algorithm is specific to OES datasets, the core 

method (IRP + OPS) could be expected to be effective for other (non-OES) high-dimensional time 

series datasets, where multiple independent samples of the same (repeatable) underlying process 

behaviour are available. However, we note a caveat here. As the IRP phase of the method ranks less 

correlated variables highly, there is a risk of biasing noise for inclusion in the final variable set. In our 

case, our interpretation of non-peak data as noise and its effective reduction/removal by APS avoids 

this scenario. For data from other processes, some similar insight to the nature of the noise and an 

effective noise reduction method would be required, so that a high level of data reduction can be 

achieved. On the other hand, as our IRP/OPS method is ‘internal’ in nature, not guided/biased by a 

chosen output variable(s), it is conservative in terms of attempting to distinguish unexplained variation 

from noise. As a stand-alone method of preparing a universal reduced OES dataset, that can be applied 

to prediction of multiple different output variables of interest, this may be useful. 

Future work will investigate application of the method to other such data sets. Additionally, we will 

in future also consider how redundancy in the time domain can be reduced, which we have not 
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considered in the present paper. In relation to our current OES plasma data, at least for certain periods 

of the process when it is less dynamic, the process is most likely over sampled and there is an 

opportunity for further reduction without significant loss of important time domain information. 
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Appendix I. Pre-Process: Wavelength Desaturation 

Our particular OES test dataset presents a specific problem of saturated values in some wavelength 

intensity measurements, which we deal with before inputting our dataset to the IIRR procedure. Given 

the typical limited Signal-to-Noise Ratio (SNR) in OES measurement (in this case, the SNR is 300:1 at 

full signal [8]) it is judicious to set sensor gain to accept some saturation in measurement in return for 

increased measurement sensitivity for low intensity values. However, the resulting saturated values 

(see red plateaus in Figure A1a) should be removed from the dataset to avoid interpretation as 

correlation between the saturated values. 

Figure A1. Sample of OES measurements (a) before and (b) after desaturation. 

 

Our approach is simply to remove all wavelength variables at each time point that exhibit 

saturation, where our test for saturation is: for each wavelength k, is: 

          (12) 

for any sample, where Ik is the intensity value under test, Imax is the maximum optical intensity of the 

sensor and   is the sensor bias, estimated as: 
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 (13) 

with an SNR of 300:1 at full signal for the spectrometer in [8]. Figure A1b shows the result of removal 

of the saturated intensity values. Over the full dataset, 241 of the 2,048 wavelengths are removed. 

Appendix II. Time Series Normalization 

Each etching process run outputs a time series of spectral intensity scans, however, the sequence of 

timestamps from one process run to another is not necessarily identical. As the IIRR method needs to 

group all samples at a given time point during its data processing stages, the timestamps need to be 

aligned to a normalized time scale. The time between samples averages approximately 0.7 s and, over 

all process samples, the minimum final time stamp is 40.14 s. We set the normalized time scale to have 

1 s intervals, with the final timestamp at 40 s. Having set the time scale, the values in each time series 

(process run) are transformed by linearly interpolating the wavelength intensity values between the 

points either side of exact 1 s intervals. The process is illustrated in Figure A2 below with two 

representative samples from the data. 

Figure A2. Original and normalized time series of wavelength (585.93 nm) from  

(a) sample 213 and (b) sample 525. 
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