
Sensors 2014, 14, 731-769; doi:10.3390/s140100731
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Improving Inertial Pedestrian Dead-Reckoning by Detecting
Unmodified Switched-on Lamps in Buildings
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Abstract: This paper explores how inertial Pedestrian Dead-Reckoning (PDR) location
systems can be improved with the use of a light sensor to measure the illumination
gradients created when a person walks under ceiling-mounted unmodified indoor lights.
The process of updating the inertial PDR estimates with the information provided by light
detections is a new concept that we have named Light-matching (LM). The displacement
and orientation change of a person obtained by inertial PDR is used by the LM method
to accurately propagate the location hypothesis, and vice versa; the LM approach benefits
the PDR approach by obtaining an absolute localization and reducing the PDR-alone
drift. Even from an initially unknown location and orientation, whenever the person
passes below a switched-on light spot, the location likelihood is iteratively updated until
it potentially converges to a unimodal probability density function. The time to converge
to a unimodal position hypothesis depends on the number of lights detected and the
asymmetries/irregularities of the spatial distribution of lights. The proposed LM method
does not require any intensity illumination calibration, just the pre-storage of the position
and size of all lights in a building, irrespective of their current on/off state. This paper
presents a detailed description of the light-matching concept, the implementation details
of the LM-assisted PDR fusion scheme using a particle filter, and several simulated and
experimental tests, using a light sensor-equipped Galaxy S3 smartphone and an external
foot-mounted inertial sensor. The evaluation includes the LM-assisted PDR approach
as well as the fusion with other signals of opportunity (WiFi, RFID, Magnetometers or
Map-matching) in order to compare their contribution in obtaining high accuracy indoor
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localization. The integrated solution achieves a localization error lower than 1 m in most of
the cases.

Keywords: indoor localization; signals of opportunity; light/illumination; pedestrian
dead-reckoning; smartphone

1. Introduction

Reliable and precise indoor localization of people is still an open problem, and many technological
approaches have been proposed to achieve a usability similar to that obtained outdoors by the GPS
system [1–3]. The most difficult challenge for pedestrian navigation is to find an accurate-enough
indoor location method, valid for extended areas, which can withstand environmental condition changes,
and at the same time is as simple as possible. Two main approaches can be used for the location of
persons indoors: (1) Solutions that rely on the existence of a network of receivers or emitters placed at
known locations (beacon-based solutions or Local Positioning Systems-LPS) [4–6]; and (2) Solutions
that mainly rely on dead-reckoning methods with sensors only installed on the person to be located
(beacon-free solutions, or Pedestrian Dead Reckoning-PDR) [7–10]. The current tendency is the
hybridization of both approaches [11,12].

The use of signals of opportunity for the localization of persons indoors is a recent and very promising
approach, especially from the usability point of view. Signals of opportunity are those not originally
meant for localization purposes but which are freely available most of the time in standard spaces,
without requiring the installation of any ad-hoc infrastructure. Some common signals of opportunity
are: telephony, FM/TV broadcast, WiFi, Bluetooth, magnetic fingerprints, illumination, pressure,
temperature, among others [13,14]. A modern smartphone is a convenient device to register most of
these signals.

One of those signals of opportunity is the light intensity from standard light sources. The estimation
of the position of a person indoors using unmodified artificial lights (e.g., fluorescent lights) has received
little attention in the research community. A few authors [15–18] used unmodified light signals to
perform room-level localization using fingerprinting approaches to infer in which room the user could be
located. They assume that the illumination intensity and/or ambient color is different among particular
rooms. This approach has the limitations of providing just a symbolic positioning (i.e., poor physical
location accuracy), and the necessity to perform frequent re-calibrations to update the measurement
models, since lighting conditions can change.

A very innovative approach has been studied at the Wearable Computing Laboratory
(ETH Zürich) [19–21], proposing the use of light intensity variations from standard fluorescent lights
to estimate the relative displacement of a person while walking. The estimation is based on how the
sensed illumination changes as the distance from the user to the light source varies. The user has a small
solar panel, embedded on the clothes, that is used as an illumination sensor. Although this approach
has a great merit and obtains good results in some short-range experiments (aprox. 0.2 m distance
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error for a 8-meter-long path [19]), it has some factors that limit the achievable accuracy in estimating
the displacement of the person: illuminance depends on the orientation of the receiver, influence of
close-by windows with natural light, sensitivity to the light rated power (different behavior e.g., for 30 or
60 Watts lights), influence of aging of lights, dust accumulation, influence of the reflectivity of
surrounding objects, diffusers, etc. Additionally, as the method estimates the relative traveled distance,
it has to be integrated with an absolute positioning system (RFID-based in this case) in order to be able
to estimate the user location.

In [22], a robot moving in an indoor space is able to detect unmodified light spots with a camera
pointing to the ceiling. The robot estimates its pose using wheel-based odometry, and occasionally the
robot’s pose estimation is corrected when a light is detected. The approach of fusing dead-reckoning
measurements with light detections is very interesting, and that basic idea will be followed in our paper
with several improvements and added value. One of the weaknesses of the system proposed in [22] is the
assumption that only one light pattern can be recorded in an image in order to avoid the misidentification
of lamps, as well as the assumption of an initially known robot position. As they start with a valid pose
estimate, their method makes positioning corrections with the closest lamp of a previously “learned”
lamp database. This limited operational mode of correcting position using only the estimated closest
lamp results from a method which does not support multiple hypothesis and therefore it is not robust
against false light detections or unknown initial position information.

Light-communication [23,24] is another approach for absolute indoor localization using lights which
are modified by adding electronic current modulators. In this manner each particular light emits or
“communicates” a unique identification, or alternatively, its position. This is a similar concept to
infrastructure-based LPS localization, and it is far from the unmodified approaches in [15–22] cited
above, or the LM approach proposed in this paper.

In this paper we introduced the concept termed Light-matching, which is a new way to achieve
accurate physical location, complementing the displacement and rotational information provided
by inertial PDR methods with the information obtained by detecting unmodified lights in indoor
environments (see Figure 1). The lights are detected by analyzing the illumination gradient that is
generated when a person walks under a switched-on lamp. As in other matching techniques, we need
to know the 2D position, size and orientation of all ceiling-mounted lamps in a building, however the
current lighting state (if they are on or off) is not needed. Even from an initially unknown location
and orientation, whenever the person passes below an switched-on light spot, the location likelihood is
iteratively updated until the likelihood potentially converges to a unimodal probability density function.
The time to converge to a unimodal position hypothesis depends on the number of lights detected and
the asymmetries/irregularities of light distributions. This PDR + LM fusion approach can be used in
cooperation with other signals of opportunity (WiFi, Magnetometers or map-matching) to obtain even
better indoor localization accuracy.

This paper presents a significant extension to the basic concept already made available in a
communication [25] by the authors of this work. New contributions include the analysis of how multiple
hypothesis can be pruned using three common sources of information: (1) magnetic fields; (2) the
existence of irregular light distributions; and (3) the cooperation with other sensor information (WiFi,
RFID and GPS). The description of the light detection process as well as the Bayesian modeling for each
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lamp are also extended. We also go beyond the simulated evaluations and in this paper we incorporate
an on-the-field experimental validation of the concept using a Smartphone to collect all the required
information (Illuminance, Inertial, WiFi, GPS, RFID, and so on).

Figure 1. Fine-grained location of people indoors using the Light-Matching approach, in
which the location likelihood of a person is updated when he passes under an (unmodified)
light spot holding a smartphone. Inertial-based Pedestrian Dead-Reckoning (PDR) is
used as a motion model to propagate his location likelihood. Other available sensors
(magnetometer), context information (map) or signal of opportunity (WiFi) can be used as a
backup or to improve/guarantee a unimodal location estimation.

The paper presents the extended description of the Light-Matching concept in Section 2, the
implementation details in Section 3, and several simulated and experimental tests using the smartphone
in Sections 4 and 5 respectively. Finally, in the last two sections, we provide a discussion about the
benefits and limitations of this approach, future work to be done, and some final conclusions.

2. Light-Matching Concept

This section explains the basic Light-Matching idea, i.e., how to use unmodified lights to determine
the user’s location assuming that Dead-Reckoning (DR) information is also available. We also analyze
the localization convergence, measured as the change in the number of location hypothesis, and how it
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is influenced by the number of lights in a building and the number of detections. Then, we explain how
a typical non-regular distribution of lights in a building can have significant benefits in the localization
process, as well as, the interest of aiding the system with an electronic compass.

2.1. Basic Light-Matching Idea

The Light-Matching idea is very simple. If we know exactly where all the lights in a building are
located (2D position, size and orientation of each light in each floor), and we assume that we are able
to detect when a person has passed under a light spot, then if a light is detected we can infer that the
person is located under some of the lamps in the building. So, under an unknown initial position and
orientation, a light detection implies as many local hypothesis as the number of lights in a building. These
multi-modal location hypotheses are propagated according to a motion model that can be estimated with
pedestrian dead-reckoning techniques. After a second light detection, the current multi-modal hypothesis
located under any light spot will persist, and the rest of the hypothesis will be discarded. This process of
hypothesis propagation (motion model) and hypothesis update at light detections (measurement model),
finally can converge to a unimodal hypothesis that represents the true location of the person. This concept
can be straightforward implemented using a Bayesian approach with a particle filter technique, in which
the state X of each particle consists in the location and orientation of the person (X = {x, y, z, θ}).

In Figure 2 the Light-Matching concept is explained with an example. We illustrate the case of a
person that is walking straight (magenta arrow) in a simplified building floor with only two light spots
(yellow circles) separated by a distance 2d. We use several particles to represent the likelihood of the
location hypothesis, as well as their orientations (represented by a short stem at each particle). At the
beginning (t = 0), Figure 2a, we do not know where the person is located, so the particles are spread in
the floor-plan with a uniform orientation distribution. When the user moves under a light and detects it
for the first time (t = k), then we know that he can only be under any of the two lights in the building. This
is represented by a double cluster of particles that represent two local unimodal hypothesis (Figure 2b).
Note that these two hypotheses have not any preferred orientation (i.e., uniform distribution). While
the user walks straight a distance d, at time t = k + 1 (Figure 2c), and another distance d at t = k + 2,
the particles separate from the light centers according to their individual orientation creating a circular
ring for each light position (Figure 2d). At this time (t = k + 2) a second light is detected, which
causes an update that reinforce the likelihood under the two lights and eliminates the remaining particles
(Figure 2e). Note that this two hypothesis have, apart from distinctive locations, two defined orientations
(particles at upper cluster point “North”, and those at the lower cluster point “South”). If the user
continues his straight motion both clusters are moved according to the PDR estimation. We know that
the upper hypothesis is the correct one (we advanced the real trajectory in Figure 2a) but without any
prior knowledge both hypothesis are equally valid, one that corresponds to a straight path from South to
North starting below, and another from North to South starting above in the floor map.
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Figure 2. Light-Matching concept applied to estimate the location and heading of a person.
Example of how the uncertainty in the estimation is reduced when the person gets under two
lights while walking straight in an indoor area. (a) Initially (t = 0) there is no information
about the location of the person in the area (represented by multiple location hypothesis at
several places and with different orientations); (b) The person is under a light, so he must
be at any of the light locations; (c) the persons moves a distance d since last light detection
(measured by PDR); (d,e) after moving straight a distance d at time t = k + 2, the person is
under another light; (f) After this second light detection there are only two main cluster of
location hypothesis with well-defined position and orientation (one of those corresponds to
the true location).

t=0 (unknown position)

a)

t=k+1 (motion    measured)d

c)

t=k (1 light detected)

b)

t=k+2 (motion    measured)d

d)

d

2d

t=k+2 (2º light detected)

e)

t=k+3 (motion )measuredd

f)

d

Legend:

Location hypothesis
(position & orientation)

Light position

t=0

t=k

t=k+1

t=k+2

t=k+3

Real Trajectory

2d



Sensors 2014, 14 737

2.2. The Total Number of Hypotheses: Influence of the Number of Lights and Detections

In this paper we are using the term “hypothesis” to refer to any unimodal location likelihood or
equivalently, to any cluster of particles that share a similar position and orientation. Each particle itself,
although it is also an hypothesis, only represents a sample of the probability density function of the
overall distribution.

In the example of the previous subsection (Section 2.1 and Figure 2), consisting of two lights in a
floor, we found that after passing under two lights the number of hypothesis was two, i.e., equal to the
number of lights in the space. In general, if the number of lights in the building, nlights, increases it is
expected that the number of hypotheses, nhyp, will grow proportionally after the first light detection. So,
nhyp ∝ nlights for only one light detection. If the person moves, from that location, the particles in each
hypothesis will be spread forming rings of particles centered in each light position (as in Figure 2c,d).
If we consider that we can split each ring of particles in several quadrants, for example 4 or 8 quadrants,
corresponding to angle ranges of 90 or 45 degrees, respectively, then we can consider that each ring
of particles contains nquad hypothesis (being for example nquad = 8). So, in general we can say that
the number of hypotheses after just one light detection is equal to the number of light multiplied by the
number of quadrants, i.e., nhyp = nlights · nquad.

Table 1. Dependance of the number of location hypothesis with the number of lights present
and the number of lights detected (case of lights aligned and a straight path).

Number of Lights (nlights) Number of Detections (ndet) Number of Hypotheses (nhyp)

1
0 ∞
1 nquad

2
0 ∞
1 2 · nquad
2 2

3

0 ∞
1 3 · nquad
2 4
3 2

4

0 ∞
1 4 · nquad
2 6
3 4
4 2

5

0 ∞
1 5 · nquad
2 8
3 6
4 4
5 2
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The growth of the number of hypotheses with the numbers of lights in a building, which is an
undesirable feature, however can be alleviated by the number of light detections (ndet) that occur while
the person is walking indoors. In Table 1 it is shown the systematic calculation of the total number
of hypotheses for a different number of aligned lights installed in a corridor in a building, and for
different number of detections while a person is walking straight in each case. We see that when the
number of detections is larger that two, then the number of hypotheses begins to diminish proportionally.
The following formula can be generalized for this series of data:

nhyp =


2 · (nlights + 1)− 2 · ndet ifndet ≥ 2

nlights · nquad ifndet = 1

∞ ifndet = 0

(1)

which although is only valid for the case of a person moving straight, it gives us a concrete idea of
how the number of hypotheses depend on the number of lights in the building and the number of light
detections. From this case, we can see that visiting half of the lights in the building (ndet = nlights/2) the
number of hypotheses is similar to the number of lights (nhyp = nlights + 2). Even visiting all the lights
in a building (ndet = nlights) the minimum number of hypotheses is still 2 (nhyp = 2). This means that
additional methods to prune the hypothesis are needed.

2.3. Pruning the Number of Hypotheses

We have seen that one of the drawbacks of the Light-matching concept is that it generates
multiple location hypotheses (proportional to the number of lights, Equation (1)). Nevertheless, the
Light-matching approach can frequently converge to a unique location hypothesis under one or several
of the following common circumstances:

• Using the Earth’s magnetic field.
• Existence of Irregular Light Distributions.
• In cooperation with other sensors/available information.

Next we will explain how these common circumstances help to prune the number of hypotheses.

2.3.1. Using the Earth’s Magnetic Field

Estimating the spatial orientation of a person in indoor environments by measuring the Earth’s
magnetic field is not, in general, too reliable due to typical magnetic perturbations (metallic structures,
motors, computer equipment, etc.). Many authors have avoided the use of magnetometers for heading
estimation [26,27], however others have characterized statistically the magnetic perturbations on the
heading angle and have used the information in positioning applications [28–31]. Some of these papers
report standard deviations of the errors in heading of 0.68 radians in difficult buildings made of metallic
frames, and an approximate Gaussian distribution with a close to zero mean.
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We state that using an appropriate magnetically-based orientation model it is possible to prune some
of the hypotheses in the Light-matching method. In particular, even using a very pessimistic model that
assumes large magnetometer error, it could be very easy to prune those hypotheses whose orientations
are in the opposite direction to the real one. See the example in Figure 3, which is similar to the one
in Figure 2, but in this case we use information from an electronic compass modeled with a standard
deviation error larger than one radian. It is clear how after detecting two lights only one hypothesis holds.

Figure 3. Light-Matching concept improved by a gross electronic compass indication.
Same cases as in Figure 2. Now there is only one cluster hypothesis, after the double light
detection, representing the true location and heading of the pedestrian.

t=0 (unknown position)

a)

t=k+1 (motion    measured)d

c)

t=k (1 light detected)

b)

t=k+2 (motion    measured)d

d)

d

2d

t=k+2 (2º light detected)

e)

t=k+3 (motion )measuredd

f)

d

t=0

t=k

t=k+1

t=k+2

t=k+3

2d



Sensors 2014, 14 740

In general, for a 2D light distribution in a floor, and assuming that with the magnetometer we can
differentiate between 4 quadrants (angles π/2 apart) the number of hypotheses can be reduced by two
as compared to the case of not using a compass. This reduction can be further improved with the
next situations.

2.3.2. Benefits from Irregular Light Distributions

An irregular distribution of lights in a building causes that the distance among near-by lights are not
always d or d

√
2. This fact helps to prune the number of hypotheses quickly. Although it may be thought

that regular light distributions are quite common in the entire building floor, in practice this is not so usual
because of the following reasons:

• Light densities are not identical in different rooms. The number of lights per unit area, or light
density, is different among buildings. It depends on the type of lamps, their directionality and
intensity, even the kind of activity that is performed there and the height of the ceiling. When the
density, or inter-lamp separation, is different at different rooms, then the movement of the user
from a room to another can help to prune the number of hypothesis.
• The reference frame to install lights is different from room to room. There can be a positioning

shift of the reference frame between rooms. This can be possible even for regular distributed lights
within a room having inter-light distances that are multiples of d or d

√
2. However, even in that

case, the distance between the lights of different rooms does not have to be a multiple of d or d
√

2.
This fact also causes hypothesis pruning when the user makes transitions from room to room.
• There are light asymmetries in pathways. There are common pathways such as corridor with

typical L-shape or U-shape configurations, that makes lights distributions to be asymmetrical.
This fact also causes hypothesis pruning when the user travels along corridors, specially at corners
or turns.

A simple example of an irregular light distribution (different density) can be seen in Figure 4, where
three lights are aligned but two of them are separated by a distance d and the other pair by a distance 2d.
After the third light detection only one hypothesis persists, even without use of a magnetometer.

Another example to illustrate the effect of light asymmetries is presented in Figure 5. In this case
three lights are distributed regularly with a distance of 2d and 2d

√
2 among them. However the grid

is not complete, since this situation could correspond to a corridor with L-shape. At the second light
detection, it is also detected a turn of the person to the left, therefore hypothesis are translated and
rotated accordingly. When the third light is detected only one hypothesis is conserved.

2.3.3. Benefits from other Information and Signals of Opportunity

The above presented Light-matching concept, which includes the light detections, the measurement
of displacements and turns with PDR techniques, and the pruning of hypotheses by gross magnetic
information and by the natural irregularities/asymmetries of lights in a building, represents the basic
Light-matching approach. This approach can converge in many situations, but this fact is not guaranteed,
so any additional information available from the unmodified environment is beneficial.
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Figure 4. Light-Matching concept improved by irregular distributions of lights. Same
case as in Figure 2. After the third light detection, there is only one cluster hypothesis,
representing the true location and heading of the pedestrian.
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Figure 5. Light-Matching concept improved by asymmetric distributions of lights. Same
cases as in Figure 2. Now there is only one cluster hypothesis, after the third light detection,
representing the true location and heading of the pedestrian.
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Map-matching with a preloaded indoor map can be used to prune most of the particle or hypotheses
that try to cross any of the walls in the building. This method of localization, very usual in indoor
robotics literature as well as for pedestrians [32–35] is a good approach to guarantee the convergence to a
unimodal likelihood and to speed the convergence up. Combining Light-matching and Map-matching is
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mutually beneficial since neither approach guarantees convergence when there are symmetries. However,
when fusing both methods the probability of convergence is much higher since the symmetries in the wall
map are not necessarily correlated with the light distributions.

Of course, any additional signal of opportunity coming from preexisting or unmodified infrastructure,
such as for example, the Received Signal Strength (RSS) of WiFi access points, could be used to
prune further the set of potential location hypothesis. The advantage of this integrated approach is
that the density of the beacons generating these signals of opportunity does not have to be as high as
in positioning solutions that rely only in RF fingerprinting or RF-trilateration. As a rule of thumb, we
estimate that using the RSS of one of these natural beacons (WiFi AP) could potentially reduce the
initially high number of hypotheses to approximately one half in a short period of time. We will return
to this aspect during the evaluation stage (Section 4).

3. Light-Matching Implementation in a Pedestrian Localization Framework

In this section we give the implementation details of our localization methodology. We use a
Bayesian filter, implemented with a Particle Filter (PF), to integrate the measurements coming from
the light detections, as well as any other information that could be available (Magnetometer, Wifi, GPS,
Map, etc.). The motion information is provided by a PDR subsystem that is also integrated in the same
framework (see Figure 6).

Figure 6. General Pedestrian Localization Framework based on a Particle Filter
implementation. This approach is used in this paper to include the light detections and the
Light-matching measurement model.
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3.1. Particle Filter-Based Pedestrian Localization Framework

In our PF implementation we use a state vector, X , composed of 4 components: X = {rx, ry, rz, θ}.
The first three terms represent the 3D position, r = {rx, ry, rz}, and the last term θ is the heading with
respect an arbitrary-selected local navigation frame. We use a classical recursive prediction of the state
vector, followed by an update of the state when a measurement is available. Occasional resamplings
are performed when a degeneration of the particles is detected [36]. Next it is detailed each of these
prediction and update stages.

3.1.1. PDR-Based Prediction

A prediction is performed whenever a step j is detected with the PDR subsystem. This PDR module
estimates the PDR inter-step changes, ∆X[j] = {∆rx[j],∆ry[j],∆rz[j],∆θ[j]}, from the last step
j − 1 to the current step j, using a Kalman-based INS algorithm with ZUPT updates [37]. We use a
foot-mounted INS integration method because it is possible to accurately estimate the changes in the 3D
position and the foot heading with respect to the last step pose. In Figure 7 these inter-step changes are
depicted, as well as the trajectory of the right foot of a pedestrian after some step detections.

Figure 7. Reconstruction of the position using the step displacements (green) and heading
changes (blue) obtained from PDR and starting from the initial position r0 and heading θ0.

The prediction stage in the PF moves all the particles, X(i), for i = 1 . . . N , from the last detected
step at time tPDR[j − 1], according to the estimated ∆X[j] of the current step, at time tPDR[j]. This
propagation (movement and rotation) of the particles states also includes the addition of some random
state values, that represent the uncertainty of the movement model [37,38], i.e.,

X(i)[j] = X(i)[j − 1] + f(∆X[j], nstep, θ
(i)[j − 1]) (2)

where nstep ∼ N (0, P [j]), i.e., represents the covariance error model of the PDR prediction. As the
inter-step changes are always measured in the reference frame of the previous step, it is needed to
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transform the ∆X estimations to the localization frame. The function f includes the non-linear Z-axis
rotation operation by θ(i)[j − 1] to transform the ∆X PDR estimations, referenced in the frame of the
last step detection (j − 1), to the local reference frame.

f(∆X[j], nstep, θ
(i)[j − 1]) =


cos(θ(i)[j-1]) − sin(θ(i)[j-1]) 0 0

sin(θ(i)[j-1]) cos(θ(i)[j-1]) 0 0

0 0 1 0

0 0 0 1

×




∆rx[j]

∆ry[j]

∆rz[j]

∆θ[j]

 +
√
P [j] · randn(i)(4, 1)



(3)

where “randn(i)(4, 1)” is 4-value column of normally distributed pseudorandom numbers.

3.1.2. Measurement-Based Update

The update stage to refine the predicted state of the particles is computed whenever a measurement
k is received at time tmeas[k]. Note the different notation (j and k) to represent the index of steps
and measurement occurrences, respectively, which in general occur at different time instants (tPDR[j]

and tmeas[k]). A different measurement model exists for each type of measurement (Light-matching,
magnetometer, Wifi, Map-matching, etc.). According to these models the weight of each particle,
representing the likelihood of the user being at a certain position and orientation, is changed:

w(i)[k] = w(i)[k − 1] · p(z[k]|X̂(i)[k]) · α (4)

where p(z[k]|X̂(i)[k]) is the likelihood function obtained from the measurement z[k] when the state of
the particles at time tmeas[k] is estimated to be X̂(i)[k]. The term α is a normalization factor to guarantee
that the sum of all probabilities is equal to 1.

Note that as the state of the particles is only sampled at step detections (i.e., at times: tPDR[j] for
j = 1 . . . Numsteps), then we normally must extrapolate the particles’ state at times of measurement
(tmeas[k]), in order to obtain X̂[k] and to apply the measurement correction on-line, i.e., at the instant
when the measurement is received. So X̂[k] is an approximation of the position and orientation of the
particles assuming a constant velocity between the last two step points, as:

X̂(i)[k] = X(i)[j − 1] + γ · (X(i)[j]−X(i)[j − 1]) (5)

where γ is the extrapolation weight:

γ =
(tmeas[k]− tPDR[j − 1])

(tPDR[j]− tPDR[j − 1])
(6)
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Finally, the output of the filter, which is computed at the step detection rate (aprox. 1 Hz), uses the
states for the last detected step, X(i)[j] = {r(i)

x [j], r(i)
y [j], r(i)

z [j], θ(i)[j]}, and the weights updated with
the last measurement, w(i)[k], to estimate the localization and orientation of the user:

X(j,k) =
N∑
i=1

X(i)[j] · w(i)[k] (7)

3.2. Light-Matching Measuring Components

The measurement subsystem of the Light-matching approach consists basically of 4 components:
(1) a sensor to capture the ambient illumination; (2) a light spot detector, which is a signal processing
block to analyze illumination changes in order to deduce when a person has walked under a light; (3) a
database including the coordinates and features of all lamps in a building; and (4) a measurement model,
p(L[k]|r[k]), that represents the probability of detecting a light while the user is at a certain location r at
time tmeas[k]. This components are depicted in Figure 8, and explained in more detail next.

Figure 8. Components in the measurement subsystem of the Light-matching
approach: (1) Illumination sensor; (2) Light spot detector; (3) Lamp database; and (4)
Measurement model.
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3.2.1. Illumination at the Sensor

There are different illumination technologies for indoor use, such as, incandescent lights (tungsten
bulbs, halogen), discharge lamps (fluorescent, Xenon,...), and LED lamps. The Light-matching
concept is independent of the type of technology employed; the only requirement is that when
approaching/passing under a lamp the illumination captured by the sensor should change. This fact
is in general true for most lights, for a source of light without reflections, the irradiance E (W/m2) or
illumination (lumen/m2 = lux) over a surface at a distance R from a lamp, follows the inverse square
distance law, i.e., E ∼ I/R2, where I is the radiant intensity (lumen/sr = candela) that emits a source
of light. In a typical configuration, with lamps on the ceiling, and a person walking along a horizontal
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surface (the floor), the distance R between the user and the lamp reaches a minimum (the illumination is
higher) when the user is under the lamp. The change in the registered illuminance is used to detect the
light spot, as explained later in next subsection.

We do not intent to model the radiation pattern of any lamp in the building; apart that it is quite
difficult to do it precisely, we do not see it too practical since there are simpler methods to detect light
spots, which is our main goal. To get an idea of the complexity of any model, we first have to take
into account that the maximum light illuminance that is expected under a light, is ideally modeled by
the inverse square distance law, however that basic law is modified by the typical reflectors in common
lamps, as well by the lamp diffusers. Other near-by reflectors, such as walls or furniture (mirrors) can
influence as well in the perceived illumination from a lamp. Moreover, the output of the illumination
sensor depends also on the angle, φ, of the sensor’s orientation with respect to the lamp-to-user axis
(see Figure 8); the Lambert’s law states in that case that the illuminance is E = I · cos(φ)/R2. This
angle φ depends not only on the tilt of the sensor but also on the relative position between the sensor and
the lamp.

Obviously, the Light-matching approach can only work when the lamps are switched-on and the light
sensor has a Line-of-Sight (LOS) with the lamp (e.g., if using a smartphone as in in Figure 1). The effect
of having some switched-off lights in the building only has the inconvenient of getting less detections,
so the pruning of location hypotheses proceeds more slowly.

3.2.2. Light Spot Detection

We use the change in the registered illuminance to detect a light spot. When the user approaches a
switched-on lamp the illuminance captured by the light sensor grows, then reaches a maximum when
the user gets closest to the lamp, and finally decreases as he gets further from the light spot. The ideal
peak-like illumination pattern occurs if the user passes exactly below a lamp. However, in order to detect
as many light spot as possible, we also want detections when the user passes close to the lamp (typically
about 1 m). The shape and height of the peak must be processed in order to robustly detect light spots.

The algorithm used for light spot detection consists of the following five stages:

• Low-Pass Filtering. We apply a low pass filter to smooth the illuminance sensor values. The
smoothing is made with a 4th-order Butterworth Infinity-Impulse-Response (IIR) filter with a
cut-off frequency of 1 Hz.

Ef (t) =
∑3
p=0E(t− p) ∗ b(p+ 1) −∑4
p=1Ef (t− p) ∗ a(p)

(8)

where a and b are the coefficients of the filter, and Ef is the filtered illumination. This filter has a
phase delay of 4 radians at 1 Hz (delayfilt = 4 rad).
• Derivative of Illumination. The derivative of the illumination keeps all the information of a peak

and removes the irrelevant constant illumination levels of any particular room. We differentiate
consecutive filter illumination values as follows:

Ėf (t) =


Ef (t)−Ef (t−1)

Ts
ifEf (t) ≤ 1000 lux

0 otherwise
(9)
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where Ts is the sampling interval. In order to reject any light transitions that could occur when
transferring from outside to inside, and vice versa (enormous light changes), we flatten the
derivative curve if the filtered illuminance Ef is larger than a given threshold (values lower than
1,000 lux are typical indoors).
• Binarization of the Derivative. We apply a simple thresholding in order to extract the sections

where there is a steady illumination grow, and the complementary sections that contain a
systematic illumination decrease. The threshold value used to select the relevant changes in
illumination is 200 lux/s:

ĖBinary
f (t) =


1 ifĖf (t) ≥ 200 lux/s

−1 ifĖf (t) ≤ −200 lux/s

0 Otherwise

(10)

The selected threshold can be obtained analyzing the rate of change of the illumination E with
respect to the change of the distance R to a lamp installed at a given height h, as: Ė = dE/dt =

dE/dx · dx/dt = −2 · x · v · E0/(x
2 + h2)2 where x is the distance to the lamp projected onto

a horizontal plane, and v = dx/dt is the displacement speed of the person. E0 = 5, 000 lux is
a reference illumination term at the shortest distance (x = 0 or R = h), which also takes into
account an average concentration factor of typical lamp reflectors. For a height of h = 2.3 m, the
maximum illumination rate Ėmax is obtained at a distance to the lamp of x = 1.2 m.
• Peak detection. A peak corresponds to a zero-crossing in the derivative of the filtered illumination,

if it is surrounded at both sides by significant positive and negative illumination gradients. A way
to robustly detect this zero-crossing is to check the fulfillment of the next conditions:

LD(t) =



1 if ĖBinary
f (t) = −1 &

ĖBinary
f (t−∆t) = 0 &∑w
i=2 Ė

Binary
f (t− i∆t) > 1 &

SETwi=2{Ė
Binary
f (t− i∆t) < 0} = ∅

0 Otherwise

(11)

that is to say, a light detection event (LD = 1) is generated if there is a transition from 0 to−1 in the
binarized value (stated in the first two logical conditions), and if the past samples (in a window of
size w) there is at least 1 binarized value (third condition), and none of the samples in that window
has a 0 value (last condition). This final checks are needed to robustify the detector, avoiding
potential consecutive detections in a row which are unrealistic when passing under a single light.
• Delay compensation. Since the time t, at which a light spot is detected LD(t), is delayed by the

filter and by the binarized zero-crossing, the time tmeasu(k) at which the user should have detected
the lamp is computed as: tmeasu(k) = t − tfilter − tZC. This corrected time of measurement is
used to weight the particles in the PF, by interpolating the particles’ states between consecutive
step detections using Equation (5). The delayed LD causes a measurement update delay in the
PF reweight process, but it does not cause any delay in the filter’s position estimation which is
performed in real-time.
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In Figure 9 this light spot detection process is shown for some real tests in a building with some
fluorescent lamps. In this figure we show the original illumination as captured by the sensor E, all the
intermediate processed signals (Ef , Ėf , ĖBinary

f (t)), as well as the time detections.

Figure 9. Processing of the illumination data E to detect light spots. Real example for a
person walking at constant speed in a corridor holding a smartphone (Samsung Galaxy S-3)
on his hand.
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It is important to remark that we are assuming that the person holds steadily the sensing device while
walking under a lamp. If the person manipulates the device and changes the orientation with respect to
the lamp, then some unexpected peaks in the illumination pattern could be registered. This could cause
some false light detections that might deteriorate the location estimation. However, the inclination of the
light sensor could be easily estimated, for example from the Attitude and Heading Reference Systems
(AHRS) integrated in current smartphones or tablets. In this way we could compensate any illumination
changes caused by inclinations of the sensor, or at least to check that the inclination was limited during
the peak detection stage before validating a light spot detection.

One important topic is the influence of the solar light intensity that can enter in a building across
windows. In principle this information can give clues about the presence of the user in a room that is at
the perimetry of the building. In our current implementation, as this data has a totally different nature,
we do not use it at all, in fact we implemented a method to detect illumination peaks that are caused by
windows in order to reject its usage in the Light-matching approach. Alternatively, the light-matching
concept could be extended to “natural areas of light”, areas which are illuminated by outside light.
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3.2.3. Lamp Database

The lamp database is just a list with the features of each lamp in a building. We annotate its 2D
position (rl), the height with respect to the floor (Hl), the size of the illumination section in terms of its
length (Ll) and width (Wl) (Ll = Wl for circular/square lamps), and the orientation (θl) of the larger axis
of symmetry with respect to the North, i.e., the lamp database contains {rl, Hl, Ll,Wl, θl} for l = 1 . . .N.
In our current implementation, we do not include any other feature related to the intensity flux of the
lamp, as the power, radiant flux lobe, etc.

3.2.4. Light Measurement Model

This Light-based measurement model is ambiguous by nature; i.e., when we detect a light spot we
know that the user is under a switched-on lamp, but we do not know which one since they are not codified
by any method. Consequently the measurement model is multi modal, i.e., is formed by a mixture of
probability distributions centered in the lamp’s position. With this measurement model the weight update
of each particle in the PF is done as follows:

w(i)[k] = w(i)[k − 1] · P (LD(tmeas[k])|r̂(i)[k]) (12)

where P (LD(tmeasu[k])|r̂(i)[k]) is the probability of getting a light detection (LD(tmeasu[k] = 1) when
the user is at position r̂(i)[k]. This multimodal probability is modeled as the sum of all the probability
distributions of each Lamp in a building floor:

P (LD(tmeas[k])|r̂(i)[k]) =

∑L
l=1 Pl(LD(tmeas[k])|r̂(i)[k])

(13)

where L is the total number of lights in a floor, l is the index of a particular lamp. We propose to use
a standard two-dimensional normal distribution centered at the lamp’s position, and with a covariance
matrix adapted to the size and orientation of the lamp, in order to model the probability of detection of
each lamp:

Pl(LD(tmeasu[k])|r̂(i)[k]) =

1

2π
√
|Ωl|

exp{−0.5(r̂(i)[k]− rl)Ω−1
l (r̂(i)[k]− rl)T}

(14)

where rl is the position of the l lamp, and Ωl is a covariance matrix that defines the area around the
position of lamp l where it is probable to detect it. We create matrix Ωl from the eigenvalues and
eigenvectors that define an ellipsoidal distribution of length Ll, width Wl, and with its main axis oriented
an angle θl as:

Ωl = λ[1] · νeigen[1]νeigen[1]T + λ[2] · νeigen[2]νeigen[2]T (15)

where the eigenvalues are λ[1] = (Ll + 0.3)2, λ[2] = (Wl + 0.3)2 and the eigenvectors are:
νeigen[1] = [cos(θl), sin(θl)]

T and νeigen[2] = [cos(θl+π/2), sin(θl+π/2)]T . Figure 10 shows an example
of the aggregated probability density functions of 4 lamps.
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Figure 10. Example of the probability density function Pl(LD(tmeasu[k])|r̂(i)[k]) for 4 lamps.
Lamps are located at positions {(−4,−4), (4,−4), (−4, 4), (4, 4)}, three of them are
fluorescent lamps of length Ll = 1.2 m and width Wl = 0.2 m, which are oriented at
angles 0, 45 and 90 degrees. The other lamp at position (4, 4) is a small size symmetrical
bulb light.

3.3. Additional Measurements Models

In the general localization framework presented in Figure 6 any additional measurement can be
integrated using this general weight update:

w(i)[k] = w(i)[k − 1] · P (z[k])|X̂(i)[k]) (16)

which is adapted for each particular type of measurement:

• Magnetometer. If a magnetometer provides the estimation of the heading of the user θmagne then
we can update particle’s weight as:

P (θ[k])|X̂(i)[k]) =
1√

2πσm
exp{−|∆θ

(i)|2

2σ2
m

} (17)

where ∆θ(i) = θmagne − X(4)(i) and σm is the uncertainty of the electronic compass’s heading
estimation (σm = 0.68 rad).
• RSS (WiFi/RFID/Bluetooth). Assuming that we measure the signal strength RSS[k] to an WiFi

access point, or any other RF source such as RFID or Bluetooth tags, we can update the weights
of each particle as:

P (RSS[k])|r̂(i)[k]) =
1√

2πσRSS
exp{−|∆RSS(i)|2

2σ2
RSS

} (18)

where ∆RSS(i) = RSS[k] − (RSS0 − 10β log10(‖r̂(i)[k] − rAP‖)) being β the path loss exponent,
RSS0 the expected signal strength at a reference distance of 1 m, and rAP the position of the WiFi
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access point, RFID or Bluetooth tag, etc. A typical value for the standard deviation of these RF
sources is about 6 dB (σRSS = 6 dB).
• Map-matching. The weight of a particle is set to zero,

P (r(i)[j]|r(i)[j], r(i)[j − 1]) = 0 (19)

whenever the segment connecting two consecutive step locations (r(i)[j], r(i)[j − 1]) intersect any
wall of a building floor map.

This section has detailed our particular Light-matching implementation, including the extension for
using other sources of information available from unmodified buildings. Next sections evaluate the
performance of the Light-matching concept and the benefits of integrating it with complementary signals
of opportunity.

4. Evaluation: Simulated Results

In this section, we evaluate the convergence of the location hypothesis while a person is moving in a
simulated indoor space. Additionally, we evaluate the location accuracy that can be obtained for different
fusion combinations using PDR, Light-Matching, Magnetometer, WiFi, RFID or Map-matching.
In these tests we use the particle filter approach presented in last Section 3, with 10,000 particles.
The measurement models used to generate the synthetic data (WiFi and Magnetometer) are the same
as presented in Subsection 3.3.

4.1. Convergence of Location Hypothesis

In Section 2 we analyzed the dependance of the number of location hypotheses with the number
of detected lights. We obtained an algebraic expression (Equation (1)) that was valid for the case of
aligned regular-distributed lamps and for a person walking along a straight path. The generalization
of this expression in the 2D case was not possible since it depends on many variables, such as the
particular lamp distribution and the selected trajectory of the user, both of which change the number
of light detections, and, consequently, the number of location hypotheses. In this section, we perform
several simulations to get an idea of the dependance of the number of hypotheses with the number of
light detections in a 2D case, as well as, how the speed of convergence to a single location hypothesis is
influenced by the regularity of the lamp distribution, the use of the magnetometer, or other information
such as map-matching.

In Figure 11a and b we can see the simulated environment, which has an area of 98 square meters
(14 by 7 m), and a wall distribution that defines a vertically-aligned corridor at the right, and two rooms
at the left. There are two different lamp distributions: in Figure11a 15 lights are distributed regularly
with an inter-lamp distance of 2 m, whereas in Figure11b the lights are distributed in an irregular way,
with different gaps between lamps: 2 and 4 m, as well as some asymmetries, as the one generated by
the three lights at the lower-left room. The simulated walking trajectory is also overlaid on the map in
blue color; the crosses represent the stances and the small circle the initial and final position of the path.
The trajectory passes under some of the lights in the environment but other lamps are not visited, as in
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a real case. The trajectories are long enough to obtain 20 light detections in each case (i.e., 2 cycles for
the regular case and 4 cycles in the irregular case).

Figure 11. Simulated 2D analysis of the dependance of the number of location hypotheses
with the number of detected lights: (a) environment with regular light distribution;
(b) environment with an irregular and asymmetrical light distribution; (c) Evolution of the
number of hypotheses for the regular case; (d) Evolution of the number of hypotheses for
the irregular case.
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The evolution of the number of hypotheses for the regular light distribution is shown in Figure11c.
The number of clusters in the arbitrary distribution of particles is calculated automatically using a
hierarchical binary tree clustering algorithm, which measures the distance among particles in the
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four-dimensional space {r(i)
x , r

(i)
y , cos(θ(i)), sin(θ(i))}. Four localization algorithms are compared: (1)

the basic Light-matching (LM) algorithm (which includes the PDR subsystem); (2) the Light-matching
approach augmented with information from the magnetometer; (3) the Light-matching approach
augmented by map-matching; and (4) the Light-matching approach augmented with both magnetometer
and map-matching. We can see in Figure 11c that the initial number of hypotheses is high (larger than the
number of lamps), as expected, but that it decreases after some additional detections. In the standalone
LM approach, there is no convergence, and a minimum of 4 hypotheses persist if no more information is
used. This number reduces to two potential locations if the magnetometer or the map are used. However
the use of all the available information makes the location algorithm converge to a single hypothesis after
the ninth light detection.

In the case of an asymmetrical light distribution, as already expected from the analysis in Section 2,
the convergence is improved significantly (see Figure 11d). Even with the standalone LM method, it is
possible to reach convergence after the eighth detection. Using some additional information, a single
hypothesis is obtained after the fifth detection.

These simulations, which are just examples of the infinite possible configurations, give an
approximate idea of how location convergence is influenced by the geometry of light distributions and
by the use of additional information. In the real world, we know that we will benefit from irregular
light distributions when changing from one room to another, and also from the use of as many signals of
opportunity as possible.

4.2. Location Accuracy

In this section we will evaluate the positioning accuracy of the proposed method through simulated
tests with synthetic positioning data. We will offer results using the Cumulative Density Function
(CDF) of the 2D positioning error with respect to the ground-truth trajectories. The CDF measures
the probability that our positioning system has an error less than a given value.

The objective of this discussion is to compare the improvements that can be achieved with different
fusion combinations. First, we evaluate how a WiFi-based positioning solution assisted with relative
Dead-Reckoning information is improved by using the Light-matching (LM) method or the magnetic
information. In Figure 12a we can see that the basic WiFi + PDR fusion approach has an error of
1 m or lower for 70% of the cases. When the magnetic information is used (WiFi + PDR + Mag)
the accuracy is improved significantly (≤0.7 m at 70%). When the Light-matching method is used
(WiFi + PDR + LM), an important reduction of the errors is observed, specially at the lowest range
of errors. The improvement is similar when using all the measurements (WiFi + PDR + LM + Mag).
The LM improvement (traces with circle markers in Figure 12a vs. those with cross markers) is due
to position corrections happening during light detections that concentrate the particles around a lamp
position, resetting any accumulated drift error. Note that a significant part of the trajectories (about 20%)
has an error quite larger than 1 m, arising from the initial sparse distribution of particles around the
simulated indoor area, since no initial position nor orientation is given. When enough information is
received (from WiFi or Light-detections) the initially spread, or even multimodal, distributions start to
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concentrate and the accuracy gets better than 0.3 m in most of the cases. From this discussion, the benefit
of using Light-matching (LM) information to complement WiFi or RSS based positioning is clear.

Figure 12. Cumulative Density Functions (CDF) of the positioning error, obtained from
simulated trajectories corresponding to the scenario of Figure 11b. The three CDFs
correspond to: (a) Benefit obtained in WiFi-based positioning techniques by adding
the Light-Matching (LM) method, as well as a magnetometer; (b) Benefit obtained in
Map-maching-based positioning techniques by adding the Light-Matching (LM) method,
as well as a magnetometer; (c) Positioning errors with the Light-maching method alone,
and the benefits obtained by LM when other methods are fused (Map-matching and
WiFi positioning).
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We also analyzed the benefit of the LM concept, when used in parallel to a Map-matching location
method assisted by relative Dead-Reckoning information. In Figure 12b it can be seen that for this
particular simulation, the basic Map-matching with inertial information (Map + PDR) has a poor
performance. This is caused by a multimodal particle distribution, in which two location hypotheses
are formed: the right one, and a symmetric and wrong hypothesis. The weighted average of the particles
(Equation (7)) gives a position estimation close to the center of the indoor area. When we add the
magnetic information (Map + PDR + Mag) this ambiguity is eliminated and the location accuracy is
improved (lower than 0.9 m in 70% of the cases). The LM approach also eliminates the location
ambiguity, and the results are similarly good in both cases (Map + PDR + LM or Map + PDR + LM
+ Mag). As a conclusion, in map-matching approaches to localization, Light-matching can be used
additionally (on its own, or together with magnetometer or WiFi positioning information) in order to
reduce location ambiguities and achieve convergence to a unimodal probability density function.

We finally studied how the basic version of the LM approach (PDR + LM) can be improved by
the addition of other sources of information. Assuming that LM is possible at all (smartphone held in
hand, sufficient lights turned on, etc.), the main weakness of the PDR + LM approach is the delay until
convergence, as was explained in Section 4.1. Obviously, this problem usually appears in the initial part
of the position estimate, and would normally disappear as the trajectory gets longer. The error caused
by convergence is shown in the CDF curve of Figure 12c, where the positioning error of the PDR + LM
method is, for half of the estimations, larger than 1 m. With the assistance of Map-matching (Map +
PDR + LM), or an absolute location method such as WiFi-based positioning (WiFi + Map + PDR +
LM), delays to convergence are reduce, and the accuracy gets better than 1 m for 70% of the cases. As
a conclusion, the combination of matching approaches (Light- or Map-based) with absolute positioning
techniques is always a good fusion scheme if available, since they eliminate multi-hypotheses and permit
to reach sub-meter positioning accuracy.

The above results use a fixed dead-reckoning performance, with ideal, noise-free IMU signals. In
order to complement this study, we have also evaluated how the combined light and inertial estimation
(PDR + LM) performs for different uncertainty settings. It is known that the noise in the IMU signals
causes an error in the PDR estimated distance and orientation [38–41]. The quality if the PDR
estimation is expected to affect directly the performance of the light-matching approach, because a
larger uncertainty in the PDR estimate will need a larger spread of the particles around the true position,
and consequently a lightspot detection can cause the reinforcement of additional wrong hypotheses that
correspond to those particles compatible with a wrong nearby lamp.

The performance of a PDR estimation is mainly determined by the quality of the gyroscope used.
This is normally specified by measuring their bias Instability (BRW or Bias Random Walk), and by
their white noise content, which is measured with an Angular Random Walk (ARW) estimate. Both
parameters (BRW and ARW) can be determined by studying the Root Allan Variance of long duration
gyroscope signals [39]. Typical MEMS-type IMU sensors usually have an ARW in the range of
0.25–5 ◦/

√
h (degrees/square root of an hour) and a BRW between 10 and 60 ◦/h. With these figures

into consideration, we have added different noise content to the ideal IMU signals and repeated the
simulations several times for each case. The median localization error for each case is summarized in
Table 2. It can be seen that the performance is close to the ideal case when the IMU error is below
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5 ◦/
√
h and 30 ◦/h (cases 1 and 2 in Table 2), i.e., using recent MEMS IMU technology. With lower

performance IMUs (cases 3 to 5 in Table 2), the PDR + LM approach starts to deteriorate progressively
as expected.

Table 2. Influence of the IMU noise content on the performance of the PDR + LM approach.

Ideal
case

Noise
Case 1

Noise
Case 2

Noise
Case 3

Noise
Case 4

Noise
Case 5

ARW (◦/
√
h) 0 1 5 10 10 20

BRW (◦/h) 0 15 30 60 90 90
Median Position Error (m) 0.81 0.92 0.93 1.32 1.63 1.86

5. Evaluation: Experimental Results

We have empirically tested the Light-matching technique in walking trajectories in our CAR-CSIC
building. The user under test (Figure 1) carries with him (Figure 13) a foot-mounted IMU (Xsens
model MTi), an RFID reader (model 220 from RFCode), and a Samsung Galaxy S3 mobile phone.
An Android application running on the smartphone collects data from the external inertial sensor and the
RFID reader, as well as readings from several internal sensors (the GNSS estimated position, the WiFi
Signal Strength and the Illumination, among others). A log file with the received sensor information is
then processed off-line in a desktop computer using a Matlab software implementation of the estimation
methods described in previous sections.

Figure 14a shows (dashed green line) the experimental trajectory, with the start and end at the same
point outside the building (blue asterisk), and total duration of 10 min. Additionally the system requires:

• A map of the building,
• Coordinates and characteristics of the lamps,
• RFID and WiFi access points’ locations.

This information is represented in Figure 14a as explained in the figure’s legend.
In contrast, to the simulated case, where we had a real ground-truth, in this experimental tests we

only have an approximate ground-truth, which is the one we will use to estimate the localization errors.
This reference path is created by using all the measurements available (including the Map-matching
approach, LM, GPS, RFID and WiFi) and additionally giving the true initial position and orientation to
the initial state of the particle filter. By doing it we obtain a reliable path estimation outdoors (where
GPS is not precise enough, but can be improved with PDR’s movement model) and also indoors (where
Map-matching performs very well in this highly partitioned building).
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Figure 13. Equipment that was used by a person to capture all the sensor data. (a) Samsung
Galaxy S3 mobile phone connected to an Xsens Mti inertial unit (USB connection) and to
an RFID RFCode reader (Bluetooth connection). The developed “GetSensorData” Android
application runs in the S3 phone and collects data from both external (Xsens and RFcode)
and internal sensors; (b) A detail of the information captured from the external sensors;
(c) A detail of the information captured from the phone’s internal sensors (among others the
Illumination, GNSS, WiFi, Sound, etc.).

(a)

(b) (c)
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Figure 14. Experiments at CAR-CSIC building. (a) Ground-truth trajectory thats starts and
ends at the same point (outside the building). Light-Lamps are marked as well as the Wifi
access points and RFID tags; (b) Estimated trajectories for some of the different fusion tests.
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The lamp database was created by visiting several rooms of our building and measuring the
coordinates of the lamp with respect to the room’s walls with a TOF-laser-based distance meter (accuracy
of 0.1 m). The lamp position, orientation and size are annotated on the calibrated floor map. Not all the
lamps in the building were stored, and from those, not all were switched on during the tests. There
was a great variation in lamp light intensity, size and orientation, as well as lamp density per area in
our building.
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With respect the RFID tags, which were fixed at some walls in the building, only 20 tags were showed
in Figure 14a, because this is the number of tags used for most of the location tests, but a total of
100 tags were installed and registered by the system. The RFID measurements were processed using the
signal strength (SS) attenuation model presented in Section 3.3 with a path-loss exponent equal to 2.3,
as already used by the authors in previous works of RFID localization [11].

It is important to mention that in the experimental tests, in contrast to the simulated tests, the GNSS
position information, provided by the S3 phone, is used. The GNSS information is a fusion of the
American GPS and the Russian Glonass systems. More than 14 satellites are typically visible and used
outdoors. Inside this one-story building several satellites signals (between 6 and 9) are still received,
but due to indoor multipath the quality of positioning is much lower than outdoors (error of about 30 m
in most indoor positions) and therefore the data from GNSS, although used in the fusion process, is
less useful.

The result of the position estimation using different fusion combinations are presented as trajectories
on top of a location map in Figure 14b. Four different algorithms are represented:

• Wifi + PDR + GPS
• Map + PDR + GPS
• LM + PDR + GPS
• RFID + PDR + GPS

The first significant aspect that we observe is that the outdoors estimation of the GNSS system is quite
degraded, with an error of more than 10 m (difference between the dashed-green ground-truth path and
the other estimated paths). The black and red traces (Wifi + PDR + GPS and RFID + PDR + GPS) are
slightly biased at some areas of the indoor space (the black around the point [50, 10] m, and the red
around the point [10, 40] m). The other two estimations (Map + PDR + GPS and LM + PDR + GPS) are
significantly better than the RSS-based estimations, the Map-matching approach being the best.

As we are specially interested in showing the performance and limitations of the LM subsystem,
we present several snapshots of the intermediate LM + PDR + GPS algorithms. Figure 15 shows
10 snapshots in chronological order, containing the cloud of particles, an ellipsoid representing the
estimated position covariance, and the partial estimated trajectory. In Figure 15a, just before entering the
building, the cloud of particles is quite disperse, representing the uncertainty in the GNSS estimation,
which is the one that predominates. In Figure 15b after the first light detection, the cloud of particles is
transformed into a set of near-by Gaussian hypothesis with a distribution that reflects the arrangement
of lamps installed in the hall of the building. This multimodal hypotheses are shaped in the next lamp
detections, as presented in Figure 15c–e. Regarding the two hypotheses shown in Figure 15e, the lower
one is the correct. The first unimodal distribution is observed in Figure 15f. After that the trajectory
remains unimodal and fitted closely to the ground-truth, except for a period with no light detections in
the corridor, that finally is corrected in Figure 15h after one detection. Finally the complete trajectory
with the final particle distribution is shown in Figure 15j which is the same case as the LM + PDR + GPS
result presented in Figure 14b.
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Figure 15. Some intermediate snapshots of the Light-matching estimation experiments at
CAR-CSIC building. The GNSS is used outdoors, and PDR with Light-matching is used to
improve the accuracy of the position estimation indoors.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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Apart from the analysis of the four algorithms presented in Figure 14b and Figure 15, additional
types of fusion combinations were analyzed. Their performance is shown in Figure 16 using a CDF
representation, and the same criteria as in the simulation analysis of last subsection.

Figure 16. Positioning accuracy by means of Cumulative Density Functions (CDFs). The
data is experimental for a test with a ground-truth trajectory as in Figure 14a. The three
CDFs correspond to: (a) Benefit obtained in WiFi-based positioning techniques by adding
the Light-Matching (LM) method, as well as a magnetometer; (b) Benefit obtained in
Map-matching-based positioning techniques by adding the Light-Matching (LM) method,
as well as a magnetometer; (c) Positioning errors with the Light-matching method alone,
and the benefits obtained by LM when other methods are fused (Map-matching, WiFi and
RFID positioning).
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The experimental CDFs shown in Figure 16 show that the WiFi-based positioning is improved
significantly when we add the LM approach (Figure 16a), and that the Map-matching approach works
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very well when no ambiguities appear in the building floormap, and that the LM method can not add
any benefit in that case (Figure 16b). That is similar results to the conclusions obtained from the
simulated data in Figure 12. When we try to improve the basic LM method (LM + PDR + GPS) adding
WiFi, RFID or Map-matching information, we obtain the CDFs in Figure 16c. The Wifi contribution
is not perceptible, the RFID data slightly improves the estimation, and the addition of map-matching
provides a good benefit; this improvement is mainly due to the elimination of the initial multiple
hypotheses generated by LM. Note than in all cases about 15% of the samples are contaminated with
errors larger than 4 m; this error is due to the GNSS estimation that is equal for all methods outdoors.
As a conclusion, the best solution is the one that combines more sources of information, as in the case
(Map + PDR + GPS + Mag + LM) in Figure 16b already presented, with an error lower than 1 m in 70%
of the cases.

The benefit of the LM method is specially remarkable when acting as a complement to RSS-based
positioning (e.g., WiFi as seen in Figure 16a). This improvement can be contrasted with another
RSS-based positioning system such as RFID; in Figure 17 we evaluate it for the case of using 20 RFID
tags and also using 100 tags, which is an over-populated tag deployment. For the normal, or low density
of RFID tags (20 tags in 2500 m2), the accuracy improvement is from 4 m to 2 m (70% of the cases).
In the case of a high tag density (100 tags), the improvement is lower but still significant (from 2.3 m to
1.3 m, in 70% of the cases).

Figure 17. Cumulative Density Functions (CDFs) of positioning error in several
circumstances, corresponding to the test trajectory of Figure 14a. The two CDFs correspond
to: (a) Benefit obtained in RFID-based positioning techniques (using 20 RFID tags) by
adding the Light-Matching (LM) method, as well as a magnetometer; (b) The same case
as before, but using a total of 100 RFID tags in the building.
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6. Discussion

In this paper, we have presented the Light-matching (LM) idea, its implementation details and
evaluation with simulated and experimental tests. It is important to mention that the LM approach is
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intended as a support to existing PDR solutions, refining estimates that otherwise would be affected
by drift. We believe that an effective indoor positioning solution must use as much information as
possible, so inertial information should be fused with other signals of opportunity such as the received
signal strength from standard nodes (WiFi, RFID, Bluetooth, etc.), magnetic fingerprints, pressure
information, map-matching, etc. or specific positioning beacons, such as ultrasound emitters, cameras,
pseudolites, UWB ranging, and so on. Although the use of unmodified light indoors has already
been addressed in some previous works, as cited in the introductory section, we explored a different
approach that shows how this signal of opportunity can improve pedestrian dead-reckoning solutions. We
defined a general-purpose multi-hypothesis localization framework where the ambient illumination can
be effectively fused with other informative measurements in order to achieve accurate indoor positioning.

The illumination received from the lamps in a building, which is the signal of opportunity used by
the LM concept, is not available in many situations, for example when the device does not have a light
sensor, or if all the lights in the building are switched off, or when the phone is in the pocket, handbag,
or protected by a cover. In these cases, the LM corrections will not take place, and localization must
be performed using other sources of information available in the localization system. If the localization
system is designed with only PDR and LM, and no light data is available, then the system will behave
as a PDR alone system with significant drift after traveling a relatively long distance (typically with a
positioning error of 1% to 5% of total traveled distance). However, once the user holds the phone at
constant orientation in front of him (phone pointing upwards and with line of sight to ceiling lamps)
to look at the phone’s screen for his location or receive navigation instructions, LM can take place and
improve the position estimation.

Assuming that the light data is available, the illumination gradient that is perceived when a person
gets closer to a light spot can be used in different ways for localization, with different robustness results.
The approach based on the illumination gradient for estimation of the range from the user to the light, can
be used to estimate the traveled distance with decimeter accuracy in ideal conditions (a reliable model
of light intensity), but has the drawback of being too sensitive to any illumination change (different
diffusers among lights, different powers, convolution of close-by light, near windows, etc.). A different
approach consist of using the illumination gradients under a light spot to detect a person passing under a
light (light detections); it uses the dominant illumination intensity rise (when getting close to the light)
followed by a decrease (getting apart from the light) to detect when a person has passed under, or close
to, one light spot. This detection process is the one that was implemented and used in this paper and it is
part of the LM concept. It has the advantage, by design, of being less sensitive to the disturbing effects
noted above.

The statistical study of the light detection problem is an interesting topic. While misdetections (i.e.,
the detection process misses a true light spot) are not harmful for the performance of our system, false
alarms (detecting a light when there is none) can cause a significant deterioration of the location estimate.
In this paper we have not included statistics of the light detection performance since the detection process
worked quite ideally in our simulated and experimental tests. This ideal behavior of our light detector
was achieved by designing a very conservative solution. The light detector was implemented using:
(1) a low-pass filter to attenuate slight inclinations of the phone; (2) a derivative of illumination to
observe the gradients; (3) a conservative binarization using a significant threshold value in order to detect
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only lightspot with a very clear up/down gradients; and (4) a robust looking backwards peak detection
algorithm to avoid too consecutive detections. In this manner we get a moderate correct detection rate,
but were able to avoid any potential false alarms for a looking-to-screen use of the phone (looking mode).

Undesirable light gradients can also be generated if the user rotates the smartphone significantly
with a close-by source of light (e.g., when moving the phone to a pocket or holding the phone in hand
while swinging the arm). Additionally, abrupt light gradients can be generated by switching on and off
lights, for example when entering in rooms. These special and perturbing light gradients should be also
detected and canceled out to make the light detection process robust enough in any situation. A method
to increase the robustness of light detection can rely on exploiting the knowledge that we have on the
orientation of the light sensor on the phone (its rotation matrix), the knowledge of the real displacement
of the person (obtained by PDR) and the maximum size of lights in the database. Using this available
information, it would be quite straightforward to define methods to reject all light detections generated
while the phone is not kept in a static position (gradient generated from phone’s rotations), while the
user is motionless (it’s impossible to pass under a light spot if the user is motionless), or if the gradient
duration is larger than the largest lamp (then the gradient most likely comes from light from a window).
These proposed approaches, as well as other more sophisticated should be defined and analyzed in order
to evaluate the performance of the light detector under real phone use for long periods of time and in
different buildings. We plan to perform this analysis in a future work, since the scope of this paper
was to present the LM concept, the convergence problem and methods to prune hypothesis, present the
implementations details, and to perform some tests under simulated and experimental conditions in order
to assess the validity of the concept.

7. Conclusions

This paper has presented how inertial Pedestrian Dead-Reckoning (PDR) location systems can be
improved with the use of a light sensor to measure the illumination gradients created when a person
walks under ceil-mounted unmodified indoor lights. The process of updating the inertial PDR estimates
with the information provided by light detections is a new concept that we denominated Light-matching
(LM). The displacement and orientation change of a person obtained by inertial PDR was used by the
LM method to accurately propagate the location hypothesis (movement model), and vice versa, the LM
approach actually helps the PDR approach by providing an absolute localization and by reducing the
typical PDR-alone drift. The LM approach, as any other matching technique, requires to know the 2D
position, size and orientation of all lamps in a building, however the current lighting state (if they are
switched on or off) is not needed.

We presented the basic description of the light-matching concept, and illustrated it with some
examples. A key issue in LM is the generation and pruning of multiple location hypothesis. We
showed that even from an initially unknown location and orientation, whenever the person passes
below an switched-on light spot, the location likelihood is iteratively updated until the likelihood
potentially converges to a unimodal probability density function. The time to converge to a unimodal
position hypothesis depends on the number of lights detected and the asymmetries/irregularities of
light distributions.
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The LM concept is not designed to be used as an stand-alone solution for indoor location; it is just a
complement that should be used whenever light data was available. Therefore, the LM approach should
be used in cooperation with other signals of opportunity (WiFi, magnetic fields, pressure, map-matching,
and so on) to obtain a high accuracy, robust and seamless indoor localization solution.

In this paper, after presenting the basic description of the light-matching concept, we provided
the implementation details using a particle filter, and several simulated and experimental tests using
a smartphone equipped with a light sensor. The performance of the integrated solution achieves a
localization error that can be better than 1 m in most of the cases. Future interesting work should include
the study of the robustness of the light detector, and the use of SLAM techniques to automatically obtain
the lamp database.
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