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Abstract: Radio Frequency Identification (RFID) is an important technique for wireless 

sensor networks and the Internet of Things. Recently, considerable research has been 

performed in the combination of public key cryptography and RFID. In this paper, an 

efficient architecture of Elliptic Curve Cryptography (ECC) Processor for RFID tag chip is 

presented. We adopt a new inversion algorithm which requires fewer registers to store 

variables than the traditional schemes. A new method for coordinate swapping is proposed, 

which can reduce the complexity of the controller and shorten the time of iterative calculation 

effectively. A modified circular shift register architecture is presented in this paper, which is 

an effective way to reduce the area of register files. Clock gating and asynchronous counter 

are exploited to reduce the power consumption. The simulation and synthesis results show 

that the time needed for one elliptic curve scalar point multiplication over GF(2163) is  

176.7 K clock cycles and the gate area is 13.8 K with UMC 0.13 μm Complementary Metal 

Oxide Semiconductor (CMOS) technology. Moreover, the low power and low cost 

consumption make the Elliptic Curve Cryptography Processor (ECP) a prospective candidate 

for application in the RFID tag chip.  
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1. Introduction 

Radio frequency identification (RFID) is an auto identification technology. Nowadays, it is widely 

used for identification control, chain management, wireless sensor networks (WSNs) and other 

applications. With the rapid development of the Internet of Things (IOT) and WSN, the demand on 

security-related RFID systems has grown fast [1]. These RFID applications require low-power and  

low-cost implementations of security mechanisms. 

Recently, symmetric key cryptography, such as Advanced Encryption Standard (AES), has been 

suggested that it might not be preferable for RFID systems, since the number of RFID tags can be very 

large in WSNs and there is a potential risk involved in storing numerous symmetric keys. To satisfy 

security and system requirements, it is proved that a suitable public key cryptography scheme is 

necessary. Due to the fact that the traditional public key cryptography adds high overhead to the RFID 

tag chip, it has been considered to be unsuitable for a long time. For instance, passive RFID tags obtain 

energy from radio frequency signals, the power supply is limited. Therefore, these tags cannot utilize the 

energy-demanding cryptographic algorithms, such as the well-known RSA cryptography. Nevertheless, 

Elliptic Curve Cryptography (ECC), proposed by Koblitz [2], has been employed in many applications 

recently due to its numerous advantages over traditional public key cryptography schemes. The main 

advantage is that in utilizing the smaller key sizes, ECC can offer the similar security level as RSA [3]. 

For example, the security of 163-bit ECC is considered equivalent to 1024-bits RSA [4]. This feature 

makes it highly suited for implementation in RFID tag chips and being used in WSNs extensively. 

The security of ECC is based on the difficulty of elliptic curve discrete logarithm problem (ECDLP) 

and the underlying operation in the elliptic curve cryptosystems is scalar point multiplication. The point 

multiplication can be performed by finite field arithmetic computations such as field addition,  

field multiplication, field squaring, and inversion. A number of hardware implementations for elliptic 

curve cryptography have been suggested in literatures, but only a few of them are aimed for RFID.  

Most implementations focus on speed and are based on the field-programmable gate array (FPGA) 

technology [5–9]. 

There are several implementations of scalar point multiplication in the literatures targeting RFID tag 

chips [10–13]. These implementations are different from coordinate systems (e.g., affine, projective, and 

mixed), basis (e.g., polynomial basis, normal basis), curves, architectures or algorithms. Most of these 

implementation efforts are concentrated on reducing the register number of elliptic curve cryptography 

processor without considering the practical applications, such as the transaction time. Generally, the total 

transaction time of RFID is required less than 300 ms [14]. However, most papers for RFID show that 

the time consumption to finish one point multiplication is over or close to 300 ms. Some papers just 

deliver a single ECC processor without involving the interfaces for other modules in a RFID tag chip, 

such as ROM, RAM and system controller. Low power consumption is an essential requirement for 

passive RFID tag chips. However, most related papers only focus on how to reduce the area of ECC 
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processor for RFID tag chips. It has been ignored for a long time to reduce the power consumption with 

various low power techniques. 

In this paper, we present an efficient implementation of Elliptic Curve Cryptography Processor (ECP) 

targeting RFID tag chips. First of all, the architecture of the RFID tag chip with ECP is described. Later 

on, we analyze different algorithms for scalar point multiplication and inversion, which are underlying 

operations in the elliptic curve cryptosystem. A new inversion algorithm is adopted and it needs fewer 

registers to store variables than the traditional methods. Then, we design a compact and efficient modular 

arithmetic logic unit (MALU). The modified circular shift register architecture is presented in this paper. 

We optimize the primary architecture and it shows an effective way to reduce the area of register files. 

In this paper, a new method of coordinates swapping is proposed which can reduce the complexity of 

the controller and shorten the time of iterative calculation effectively. In order to achieve low power 

consumption, clock gating and asynchronous counters are extensively used in our design. Finally, we 

perform an evaluation of our design and make comparisons with previous works. 

The proposed design requires less clock cycles to finish one scalar point multiplication. The total  

time spent on scalar point multiplication is nearly 176.7 K clock cycles. The compact ECP needs only 

the area of 0.12 mm2 with UMC 0.13 μm technology and the power consumption is 20.1 μW at the clock 

frequency of 847.5 KHz. All of these characteristics make the ECP design very attractive for RFID  

tag chips. 

The rest of the paper is organized as follows: Section 2 presents the architecture of the RFID tag chip 

with our proposed ECP, and in Section 3, the ECC algorithms are analyzed and optimized. Section 4 

presents the implementation design for the different modular arithmetic logic units. In Sections 5 and 6, 

the modified register array and the structure of ECP command controller are presented. In Section 7, the 

low power strategies are presented. Result analysis and comparison are carried out in Section 8. Finally, 

we conclude this paper in Section 9. 

2. The Architecture of the RFID Tag Chip with ECP 

A typical ECP-embedded RFID tag chip can be divided into four parts [15], including Analog Front 

End (AFE), Random Number Generator (RNG), EEPROM and Digital Baseband Controller, as 

illustrated in Figure 1. AFE accomplishes the detailed functions of physical layer according to the RFID 

protocol, including carrier signal demodulation, modulation, power supply, clock generation, and reset 

signal generation. Random numbers generated from RNG will be used in elliptic curve digital signature 

algorithm (ECDSA). RNG can make sure the randomness property of each authentication so that the 

data in the authentication is unpredictable. EEPROM is used for storing private or public information, 

such as the private key, base point of elliptic curve (EC) and the EC equation parameters. Baseband 

Controller, utilizing the streamline bus structure, integrates the pre-processing circuit, RAM block, 

system controller, memory interface and ECP into one unit. 

After the AFE demodulates a frame sent by the reader, then the pre-processing circuit will check the 

validation of the frame and extract the useful information from the frame. If the frame is legitimate, the 

RAM block will store the frame data into the memory arrays through the bus. When the phase of data 

receiving is over, the system controller will read the related information through the bus and load them 

into the ECP unit for further calculation. When the initialization of EC parameters has been fulfilled, the 
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system controller will inform the ECP to start related calculation and wait for the signals from the ECP 

before entering the responding phase. 

Figure 1. The structure of Radio Frequency Identification (RFID) tag with an Elliptic Curve 

Cryptography Processor (ECP). 

A
n

alog F
ron

t-E
n

d

E
E

P
R

O
M

 

In this paper, the structure of the ECP is suitable for Elliptic Curves (ECs) in binary extension field 

of GF(2m), which means the value of m can be any legitimate value. However, for better discussion,  

m is set to 163, and the reduction polynomial is shown as follows: 

( ) 163 7 6 3F x = x + x + x + x +1 (1)

Figure 2. Structure of ECP. 
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As shown in Figure 2, we propose a structure of the ECP, composed of register array, MALU and 

ECP command controller. The ECP performs the scalar point multiplication, inversion and any other 

ECC calculations and returns the results of the calculations via the bus. In our implementation, the ECP 

loads the private key k, ECs parameter c and base point P(x,y) into register array from ROM and executes 

the scalar point multiplication or other operations. After finishing the calculation, it outputs the results 

for further use.  

3. Scalar Point Multiplication 

3.1. Arithmetic Analysis 

Scalar point multiplication, Q = k·P, is the underlying operation in the elliptic curve cryptosystems. 

P is the base point of ECs and k is a scalar used as private key. The resultant point Q will be used as a 

public key. According to ECDLP, if k is significantly large then it is very hard to retrieve k when the 

values of P and Q are given. The scalar point multiplication can be executed by point additions and point 

doublings, both of which involve many basic field arithmetic operations. In this paper, the EC is set as 

a generic Koblitz curve with the form of Equation (2), which is widely used in ECC, and the basic 

arithmetic operations are performed in the Galois field (GF). The GFs are either prime field GF(p) or 

extension binary field GF(2m). The GF(2m) design is easier for hardware implementation and is adopted 

in this paper. 

2 3 2y + xy = x +ax +b  (2)

There are two commonly used algorithms for scalar point multiplication, namely Binary Method [16] 

and Montgomery Ladder Method [17]. Binary Method is a basic scalar point multiplication method, also 

called double and add method, as shown in Algorithm 1. The scalar point multiplication iterates through 

every bit of k. In each iteration, the point doubling is performed. When the particular bit of k is one, the 

point addition is also performed. It means that the execution time of one scalar point multiplication is 

correlated to the hamming weight of the key k, and then the Simple Power Analysis (SPA) attacks 

become a threat to reveal the key value through recording power traces over time.  

Algorithm 1. Binary Method for scalar point multiplication. 
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Montgomery ladder method is one of the most commonly used algorithms to perform scalar point 

multiplication. The advantage of this method is that only the x-coordinate is used for point doubling and 

point addition in affine coordinates. Hence, the number of field operations and register variables can be 
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reduced in each iteration. However, in affine coordinates, two inversion operations are needed in each 

iteration. As a result, at least 2 m field inversions should be performed to finish one scalar point 

multiplication, as shown in Algorithm 2, which leads to huge time consumption and is conflict with 

RFID real-time requirement. Therefore, we introduce the López-Dahab projective coordinate [18].  

Algorithm 2. Montgomery Ladder Method in affine coordinates. 
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Algorithm 3. Montgomery ladder algorithm in López-Dahab coordinates. 
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In projective coordinates, X-coordinate and Z-coordinate are used in each iteration, but the inversion 

operation is avoided. Only one inversion operation is performed in the conversion from projective 

coordinates to affine coordinates, as shown in Algorithm 3. It will dramatically reduce the time cost of 

the calculation. In the affine coordinates, because the inversion operation is performed in each iteration, 

6 m-bit register variables are needed in the calculation of each iteration, which is the same number of  

m-bit registers as the method in the projective coordinates. Compared to Binary method, Montgomery 

ladder method performs point addition and point doubling in each iteration regardless of the value of ki. 

It offers intrinsic protection against SPA and Timing Analysis (TA) [19].  

In general, the scalar point multiplication can be divided into 4 basic computing elements in GF(2m), 

namely multiplication, addition, inversion and squaring. The inversion operation can be performed by 

multiplication and squaring. In this paper, we combine the adder, squarer and multiplier into one design 

unit called MALU. 

3.2. Inversion Algorithm 

In the end of Algorithm 3, Mxy(X1, Z1, X2, Z2) means the conversion from projective coordinates to 

affine coordinates. It requires only one inversion operation in Algorithm 3. As inversion is a complicated 

operation, the Fermat’s Little Theorem provides a simple method to perform inversion as follows [20]: 
21 2 2 2(1 2 ... 2 )m m

A A A
−− − + + += =  (3)

According to Equation (3), in the binary extension field of GF(2163), a total of 161 multiplications 

and 162 squarings are needed in one inversion operation. The previous Itoh-Tsujii (IT) algorithm is an 

effective scheme to reduce the number of multiplication operation in one inversion [21]. Algorithm 4 

shows the inversion operation with the IT method. It is based on the following decomposition: 
2 161 2 5 10 20 40 811 2 2 ...2 (2 (2 (1 2)(1 2 ) 1) (1 2 ) (1 2 ) (1 2 ) (1 2 ) 1) (1 2 )+ + + = × × + + + × + × + × + × + + × +  (4)

Algorithm 4. Inversion with IT method over GF(2163). 
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Recently, a new Dimitrov-Järvinen (DJ) algorithm for inversion was introduced [22]. The new DJ 

method is based on the ingenious decomposition as follows [23]: 
2 161 2 3 6 9 18 27 54 811 2 2 ...2 (1 2 2 ) (1 2 2 ) (1 2 2 ) (1 2 2 ) (1 2 )+ + + = + + × + + × + + × + + × +  (5)

From Equations (4) and (5), in the binary extension field of GF(2163), IT method and DJ method both 

require 9 multiplications and 162 squarings. In the implementation of these two methods, IT method 

needs three 163-bit register variables, but DJ method only needs two 163-bits register variables. Our 

design has implemented the DJ method in projective coordinate system with only one inversion 

operation. The inversion algorithm with DJ method is shown in Algorithm 5. 

Algorithm 5. Inversion with the Dimitrov-Järvinen (DJ) method over GF(2163). 
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4. Modular Arithmetic Logic Unit (MALU) 

The MALU shown in Figure 3 performs the GF(2m) field operations, namely the multiplication, 

addition, squaring and inversion. The inversion operation can be performed by multiplications and 

squarings. The MALU contains 5 units, an adder unit, multiplier unit, squarer unit, controller unit and 

register T. The MALU is designed to execute 4 basic commands, namely ADD, SQR, MUL and INV. 

The operands for these commands are stored in the register array. Opcode is used to select which 

operation to be performed. When the signal of malu_en is valid and the MALU gets the input operands 

through the bus of A_bus and B_bus, the MALU will make proper operation according to the value  

of Opcode. 

For addition, the field addition operation adds A and B, provided by A_bus and B_bus. It can be 

simply obtained by a bit-wise XOR operation. For squaring, the field squaring operation needs only one 

operand provided by A_bus. Addition and squaring operations can be efficiently performed in the MALU 

with a latency of one clock cycle. 

Multiplication is more complex. By using the bit-serial multiplier, one operand is provided by A_bus. 

The multiplier requires the most significant bit (MSB) bk of B_bus for the multiplicand. The signal 

B_shift is used for multiplication and is provided to Reg_B in the register array. In the field of GF(2m), 
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when the multiplication is performed, B_shift will be valid for m clock cycles, and the register  

Reg_B will shift to the left m times. The counter in the MALU is used to count the number of clock  

cycle for multiplication. It will take m clock cycles to finish one multiplication operation with the  

bit-serial multiplier. 

Figure 3. Structure of the modular arithmetic logic unit (MALU). 

 

After each command is executed, the MALU will provide a signal called malu_fin to inform  

up-level ECP for further computing. The register T serves as a medium for restoring the results of 4 basic 

commands and is responsible for exchanging data with register Reg_A through R_bus. 

4.1. Adder Unit 

For two elements, 1 2 0( , ,..., ) (2 )m
m mA a a a GF− −= ∈  and 1 2 0( , ,..., ) (2 )m

m mB b b b GF− −= ∈ , field addition in the 

binary extension field of GF(2m) can be simply obtained by a bit-wise XOR addition operation as 
1

0
( )

m i
i ii

A B a b x
−

=
+ = ⊕ . Therefore, the Adder Unit is implemented in our design using 163 XOR gates with 

one clock cycle output latency. 

4.2. Squarer Unit 

We represent A(x)∈GF(2m) in polynomial basis as follows: 
1

0
( ) , (2)

m i
i ii

A x a x a GF
−

=
= ∈  (6)

Squaring in GF(2m) can be calculated as follows: 
2 2 2 4 2

1 2 1 0( ) ( ) mod ( )m
mC x A x a x a x a x a F x−

−= = +⋅⋅⋅+ + +  (7)
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In the field of GF(2163), m=163, the field arithmetic is implemented as polynomial arithmetic modulo 

F(x). Using the equivalence in Equation (8), it can reduce the double-sized result with the reduction 

polynomial. 

163 7 6 3 1x x x x= + + +  (8)

From Equations (7) and (8), we can get the results as follows: 
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c x a x a x a x

c x a x a x
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= + +

= +

= + +

= + +

= +

= + +
= +

 

Therefore, without huge area requirements, squaring in GF(2m) can be efficiently implemented 

as a combinational logic circuit to output the result in one clock cycle. There are total 247 XOR 

gates in the squaring circuit. The operand comes from A_bus and the result can be saved in register 

T. The squarer unit is shown in Figure 4. 

Figure 4. Squaring Circuit in GF(2163). 

 

4.3. Multiplier Unit 

The multiplier unit is the biggest component in the MALU. As the low-power and low-cost 

requirements of RFID, it is necessary to optimize the design of multiplier unit. Bit-serial multipliers  

are proved to be the most efficient scheme that can reduce area consumption and maintain good 

performance [11]. It will take m clock cycles to finish one multiplication operation. We implement the 

Bit-serial multipliers as Algorithm 6, and the structure is shown in Figure 5. The operand A can be 

enabled onto the A_bus, directly from the Register Array. The individual bit of bi comes from the MSB 

of B_bus which is directly from a 163-bits cyclic shift-register Reg_B in the Register Array. The XOR 
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array is based on the reduction polynomial and is composed of 166 XOR gates. Therefore, there are total 

163 AND gates, 166 XOR gates and a 163-bits shifter-register T in the bit-serial multiplier circuit. The 

register T is also used to store the results of addition and squaring.  

Algorithm 6. Bit-serial multiplication in the field of GF(2163). 

1 1
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Input :
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Return
 

Figure 5. (a) The architecture of bit-serial multiplier Circuit in GF(2163); (b) The XOR array 

for multiplier. 

 
(a) 

 
(b) 

5. Register Array 

The architecture of the register array file is shown in Figure 6. This circular shift register architecture 

has been proved to be an effective method to reduce the area consumption of register files [10]. We 

modify the primary architecture and make it fit for our whole design. In [10], the calculation that 

converting projective coordinates to affine coordinates is not involved and the register k is set in their 

controller module. Therefore, there are only six registers needed in their register file. In our register 

file, there are seven registers including register k. Register k and register c are the constant registers. 

Reg_A, Reg_B, Reg_C, Reg_D, Reg_E are used to store temporary variables of the calculation. 

Register c has an 8-bit I/O through which data coming from external ROM or RAM can be loaded and 
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stored. These external data can be private key k, ECs parameter c, or the coordinates of base point 

P(x,y). When the ECP needs some constant parameters for calculation, register c will load those 

parameters. After the private key k is loaded into register c from the external ROM, register k will  

load the key value from register c immediately. After finishing the data preparation of part 2 in 

Algorithm 3, the register k can be shifted by one bit to the left according to the iteration calculation of 

part 3 in Algorithm 3 and provides the ki value for ECP command controller. 

Figure 6. Register array file architecture. 

 

The whole register array is a circular shift register file. Each register is independently controlled by 

ECP command controller for efficient management. Furthermore, Reg_B is a circular shift register 

which can be shifted by one bit to the left. The data in Reg_A and Reg_B will input to MALU through 

A_bus and B_bus for the calculation based on opcode. Reg_C, Reg_D, Reg_E can only be updated by 

the preceding register, as the original scheme. To reduce the power consumption, clock gating, as a low 

power strategy, is applied to the circular shift register. Compared to the primary architecture, we 

integrate the register of private key k and the register of constant c into the register array. It makes our 

ECP become more compact and efficient. 

6. ECP Command Controller 

The ECP command controller, as shown in Figure 7, executes data preparation, point addition, point 

doubling, and the Mxy according to Algorithm 3. The data preparation is carried out simply by 

transferring (x,y) into (X1, Z1, X2, Z2), from the affine coordinates to the López-Dahab projective 

coordinates. The Mxy part involves the final calculations for converting projective coordinates to affine 

coordinates. The routines implemented in the ECP command controller are collected in Figure 8. 
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Figure 7. ECP Command Controller. 

 

Figure 8. Routines implemented in the controller. 
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According to part 3 of Algorithm 3, the ECP command controller takes in the most significant  

bit (MSB) of the shift register k from register array. No matter if ki = 0 or ki = 1, a point addition and a 

point doubling are performed in one iterative calculation. Figure 8 shows that five registers are needed 

to store temporary variables in the calculation of point addition and point doubling. The base point 

coordinate x and EC parameter c will be loaded into the constant register c from the external ROM when 

they are needed. 

In the iterative calculation of the part 3 of Algorithm 3, when ki = 1, point addition and point doubling 

are performed as follows: 
2

1 2 1 2 1 1 2 1 2 1 1( ) ,A X Z Z X Z X Z Z X X xZ A← ← + ← +，  (9)
2 4 2 2 4

2 2 2 2 2 2,, XA c Z Z X Z X A← ← ← +  (10)

when ki = 1, at the beginning of point addition, X1, Z1, X2, Z2 will be stored in Reg_A, Reg_B, Reg_C 

Reg_D respectively. The result of point addition will be stored in X1, Z1. In other words, the value of 

Reg_A and Reg_B will be updated with the new value of X1 and Z1. Reg_C and Reg_D will keep the 
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previous value of X2 and Z2. As soon as the calculation of point addition is finished, the calculation of 

point doubling will begin. The inputs to this operation are X2, Z2, and EC parameter c. By the way of 

circular shift, register array will provide the right operand to MALU, and the previous value of X1, Z1 

will be kept in the circular shift. The outputs to point doubling are saved in X2, Z2. Therefore, the values 

in Reg_A, Reg_B, Reg_C and Reg_D will be updated with the new value of X1, Z1, X2, Z2, respectively, 

after the calculation of one point addition and point doubling. Four registers are utilized to store the 

value of X1, Z1, X2, Z2, and another one is used to store the value of A. 

When ki = 0, point addition and point doubling are performed as follows: 
2

1 2 1 2 2 1 2 1 2 2 2( ) ,A X Z Z X Z X Z Z X X xZ A← ← + ← +，  (11)
2 4 2 2 4

1 1 1 1 1 1,, XA c Z Z X Z X A← ← ← +  (12)

According to Equations (9) and (11), when ki changes from 1 to 0, the terms X1Z2Z1X2 and  

X1Z2 + Z1X2 will remain unchanged. When ki = 0, before the calculation of point addition and point 

doubling, X1 and Z1 will be swapped with X2 and Z2. Therefore, X1, Z1, X2, Z2 will be stored in Reg_C, 

Reg_D, Reg_A, Reg_B respectively. The outputs to point addition are saved in X2, Z2 (Reg_A, Reg_B) 

and the outputs to point doubling are saved in X1, Z1 (Reg_C, Reg_D). As the updated result value of X1, 

Z1, X2, Z2 are stored in Reg_C, Reg_D, Reg_A, Reg_B respectively, a coordinate swapping is still needed 

to swap X1, Z1 with X2, Z2, in the end of point doubling. Therefore, the final results of X1, Z1, X2, Z2 are 

stored in Reg_A, Reg_B, Reg_C, Reg_D, respectively.  

Consequently, the point addition and point doubling can be repeated in the iterative calculation in the 

part 3 of Algorithm 3 without the involvement of ki bits. However, when ki = 0, it needs extra coordinates 

swapping operations. By the way of coordinates swapping, it is easy to implement the controller and 

decrease the complexity. In addition, it can shorten the time of iterative calculation effectively. 

As Figure 8 shows, in data preparation, it needs three squaring and one field addition. Six 

multiplications, five squaring and three field additions are performed in the calculation of one point 

addition and point doubling. In the phase of converting projective coordinates to affine coordinates, 

including an inversion operation, there are total of 19 multiplications, 163 squaring and 6 field additions. 

Assuming H(k) = 163, the hamming weight of private k, point multiplication will take approximately 

163.9 K clock cycles without clock cycles of controlling. When the base point coordinate P(x, y) or EC 

parameter c is utilized as one operand, the constant register requires a read operation, and the operation 

will take 21 clock cycles. The final simulation result shows that point multiplication will take 176.7 K 

clock cycles based on our whole design scheme. 

7. Low Power Strategies 

As the energy provided for passive RFID tag comes from radio frequency signals, low power 

consumption is an essential requirement for passive RFID tag chip. The operation distance of RFID 

systems depends on the maximum of the dynamic power of tag chip. Clock-gating and asynchronous 

counters are adopted in the design of our ECC processor to minimize power consumption. 

Clock gating is a popular technique used in many synchronous circuits for reducing dynamic  

power dissipation [24]. Clock gating saves power by adding more logic to a circuit to prune the  

clock tree. Pruning the clock disables portions of the circuitry so that the flip-flops in them do not  



Sensors 2014, 14 17897 

 

 

have to switch states. The used clock gating cells come from UMC standard cell library in 0.13 μm 

CMOS technology. 

Many counters are used in the design of ECC processor. Using synchronous counter might bring in 

large power consumption, since every bit of the registers would be triggered on each of the clock edges. 

For asynchronous counter, as shown in Figure 9, only the first flip-flop would be triggered by clk.  

The subsequent flip-flops are triggered by the former flip-flops. Therefore, the unnecessary switches 

in registers can be minimized as well as reducing the dynamic power. As the ECC processor for RFID 

tag works at a low clock frequency, there is no need to use synchronous counters. Compared to 

synchronous counter, asynchronous counters with more than 4-bit flip-flops structure can reduce the 

power consumption by 50% at least [25]. 

Figure 9. Asynchronous counter. 

 

8. Result and Comparison 

8.1. Result Analysis 

The proposed design has been conducted in Verilog HDL. We synthesized our processor using a 

low leakage power library of UMC 0.13 μm (fsc0l_d_generic_core_tt1p2v25c.db). For synthesis, we 

used the EDA tool of Design Complier. Gate equivalent (GE) can provide meaningful comparisons of 

area among different technologies. The area of two inputs NAND is 5.12 μm2 in fsc0l lib. Table 1 

shows the gate count of every component of our ECP. The controller and the MALU have the area  

of 918 GE and 3591 GE respectively. The register array (9342 GE) dominates the gate area and 

occupies 67% area of the whole design. 

Table 1. Gate area of individual processor components. 

 Ecp_con MALU Reg_array 

Cell Area (μm2) 4702.7 18385.9 47831.1 

Area (Gates) 918 3591 9342 

Power consumption is one of the most important factors for passive RFID tag chip. We used EDA 

tools of VCS and Power Compiler to get the estimation of average power at the gate level. First, the 

Value Change Dump (VCD) files were generated in VCS. Then, VCD files were translated to Switching 

Activity Interchange Format (SAIF) files, which were used in Power Complier to get average power 

consumptions. The carrier frequency of ISO/IEC 14443 standard is 13.56 MHz [26], so the source clock 

frequency provided by AFE is 13.56 MHz.When the ECP is applied to the RFID tag chip, the ECP will 
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be under the control of the baseband. The work clock of ECP comes from the baseband. The source 

clock may be divided by 2n, and the divided clock will be provided for the ECP, where n = 0, 1, 2, 3, 4, 

5, 6. Figure 10 and Table 2 show the ECP’s power consumption, time and energy for one scalar point 

multiplication at different work frequencies and the power consumption can be effectively reduced by 

decreasing the operation frequency. Because of the adoption of low power strategies, such as clock 

gating and asynchronous counter, it can save about 15% power consumption at the same work clock 

frequency. In order to compare the frequency power benefits, Figure 11 shows the normalized time, 

power and energy for one scalar point multiplication under different work frequencies. 

Figure 10. Power consumption under different work frequencies. 

 

Figure 11. Normalized time, power and energy for one scalar point multiplication under 

different work frequencies. 

 

  

0

50

100

150

200

250

300

350

0.212 0.423 0.847 1.695 3.39 6.78 13.56

P
ow

er
 C

on
su

m
p

ti
on

 (
u

W
)

Frequency (MHz)

low power strateges

without low power strateges

0

0.2

0.4

0.6

0.8

1

0.212 0.423 0.847 1.695 3.39 6.78 13.56

Frequency (MHz)

power

time

energy



Sensors 2014, 14 17899 

 

 

Table 2. Power, time and energy consumptions under different work frequencies. 

Freq (KHz) 13,560 6780 3390 1695 847.5 423 212 

Power (μW) 253 129 68.6 36.7 20.1 11.2 6.27 

Time (ms) 13.1 26.1 52.2 104.5 208.5 417.7 833.5 

Energy (μJ) 3.31 3.37 3.58 3.83 4.19 4.68 5.23 

The simulation result of a certain scalar point multiplication demonstrates that the time needed  

for one calculation is 176.7 K clock cycles. Taking the ISO/IEC 14443 standard as an example [26],  

the AFE will extract a clock with the frequency of 13.56 MHz, so the total time consumption is  

nearly 13.1 ms.  

As the ISO 14443 standard specified, the frame waiting time (FWT) defines the maximum time for a 

RFID tag to start its response frame after the end of a reader frame, as shown in Figure 12. The FWT is 

calculated by the following formula: 

(256 16 / ) 2FWIFWT fc= × ×  (13)

where fc is the carrier frequency and where FWI is the frame waiting time integer. FWI is coded in the 

range from 0 to 14. The default value of FWI is 4, which means that FWT = 4.8 ms by default. However, 

when the tag needs more time to process the information it receives, such as the ECC operations, it can 

impose the reader to increase the FWI up to 6, which corresponds to FWT = 19.3 ms. In fact, the total 

transaction time of most RFID applications is required less than 300 ms. For example, a validation 

process at a gate should take less than 300 ms usually [27]. The Hong Kong mass transit smart card takes 

about 140–300 ms for one transaction [28]. The smaller FWT can reduce the customers’ waiting time 

effectively. Our design requires 13.1 ms for one ECC operation at 13.56 MHz. Therefore, it is compatible 

with the ISO 14443 standard and most RFID applications, such as mass transit smart card. 

Figure 12. Frame waiting time. 

 

Both the power consumption and the calculation time prove that our proposed ECP can meet the 

demands of real-time and resource-constraint for the applications of RFID tag chips. The layout of the 

ECP is shown in Figure 13. The largest module is the register array, followed by the MALU module, 

and the ECP command controller is the smallest module. The overall area of the ECP processor is  

349 μm × 358 μm. 
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Figure 13. Final Layout Result. 

 

8.2. Comparisons 

Table 3 shows the comparison with the related works. The ECP can work at different clock 

frequencies according to the real-time and power requirements of different RFID systems. The number 

of clock cycles for one scalar point multiplication is 176.7 K and it is much less than the design  

of [10–13].  

Table 3. Comparison with related works. 

Ref. 
Freq. 
(KHz) 

Power 
(μW) 

Cycles Time 
(ms) 

ECP Area 
(gates) 

Core Size 
(μm2) 

Energy * 

(μJ) 
Technology 

This 
Work 

13,560 253 

176.7 K 

13.1 

13.8 K 124,942 

3.3 

UMC 0.13 μm
1,690 36.7 104.5 3.8 

847.5 20.1 208.5 4.2 

423 11.2 417.7 4.7 

  [10] 

1,130 36.63 275.8 K 244.08 12.5 K 

N.A. 

8.9 

UMC 0.13 μm
590 21.55 144.8 K 245.49 14.1 K 5.3 

411 15.75 101.2 K 246.19 14.7 K 3.9 

323 12.08 78.5 K 243.17 15.4 K 2.9 

[11] 13,560 N.A. 376.9 K 31.8 15 K N.A. N.A. AMI 0.35 μm

[12] 400 7.3 219.1 K 547.87 11.7 K N.A. 3.9 UMC 0.13 μm

[13] 
847.5 83 

 
297 K 

350.4 
 

13.2 K 
219,897 

29.1 
UMC 0.18 μm

106 10.8 2801.9 30.2 
106 54.7 2801.9 N.A. 153.2 AMS 0.35 μm

* Energy consumption for one scalar point multiplication. 

The MALU in the design of [10] has an 8-bit adder and an 8-bit multiplier. Therefore, the squaring 

operation uses the same logic as the multiplication, hence, each squaring requires m clock cycles.  

In our design, there is a specialized squarer unit and the squaring operation requires only one clock 

cycle. Moreover, the design of [10] assumes that the coordinate conversion to the affine coordinate 
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system and the calculation of Y-coordinate value are performed on a reader or back-end system,  

hence, the inversion operation has not been implemented in [10]. If the inversion is performed in the 

design of [10], another 163-bit register should be added. The area of one bit register composed of  

D-type flip-flops is about 8 GE in UMC 0.13 μm technology. In fact, the coordinate conversion is 

necessary in a complete ECP of the RFID tag chip for encryption and decryption applications, such as 

ECDSA [29]. Due to the adoption of the DJ method, one 163-bit register is saved in the inversion 

operation of our design. As a result, the number of 163-bit register is the same as [10], but the coordinate 

conversion is implemented in our scheme. The design of [10] can acquire the trades-offs between the 

gate area and the number of clock cycles depending on the digit sizes, but the time cost for one scalar 

point multiplication is about 240 ms, it can hardly satisfy the transaction time requirements of some 

RFID systems.  

The literature [12] has adopted the same method and structure as [10] does. The ECs parameters  

are fixed that can be very helpful to reduce the area, but it is not compatible in different RFID systems. 

In our design, the register c of register array can load in different ECs parameters. Moreover, the EC  

in [12] is a kind of binary Edwards curve, which is a special elliptic curve. The binary Edwards curves 

have not been recommended by NIST standards [30] and are not widely used in cryptosystems. The 

Koblitz curve is widely used and is adopted in our design.  

In [11], the ECP has been implemented in an affine coordinate system, with the disadvantage  

that it requires one inversion to be computed in each iteration. As a result, it needs much more  

clock cycles than our work for one scalar point multiplication. Moreover, the ECs parameter c in [11] 

is fixed. Hence, the design of [11] cannot be used in other Koblitz curves when the parameter c is 

changed. In [11], it does not achieve a much better result than ours or other works. Finally, in [13], the 

scalar point multiplication is done in 297 K clock cycles and the area is 13.2 K GE. The gate area of 

our design is slightly larger than [13], but the number of clock cycles is much less than [13]. 

Due to the adoption of clock gating and asynchronous counter, the power consumption is smaller 

than all the other designs at the same clock frequency. With the power and the time to finish one scalar 

point multiplication, we can get the energy consumption demonstrating that our design can satisfy the 

low-power requirement of RFID tag chips. The low number of clock cycles needed for one scalar point 

multiplication makes it suitable for real-time applications of RFID tag chips. Although the gate area of 

our design is slightly larger than [12,13], our design achieves a good trade-off between the real-time 

requirement and the constrained resource. 

9. Conclusions 

A design of Elliptic Curve Cryptography processor based on Koblitz curves for the RFID tag chip 

is presented in this paper. We employ Montgomery Ladder algorithm for scalar point multiplication 

which is the underlying operation in the elliptic curve cryptography. A new DJ method is exploited for 

inversion operation and it requires fewer registers to store variables than the traditional methods.  

A preferable MALU for our ECP design is presented in detail. In the iterative calculation of point 

addition and point doubling, a new coordinates swapping method is proposed. It can reduce the 

complexity of the ECP command controller and shorten the time of iterative calculation effectively.  

The modified circular shift register file is introduced to reduce the complexity of system. Some low 
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power strategies, such as clock gating and asynchronous counter are adopted, saving about 15%  

power consumption. 

Our design was synthesized with UMC 0.13 μm CMOS technology at different frequencies. 

Compared to other reported results, our architecture acquires good trade-offs of clock cycle number, 

gate area, power consumption and energy. On the aspects of power consumption and time cost, our 

design shows better performance. According to the implementation results, the ECP area is 0.12 mm2, 

and the power consumption can be reduced to 20.1 μW at the clock frequency of 847.5 KHz, which can 

meet the demands of real-time, low-power, and resource-constraints for the applications of RFID tag 

chips and WSNs. 
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