
 

Sensors 2014, 14, 17915-17936; doi:10.3390/s141017915 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Mobile Healthcare for Automatic Driving Sleep-Onset Detection 
Using Wavelet-Based EEG and Respiration Signals 

Boon-Giin Lee 1, Boon-Leng Lee 2 and Wan-Young Chung 2,* 

1 Department of Electronic Engineering, Keimyung University, Daegu 704-701, Korea;  

E-Mail: bglee@kmu.ac.kr 
2 Department of Electronic Engineering, Pukyong National University, Busan 608-737, Korea;  

E-Mail: boringdragonlee@hotmail.com  

* Author to whom correspondence should be addressed; E-Mail: wychung@pknu.ac.kr;  

Tel.: +82-51-629-6223; Fax: +82-51-629-6210. 

External Editor: Nauman Aslam 

Received: 17 June 2014; in revised form: 17 September 2014 / Accepted: 19 September 2014 /  

Published: 26 September 2014 

 

Abstract: Driving drowsiness is a major cause of traffic accidents worldwide and has drawn 

the attention of researchers in recent decades. This paper presents an application for  

in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset  

in real time. The proposed application classifies the driving mental fatigue condition  

by analyzing the electroencephalogram (EEG) and respiration signals of a driver in the time 

and frequency domains. Our concept is heavily reliant on mobile technology, particularly 

remote physiological monitoring using Bluetooth. Respiratory events are gathered,  

and eight-channel EEG readings are captured from the frontal, central, and parietal  

(Fpz-Cz, Pz-Oz) regions. EEGs are preprocessed with a Butterworth bandpass filter, and 

features are subsequently extracted from the filtered EEG signals by employing the  

wavelet-packet-transform (WPT) method to categorize the signals into four frequency bands: 

α, β, θ, and δ. A mutual information (MI) technique selects the most descriptive features for 

further classification. The reduction in the number of prominent features improves the  

sleep-onset classification speed in the support vector machine (SVM) and results in a high 

sleep-onset recognition rate. Test results reveal that the combined use of the EEG and 

respiration signals results in 98.6% recognition accuracy. Our proposed application explores 

the possibility of processing long-term multi-channel signals. 
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1. Introduction 

The rising number of traffic accidents in recent years has become a major issue of concern to society, 

as well as governments. In particular, road accidents account for 20%–30% of traffic accidents 

worldwide [1,2]. Fatigue or drowsiness, an intermediate state between wakefulness and sleep that has 

been defined as a state of impaired alertness associated with a desire or inclination to sleep [3], is a major 

factor that affects drivers, resulting in slow reaction times, reduced vigilance, and deficits in information 

processing that cause an irregular driving aptitude. Developing and establishing a system that can 

accurately detect driving fatigue symptoms can prevent disastrous traffic events. Therefore, extensive 

studies on methods to prevent traffic accidents have been carried out by automobile manufacturers, as 

well as research institutes [4,5]. In fact, automobile manufacturers, such as Daimler [6] and Toyota [7], 

have employed such accident prevention systems. Fatigue detection can be carried out by three 

methodologies: (1) physiological state monitoring; (2) driving behavior and performance monitoring; or 

(3) a combination of both. 

Given the tremendous increase in the number of mobile device users, mobile-device-based  

mental fatigue recognition applications could be a new trend in the future. According to [8], Korea  

has been leading countries worldwide in both overall mobile ownership (99%) and smartphone 

ownership (67%). Of this 67% of smartphone users, 81% of users are most likely to use their smartphone 

for applications, and the percentage of users is expected to further increase in the coming years.  

Our mobile-device-based application aims to encourage more drivers to utilize such systems for their  

own safety. 

For physiological state monitoring, Wu et al. [9] combined EEG power spectrum estimation,  

principal component analysis (PCA), and the fuzzy neural network model to estimate drivers’ drowsiness 

level in a driving simulator. This EEG electrode cap uses signals from 34 channels and ensures 

satisfactory fatigue measurement accuracy, but it does not perform well in real-time mobile applications. 

Jung et al. [10] employed a similar technique but with artificial neural networks for alertness 

classification. Meanwhile, Estrada et al. [11] implemented a single algorithm to compute the relative 

EEG spectral powers corresponding to the intersection point between the lower and alpha frequencies at 

which the performance of the algorithm was unsatisfactory. Murata et al. [12] demonstrated that the 

EEG-α/β, heart rate variability (RRV3), and tracking error tended to increase with the level of drowsiness 

by calculating the probability using a Bayesian statistical inference algorithm. As an alternative to the 

EEG-based fatigue estimation methods, other researchers have adopted the use of other physiological 

signals to monitor the level of driver drowsiness. Hemi et al. [13] employed two distinct methods  

based on eye movement monitoring (with an infrared sensor) and bio-signal processing (with a 

respiration and HR sensor) to ensure driver safety. However, these studies did not demonstrate the 

effectiveness of sensors for accurately capturing driver drowsiness related to biomedical signals. 

Krishnamoorthy et al. [14] developed a drowsiness monitoring system to detect the HR and used the 
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variation in HR to predict drowsiness using a photoplethysmograph (PPG) sensor. Wei et al. [15] 

proposed an information-fusion-based drowsiness detection method based on the driver’s eye activity, 

head inclination, sagging posture, heart beat rate, skin electric potential, EEG activities, gripping force 

on the steering wheel, and lane-keeping characteristics. Among the numerous physiological indicators 

available to estimate the driver’s vigilance level, the EEG signal has been proved to be one of the most 

predictive and reliable [16] indicator compared to others. 

A power spectral analysis of a biomedical signal is one of the most commonly-used approaches to 

analyze an individual’s alertness level. Tanaka et al. [17] extracted the frequency-domain features from 

the R-R interval or HR variability and observed that the time-dependent changes in low frequency (LF), 

high frequency (HF), and LF/HF correspond to the driver’s alertness level. Li et al. [18] suggested an 

HRV frequency analysis method, based on fast Fourier transform (FFT) features, where the HRVs are 

extracted from the PPG signals. Similar research conducted by Kheder et al. [19] proposed an extraction 

of the HRV analysis features from the wavelet package coefficient with an adaptive threshold method. 

Takahashi et al. [20] estimated the sleepiness level by investigating the physiological response using a 

multiple linear regression model developed from the indices of ECG (electrocardiogram) and respiration. 

Concurrently, Hu et al. [21] removed the EEG artifact noises by exploiting an independent component 

analysis with a reference (ICA-R) before extracting the power spectrum features from a 75-channel EEG. 

Among the EEG-spectrum-related features, 40 features were chosen by SVM-recursive feature 

elimination to improve the classification accuracy. On the other hand, Zhao et al. [22] demonstrated that 

the wavelet packet energy (WPE) of the EEG signals is strongly correlated with the fatigue level by 

jointly applying a kernel PCA (KPCA) and an SVM to derive the mental fatigue state. 

As is well known, there are currently no reliable and impressive mobile-device-based driver fatigue 

indicators proposed for monitoring the long-term driver vigilance level. Most of the applications are 

executed in desktop PCs (and lack mobility) or embedded hardware systems [10,11,13–20]. The 

restriction of the processing speed and constraints on memory size in embedded hardware practically 

reduce the fatigue estimation accuracy. Therefore, we propose a mobile-device-based application that 

takes advantage of both of the approaches of fatigue detection systems while minimizing the constraints. 

We also propose a wavelet packet transform (WPT) to extract each EEG frequency band from the 

wavelet coefficient. In this study, the analysis of the respiration signals (regularity) is carried out along 

with an EEG (time and frequency domains) analysis to achieve a high correlation to the driver’s vigilance 

level. The proposed application consists of three processing phases: preprocessing (Gaussian noise 

removal), features selection, and classification. Selection of the most descriptive features by a mutual 

information (MI) approach and investigation of the optimized number of features to increase the 

classification rate are the most salient objectives of this research. 

2. System Design 

2.1. System Architecture 

Figure 1 illustrates the conceptual design of the proposed mobile-device-based driver fatigue 

indicator application. It consists of two fundamental parts: a sensing part (sensor module) and an analysis 

part (mobile device). The sensing part senses raw biomedical signals from a eight-channel EEG sensor 
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(recorded as two referential derivation EEG activity), as well as a respiration sensor. The captured signals 

are transmitted from the sensors to the mobile device via Bluetooth. The mobile device filters the 

received raw signals with a Butterworth bandpass filter ranges from 0.1 Hz to 40 Hz. Once the signals 

are filtered, the most descriptive features can be extracted to serve as input features to a classifier to 

indicate the driver fatigue level. The features are selected by adopting an MI approach. The resulting 

fatigue pattern is displayed to the driver. If the fatigue level is critical, an alarm will be triggered by the 

mobile device, instantly warning the driver. The warning can be provided in various ways, such as an 

incoming fake call, vibrations, messages, or through external warning devices depending on the driver’s 

preference. The key benefits of our proposed architecture is that no extra display devices or processing 

units are required to carry out the analysis. 

Figure 1. Block diagram of the proposed system architecture for mobile-device-based 

fatigue indicator application. The system consists of two major parts: (a) a sensor module 

built using an Atmega microprocessor and a Bluetooth module connected to an eight-channel 

EEG sensor and a respiration sensor and (b) a mobile device, in which most of the signal 

processing takes place. The signals are preprocessed, and features are extracted from clean 

signals that serve as the input to a classifier. The computed vigilance index is displayed on 

the mobile screen, and an alarm is triggered if the vigilance index reaches a predefined 

threshold value. Raw biomedical signals are transmitted via Bluetooth. 

 

2.2. EEG and Respiration Signals 

A electroencephalogram (EEG) is brainwave activity that is generally categorized into four typical 

frequency bands, which are delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–20 Hz). In the 

past decades, many studies have been conducted to study the correlation of EEGs with the sleeping 

pattern [2]. Increased delta activity is observed during the sleep state. On the other hand, the theta wave 

is a useful indicator to demonstrate an early stage of drowsiness. In addition, for a driver who is sleepy 

enough to fall asleep, alpha activity increases slowly, but it decreases with concentration or when the 

driver is in a relaxed wakefulness state. Beta activity decreases during the drowsiness state but increases 

with a high awareness level of the driver. Therefore, alpha activity is proven to be the most sensitive 

measure to predict the presence of fatigue, followed by theta activity and delta activity. 
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Respiration is defined as the transport of oxygen from the outside air to the cells within tissues, and 

the transport of carbon dioxide occurs in the opposite direction. According to [23], respiratory events 

may occur throughout non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. This 

study shows that disordered breathing episodes during NREM sleep are associated with an increased 

risk of daytime sleepiness. In this study, we aim to determine the effect of respiratory events during 

driving activities in daytime and night time to monitor the level of drowsiness. Indeed, the foremost 

objective of this research is to integrate the features extracted from EEGs and respiratory events to 

accurately indicate the driver fatigue level. Table 1 lists the specifications of the sensor module and 

mobile device. 

Table 1. Specifications of the sensor module that consists of an EEG sensor, a respiratory 

sensor, a microprocessor, and a Bluetooth module. 

Module Components Specifications 

EEG sensor [24] 
sensors 14 saline sensors 
sampling rate 100 Hz 

respiration sensor [25] sampling rate 1 Hz 

microprocessor [26] 
ADC 10 bit 
size 7.75 × 0.65 

Bluetooth module [27] 
maximum transmission range 106 m 

average power consumption 75 mW, at 3.3 V 

power battery 4.5 V 

Google Nexus 5 [28] 

screen 4.95” 1920 × 1080 display 
dimension 69.17 × 137.84 × 8.59 mm 
operating system Android 4.4.2 

wireless 
Dual-band Wi-Fi (2.4 G/5 G) 
Bluetooth 4.0 

The driver fatigue indicator application is developed using a smartphone device that possesses the 

capabilities of high-speed data transmission (e.g., 3G, 4G LTE), Bluetooth, and Wi-Fi wireless 

communication and a wide display screen. In this study, Google Nexus 5 is chosen after a detailed review 

of several smartphones because of its low cost and high-speed operation. 

3. Materials and Methods  

3.1. Principle of Wavelet Transform 

EEGs can be decomposed into four frequency bands with wavelet-packet-transform (WPT) [18] 

where the time-frequency representation of the EEGs can be obtained, providing better insight in the 

frequency distribution of EEGs over time. Based on the experiment results on [17], WPT is able to 

analyze the instantaneous changes in different frequency bands. In overview, WPT demonstrated higher 

resolution of time-dependent changes in analyzing the signal frequencies than that of DWT and CWT. 

The wavelet packet decomposition at the -th level of EEG signals gives 2  sets of sub-band coefficients 

of length , ( )| = 1,2, … , . These wavelet coefficient vectors reflect the change in the signal 

with time in the frequency range of:  
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( − 1)2 , 2  (1)

where  is the sampling frequency, which is 100 Hz in this study and = 0,1, … , 2 . Figure 2 

illustrates the analysis of the original signals with a WPT of levels 1, 2, 3, 4, 5, and 6 used in this study. 

Meanwhile, other wavelet functions, such as Daubechies D1 (db1) and D4 (db4) [18] are taken into 

consideration in this study, but the analysis showed that Haar wavelet transform has lower complexity 

in extracting the frequency band as compared to db1 and db4 to be developed in limited processing 

capability mobile device. Thus, Haar-based WPT is applied in this study. 

Figure 2. Wavelet packet transform (WPT) decomposed from one to six levels. The original 
signal is transformed into each frequency component ,  by detail coefficients (solid lines) 

and scaling coefficients (dotted lines). The frequency indexes range from 0 to 2 − 1 for 

zero to the Nyquist frequency (50 Hz (Equation (4)) for WPT in this study) with an original 

sampling frequency of 100 Hz. 

 

On the basis of the frequency bands extracted from the wavelet coefficients, the frequency bands 

alpha (α), beta (β), theta (θ), and delta (δ) are defined by acquiring the mean of the corresponding 

frequency bands in level 6, as summarized in Table 2. Each wavelet coefficient in level 6 corresponds 

to a range of 0.78125 Hz. 

Table 2. Frequency bands extracted from the wavelet coefficients and grouped into 

corresponding frequency bands. The respective frequency bands are derived by finding the 

mean of the respective wavelet coefficient vector. 

Wavelet Coefficients Frequency Range Frequency Bands 

W6,1–W6,5 0 Hz–4 Hz Delta 
W6,6–W6,10 4 Hz–8 Hz Theta 
W6,11–W6,17 8 Hz–13 Hz Alpha 
W6,18–W6,45 13 Hz–20 Hz Beta 
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As the wavelet , ( ) has an orthogonal basis at	 ( ), the -th level power spectrum energy [2] of 

the wavelet coefficients for each frequency band is calculated by: = ( )( )  (2)

Subsequently, the total power spectrum energy of the frequency bands can be computed by: =  (3)

The relative power spectrum energy for the respective frequency bands for resolution level 6, denoted 

by	 , is calculated by: =  (4)

which quantifies the probability distribution of the spectral energy [29]. On the basis of the wavelet 

packet decomposition described above, multi-dimensional features can be extracted from the two 

referential derivations EEG activity. 

3.2. Definition of Mutual Information 

MI is a basic concept in information theory that is a good indicator of the relevance between variables 

and has been used as a measure in several feature selection algorithms [30]. The feature selection 

algorithm greatly depends on the accuracy of MI [31]. Specifically, in this study, given an input feature 

 extracted from EEGs or respiration signals and the output class  (sleepiness level), the MI between 

 and  can be defined as follows: ( ; ) = ( ) + ( ) − ( , ) = ( ) − ( | ) (5)

where ( )  and ( )  are the marginal entropy of the input feature and the sleepiness level, 

respectively, and they measure the associated uncertainty. ( , )  and ( | )  are the joint and 

conditional entropies of  and . ( ; ) measures how much the uncertainty of  is reduced if  has 

been observed. If  and  are independent, their MI value is zero, e.g.,  does not reduce the uncertainty 

of	 . Because the sleepiness level is a discrete variable, the entropy ( ) is defined as:  ( ) = − ( ) log ( ) (6)

where 	 ( )  represents the marginal probability distribution of the feature . Maximizing the MI 

between different features and the desired target can achieve the lowest probability of error [32,33]. 

3.3. Support Vector Machine Classifier 

A support vector machine (SVM), developed by Vapnik, is known to be a powerful tool for  

generating pattern recognition systems with high generalization ability [2]. The basic concept of an  

SVM involves the adoption of a nonlinear kernel function to transform input features into a  

high-dimensional feature space and the construction of optimal separating hyperplanes that maximize 

the margin between the two nearest data points belonging to two separate classes [34]. Nevertheless, the 

selection of a kernel is critical to ensure that it is associated with the inner product of some nonlinear 
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mapping [35]. To date, typical kernel choices used in BCI research were the Gaussian, polynomial, or 

radial basis functions. ( , ) = exp ‖ − ‖2  (7)

For SVMs with RBF kernels, the value of the width or kernel parameter  can be optimally selected 

by using -fold cross-validation or an independent test set. Many experiments [36–39] have suggested 

that the number of support vectors (SVs) will vastly increase if the predefined  is too small. Likewise, 

when  is too large or small, the generalization performance of SVMs will immensely decrease [39]. 

The fraction of SVs provided an upper bound on the leave-one-out error estimate because the resulting 

decision function changed only when SVs were omitted. Thus, a low fraction of SVs would be 

appropriate for the parameter selection criterion [40]. 

3.4. Feature Extraction and Feature Selection 

Two differential derivations EEG activity (Fpz-Cz, denoted as EEG1, and Pz-Oz, denoted as EEG2) 

and a respiration signal are captured in real time, as illustrated in Figure 3a. The raw EEG signals are 

filtered with a Butterworth bandpass filter with a passband of 0.1–40 Hz [see Figure 3b]. 

Figure 3. (a) Raw EEG1 (Fpz-Cz), EEG2 (Pz-Oz), and respiration signals; (b) Filtered 

EEG1 and EEG2 signals, as well as the respiration signal. 

 
(a) (b) 
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Table 3. Extracted features from filtered EEG signals and respiration signals that can be 

categorized by (a) statistical analysis; (b) interval analysis; and (c) frequency analysis. 

Analysis Features Description 

statistical 

MEEG Mean value: ̅ = ∑  

SDEG Standard Deviation: = ∑ ( − ̅)  

SKEEG Skewness: = ∑ ( ̅)
 

KREEG Kurtosis: = ∑ ( ̅)
 

interval 

ZCEEG Zero-Crossing: number of zero-crossings in a signal 

RGPNG 
Regularity of Respiration: computing the second peak in the 
autocorrelation function from the respiration signal [41] 

frequency 

ABSDELTA Absolute PSD for Delta Band 

ABSTHETA Absolute PSD for Theta Band 

ABSBETA Absolute PSD for Beta Band 

ABSALPHA Absolute PSD for Alpha Band 

RELDELTA Relative PSD for Delta Band 

RELTHETA Relative PSD for Theta Band 

RELBETA Relative PSD for Beta Band 

RELALPHA Relative PSD for Alpha Band 

ABRATIO ABSALPHA/ABSBETA 

TBRATIO ABSTHETA/ABSBETA 

TABRATIO (ABSTHETA + ABSALPHA)/ABSBETA 

TAABRATIO (ABSTHETA + ABSALPHA)/(ABSALPHA + ABSBETA) 

CGFDELTA = ∑ ( ) ×∑ ( )  
CGFTHETA 

CGFALPHA 

CGFBETA 

FVDELTA 

= ∑ ( ) × − (∑ ( )× )∑ ( )∑ ( )  
FVTHETA 

FVALPHA 

FVBETA 

An EEG signal can be characterized by the distribution of the amplitude and time. On the basis of 

each segment of the EEG signal (128 points per segment), feature parameters can be calculated  

by statistical analysis. The parameters include the mean, standard deviation, skewness, and kurtosis [19]. 
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On the other hand, the distribution of EEGs and respiration signals in zero and other level crossing 

intervals can be a very useful alternative feature for drowsiness studies. Parameters in interval analysis 

are derived from both EEG signals, whereas the regularity of respiration [42] is computed from the 

respiration signal. 

In addition, the EEG1 and EEG2 signals can be converted to the time-frequency domain by adopting 

a WPT. By referring to the wavelet coefficients listed in Table 2, four distinct frequency bands are 

derived. The absolute EEG power spectrum for each frequency band is computed by taking the mean 

absolute value of the corresponding wavelet coefficients. On the basis of Equations (2) and (3),  

the relative power spectra are calculated as well. By considering the trade-off between the mobile 

device’s computational speed and the fatigue detection accuracy rate, Hamming-windowed  

sub-segments are not adopted in the current study but will be considered for implementation in future 

research. The performance of the ratios of α, β, θ, and δ activities exhibit a few interesting features to be 

observed with the changes in the drowsiness level. Thus, four parameters are considered for both 

referential derivations EEGs [23], which are (α/β), (θ/β), [(θ + α)/β], and [(θ + α)/(α + β)]. Moreover, 

two additional parameters, namely the center of gravity frequency and frequency variability [43] are 

obtained on the basis of multiplication of the respective power spectral density frequency values for each 

frequency band. Table 3 summarizes all of the features extracted and their short descriptions.  

As a result, a total of 51 quantitative features (EEG: 25 types of features × two referential derivation 

EEG activity and respiration: 1 type of feature) were extracted. The EEG and respiration data were 

labeled with six levels of fatigue denoted as “awake”, “slightly drowsy”, “moderately drowsy”, 

“extremely drowsy”, “sleep”, and “deep sleep”. However, in this mobile-device-based application, the 

stages “extremely drowsy,” “sleep,” and “deep sleep” were combined into the same stage because no 

obvious profiles were found in these stages. Subsequently, the most prominent features were selected 

with the MI method by using Equations (8) and (10). A comparison was made between the selection 

solely by MI and the selection by JMI for the 51 features  and six-level class	 . The output revealed 

no significant difference between the two types of MI values. 

3.5. Experiments and Data Acquisition Methodology 

Twenty mentally healthy volunteers with no sleeping disorders, no sleep apnea, and no other related 

illnesses or diseases were recruited for training-data acquisition. Male and female drivers with a mean 

age of 32 ± 6 years, and from various countries, were included in the study to help understand the 

variation in features in a better manner. In this study, we only considered healthy volunteers, as drivers 

with illnesses might contaminate the results. Before the start of the experiment, every volunteer filled 

out a survey form. Survey questions were related to sleeping hours, time since last awoken, hunger state, 

mental status, health condition, driving experiences, driving skills, etc., that could directly affect their 

driving performance. Each volunteer was allowed four hours to become familiar with driving simulation 

before real experiments were carried out. The actual data gathering experiments were taken continuously 

for duration of eight hours for two days (daytime, from 11 a.m. to 7 p.m., and night time, from 11 p.m. 

to 7 a.m.). Thus, for each volunteer, two training samples with driving simulation were acquired, as 

illustrated in [44]. Video data during the driving session along with real-time EEG activities and 

respiration signals are recorded to be served as the arousal assessment. The 10–20 international standard 
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of electrode placement was applied [3]. The volunteers’ awareness level was marked by expert 

physicians from our university hospital, as illustrated in previous study [19]. During the alert driving, 

volunteers are managed to perform driving operation smoothly with many road stimuli, no accidents are 

to be seen. The volunteers are marked as “slightly drowsy” when volunteers driving speed, as well as 

the reaction to avoid incoming vehicles in driving simulation are reduced within 5 s interval. The reviews 

from the physicians’ observation indicated volunteers at “extremely drowsy” stage are very unlikely to 

focus on continuous driving and accidents tend to happened at average of 10 s interval. For the further 

stages, volunteers are totally lost control with the vehicle operations and some volunteers’ vehicles are 

totally stationary. According to [45], the sleep stages are classified into stage W (wakefulness), stage N1 

(NREM 1), stage N2 (NREM 2), stage N3 (NREM 3), and stage R (REM). Among the sleepiness indexes 

defined in our study, “awake”, “slightly drowsy”, and “moderately drowsy” are three stages derived 

from stage W in [45], while stage above “extremely drowsy” can be classified as stage N1 in [45]. 

4. Results and Discussion 

First, the sixteen most descriptive features obtained by MI are listed in Table 4 in ascending order 

with the highest MI value on the top of the list. The absolute delta feature in EEG2 is the best primitive 

feature with the highest MI value, followed by the “TABRATIO” and “TAABRATIO” features. The 

table also indicates that the frequency-domain analysis of EEG2 comprises the 68.8% majority compared 

to the EEG1 and respiration signals. Among the four frequency bands, delta activity contributed to 

43.8%, indicating its significant fitness as a descriptive feature for fatigue estimation. In addition, the 

frequency variability also shows promise as a useful fatigue indication feature (31.3%). However, the 

frequency-band ratio features in EEG2 are apparently better than those in EEG1. The regularity of 

respiration is another favorable feature to be adopted. In terms of EEG1, it is unlikely to provide a 

satisfactory feature in comparison to EEG2. The standard deviation of EEG1 determined by statistical 

analysis reveals the most significant features that can be fed as input features into the SVM. 

Table 4. Sixteen most descriptive features obtained by MI. 

No. Features No. Features 

1 ABSDELTA EEG2 9 ABSTHETA EEG2 
2 TAABRATIO EEG2 10 CGFDELTA EEG2 
3 TABRATIO EEG2 11 FVDELTA EEG1 
4 FVBETA EEG2 12 STDEEG1 
5 FVBETA EEG1 13 ABSDELTA EEG1 
6 TBRATIO EEG2 14 RELDELTA EEG2 
7 FVDELTA EEG2 15 FVALPHA EEG2 
8 RGPNG 16 TAABRATIO EEG1 
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Figure 4. Graphs illustrating a 200-s time segment for volunteer one with 10 s of each of his 16 most descriptive features: (a) ABSDELTA EEG2; 

(b) TAABRATIO EEG2; (c) TABRATIO EEG2; (d) FVBETA EEG2; (e) FVBETA EEG1; (f) TBRATIO EEG2; (g) FVDELTA EEG2;  

(h) RGPNG; (i) ABSTHETA EEG2; (j) CGFDELTA EEG2; (k) FVDELTA EEG1; (l) STDEEG1; (m) ABSDELTA EEG1; (n) RELDELTA EEG2;  

(o) FVALPHA EEG2; and (p) TAABRATIO EEG1. 
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Figure 4a–p displays the 16 most descriptive features for the 13-min period of volunteer 1 (subject 1, 

male, age 24 years old, Malaysian). The levels indicated are “awake”, “slightly drowsy”, “moderately 

drowsy”, “extreme drowsy”, “sleep”, and “deep sleep,” denoted as 6, 5, 4, 3, 2, and 1, respectively. The 

fatigue level was observed and specified by expert physicians during the entire monotonous driving 

experiments. The x-axis indicates consecutive time intervals of 10 s for 200 s (13 min) during 

monotonous driving. Accordingly, the transition starts at approximately the 3rd time point from awake 

to drowsy state. The first feature, “ABSDELTA EEG2” tends to decrease when the awareness level 

begins to slope downwards. In comparison with the previous feature, “TAABRATIO EEG2” reveals a 

similar increasing trend as the driver became fatigued. “TABRATIO EEG2” also exhibits an increasing 

slope because of the decreasing trend in beta activity. In contrast, “FVBETA” for both EEG activities 

exhibits an intermittent increasing pattern as opposed to the “TABRATIO EEG2” feature. Moreover, 

the ratio between the fast wave and the slow wave (“TABRATIO EEG2”) exhibits a progressively 

increasing trend as the driver vigilance level declines. Next, the EEG2 delta frequency of variability 

(“FVDELTA EEG2”) exhibits an increasing trend at each transition phase but slightly increases 

throughout the same phase. Similarly, the regularity of respiration (“RGPNG”) follows the same pattern. 

The sharp decreases in “FVDELTA EEG2” and “RGPNG” can be indicated as useful indicators of 

fatigue levels, similar to “ABSTHETA EEG2”. In the case of “CGFDELTA EEG2,” the activity exhibits 

an increasing slope as the driver starts to become fatigued. In addition, “FVDELTA EEG1” exhibits a 

sharp decrease during the increased fatigue state transition. Surprisingly, the standard deviation of EEG1 

(STDEEG1) demonstrates an unexpected increase as the driver vigilance level decreases. As for the 

absolute EEG1 power spectra (“ABSDELTA EEG1”) and relative EEG2 power spectra (“RELDELTA 

EEG2”) of delta waves, the activities indicate a significant downward sloping trend, and “FVALPHA 

EEG2” also exhibits a similar decreasing pattern at the beginning when the driver fatigue level is 

degraded but increases again after the fatigue level increases. The final feature, “TAABRATIO EEG1”, 

exhibits an opposite trend to that of “FVALPHA EEG2”, in which this activity increases when the driver 

fatigue level increases and decreases again after the transition state. However, this type of tracking could 

be a good indicator for predicting the beginning stage of the transition state when the fatigue level is 

degraded (sleepiness index is increased). 

The variation in features for volunteers in fatigue detection with different nationalities is further 

investigated. Figure 5 illustrates the arousal stage for volunteers from volunteer 1 (Malaysia), volunteer 5, 

(Indonesia), volunteer 6 (China), and volunteer 10 (Korea), respectively for the specific consecutive time 

intervals of 10 s for 200 s (13 min), as described above. As seen, each volunteer exhibits similar behavior 

at a specific time period where their arousal stages are in decreasing trend. However, at approximately 

the 20 s-period, volunteer 5 and volunteer 10 arousal stages are increased even though their initial stage 

is much lower. This was due to volunteers experienced shock (sudden awake) by the siren from the 

incoming vehicle in driving simulation. The radical change patterns are further evaluated by examining 

their respective features variation trends. It is very interesting to observe that most volunteers had a 

significant reduction in arousal stage going directly into stage 4, skipping the stage 5, after long hours 

of continuous driving. Indeed, similar patterns are observed in the rest of the volunteers’ performance 

charts. It is very well-noticed that the driver alertness level, after long hours of driving without rest for 

consecutive periods, can drop dramatically. 
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Figure 5. Arousal stage for four different volunteers for the top six most descriptive derived from MI (shown in Table 4) with (a) arousal  

stage with 1 s interval; (b) ABSDELTA EEG2; (c) TAABRATIO EEG2; (d) TABRATIO EEG2; (e) FVBETA EEG2; (f) FVBETA EEG1; and  

(g) TBRATIO EEG2 with 10 s interval. 
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Next, the volunteers top six feature variations are observed, as depicted in Figure 5b–g. Based on  

the arousal stage in Figure 5a for each volunteer, volunteer 1 and volunteer 6’s similar patterns of 

exhibited arousal dropped, while volunteer 5 and volunteer 10 demonstrated similarity in arousal, 

decreasing for a 200 s time interval. Firstly, based on the previous description of volunteer 1 in how 

features vary in accordance to the arousal stage, volunteer 5 possessed very high significant patterns, as 

does volunteer 1, especially in “ABSDELTA EEG2”, “TAABRATIO EEG2”, “TABRATIO EEG2”, 

“FVBETA EEG2”, and “TBRATIO EEG2”. The fifth feature “FVBETA EEG1” demonstrated an 

identical trend in the first half portion of feature variation, but was slightly different near the end portion. 

The volunteer 1 “FVBETA EEG1” showed rapid increased at the 17th time period while volunteer 6 

showed low variations when both volunteers are in stage 3 (extremely drowsy state). In fact, very low 

variation in “FVBETA EEG1” in volunteer 6 depicted an ideal result, demonstrating that arousal stage 

dropped. On the other hand, “ABSDELTA EEG2” of volunteer 5 and volunteer 10 presented a high 

correlation with the increase of arousal, and “ABSDELTA EEG2” tends to increase as well. It matches 

the profiles, similar in volunteers 1 and 6, discussed above. The same characteristic is also accurately 

demonstrated in features “TAABRATIO EEG2”, “TABRATIO EEG2”, “FVBETA EEG1”, and 

“TBRATIO EEG2”. In the case of the fourth feature, “FVBETA EEG2”, there is a rapid increasing trend 

in 13th period for volunteer 5, but not observed in volunteer 10, which is believed to be the ideal match 

to the arousal stage change. Convincingly, even though the volunteers had different nationalities; their 

EEG activity is highly correlated and illustrates the relationship between arousal stages and their 

respective features. 

Overall, it is observed that the features extracted from EEG2 exhibit better results in comparison  

with the EEG1 extracted features. In the case of the frequency-band-ratio computation, the mutual 

integration of alpha activity and theta activity produces a more promising effect than alpha activity or 

theta activity alone. From the graphs, it is observed that beta activity, indeed, exhibits a significant drop 

when the driver fatigue level increases. Additionally, beta activity exhibits a sudden drop when the 

driver’ vigilance level is considered to be decreased during monotonous driving. Thus, all ratios 

involving beta activity exhibit increasing sloping trends as the driver becomes fatigued. For both EEGs, 

the delta wave in the absolute power spectra, the relative power spectra, the center of gravity frequency, 

or frequency variation, demonstrate significant positive correlations with the driver awareness level  

(the feature values decrease). Therefore, the delta wave alone can be a useful indicator for driver fatigue 

measurement. 

These selected features served as input parameters for the SVM classifier. The use of the SVM 

classifier is intended to classify the current state of the driver into six-level categories in a real-time 

situation. To ensure the accuracy of the SVM estimation rate, the current study also investigated  

the influence of the optimum feature size used for training and testing. The total training data  

(20 volunteers × 2 samples each × 8 h each = 320 h of samples) collected were divided into training sets 

and testing sets. The training sets consisted of 70% from individual samples (a total of 224 h), whereas the 

testing sets were generated from the remaining 30% of individual samples (a total of 96 h).  

The resulting graph is depicted in Figure 6. As stated, the accuracy of the SVM increases at an  

average rate of 2.5% with the addition of features. The increase in accuracy halts when more than twelve 

features are employed to train and test the SVM classifier. Therefore, we concluded that twelve  

features would be the optimum number of the most descriptive features to be used in the SVM classifier 
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when the accuracy rate reached up to 98.6%. By further improving the reliability of our proposed  

mobile application, the sensitivity and specificity [18] were derived as well. The SVM classification 

performance for estimating six-level sleepiness onset has 98.6% accuracy, 99.1% sensitivity, and  

99.5% specificity. 

Figure 6. Accuracy rate of the SVM classifier corresponding to the number of features used 

to predict the driver awareness level. The choice and number of features adopted are based 

on the rank of the most descriptive features in Table 4 in descending order.  

 

Figure 7. Accuracy rate of the SVM classifier corresponding to the twelve features 

(optimum) used to predict the driver awareness level for each volunteer.  
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However, there is a constraint needed to be taken into consideration, which is the computational 

complexity of SVM classifier to indicate the driver arousal state in mobile-device. Indeed, the number 

of support vectors obtained from the SVM trained model is a critical condition. The least support  

vectors required, the lower computation required by SVM classifier. In fact, the total numbers of support 

vector obtained are 2,689,021 from trained model, which is not an optimal solution to be deployed in 

mobile-device. Thus, extracting 30% of most relevant support vectors (806,706) to be developed in 

mobile-device provided exactly the same accuracy rate in driver arousal stage prediction. The accuracy 

rate results for arousal stages prediction in mobile-device by applying SVM classifier in each volunteer 

are shown in Figure 7. As depicted in the figure, accuracy rate by volunteer 5 is the lowest, at 

approximately 97.1%, while volunteer 2 had the highest accuracy rate at 99.8%. The accuracy rate to 

predict the arousal level for twenty volunteers averages at 98.5% ± 1.4%. In fact, no extra independent 

processing unit and display modules are required, as both modules take place in the mobile device. Our 

proposed method allowed the system to transfer from one vehicle to another, portably, without causing 

any inconvenience to the user. 

An SVM model with parameters was obtained once the RBF-based kernel SVM training  

was completed. The mobile device utilized such a model to estimate the driver fatigue level. Figure 8 

shows four different sleepiness levels encountered on the basis of the twelve most descriptive extracted 

features from the EEG1, EEG2, and respiration signals. The uppermost and middle parts of the graph 

correspond to the raw EEG signals (at a sampling rate of 100 Hz) obtained from the two referential 

derivations Fpz-Cz and Pz-Oz regions, respectively, whereas the bottom part of the graph corresponds 

to the respiration signal at a sampling rate of 1 Hz. The four frequency-band (α, β, θ, and δ) values for 

the EEGs are derived by the WPT method and presented in the color columns below the graphs. 

Figure 8. Sample screenshots of the four distinct driver sleepiness levels: (a) wakeful state 

(level 6); (b) slightly drowsy state (level 5); (c) moderately drowsy state (level 4); and  

(d) extremely drowsy (level 3). 

(a) (b) (c) (d) 
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Table 5 illustrated different classifiers utilized or proposed by other researchers in estimating driver 

alertness level. The KPCA-SVM had the highest accuracy rate among all the classifiers. The foremost 

reason is the adoption of PCA algorithm for features dimension reduction before serve as inputs to the 

SVM classifier. However, its increment in accurate prediction rate is only 0.3% higher than the SVM 

classifier in this study, which is not a huge influential. Furthermore, addition of features dimension 

reduction increased the computation complexity and more time-consuming to be employed in mobile 

device. Other classifier, such as Fuzzy, although performed faster, its accuracy of prediction rate is a 

disappointment which is 85.52%. The same characteristic is also applied to Bayesian technique. In 

contrast, artificial neural network perform worse than the SVM algorithm, even though it possess the 

capability of self-learning as more datasets are fed in. Therefore, in this study, SVM classifier with most 

relevant support vectors extracted from SVM trained model can perform well with high accuracy rate to 

predict driver alertness level in real-time. Future work may include exploring more appropriate relevant 

algorithms including frequency extraction method and feasible classifier to predict driver drowsiness 

using wearable devices. 

Table 5. Comparison of classifiers in predicting the driver’s vigilance level. 

Classifier Dataset Accuracy (%) 

KPCA-SVM [2] 
Thirty-channels EEG, one-channel  

ECG and vertical EOG from 
98.8 

Fuzzy [4] 
PERCLOS, eye closure duration, blink frequency, 

nodding frequency, face position, fixed gaze 
85.52 (average) 

Fuzzy Neural 
Network [9] 

Thirty-three-channels EEG 88 (correlation) 

Artificial Neural 
Network [10] 

Midline sites, one central (Cz), and other midway 
between parietal and occipital sites (Pz/Oz) 

94.4 

Bayesian [12] EEG-MPF, EEG-α/β, RRV3, tracking error 87.5 

SVM-RFE [21] EEG, EOG 75 

SVM 
(desktop PC) 

Two referential derivation EEG activity (8-channels) 
and respiration signals with total number of  

support vectors from train model 
98.6 

SVM-Mobile 
(Proposed) 

Two referential derivation EEG activity (8-channels) 
and respiration signals with extracted 30% total 

number of support vectors from the trained model 
98.5 

5. Conclusions 

A real-time long-term mobile-based driver-fatigue-monitoring system is proposed and developed. 

The multichannel sensor module consists of eight-channel EEG (two referential derivations) and 

respiration sensors that transmit their raw data to a mobile device via Bluetooth wireless communication. 

The mobile application filters the received raw EEG and respiration signals and subsequently 

decomposes the filtered signals into four discrete frequency bands: α, β, θ, and δ. The most descriptive 

features are extracted and serve as input features for the SVM classifier. The SVM classifier is trained 

using a desktop computer, and a successive model is adopted in the mobile device to estimate driver 

sleep-onset events in real time. Conclusively, the study indicates that EEG signals in the Pz-Oz region 
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serve as a higher impact criterion for fatigue detection than EEG signals in the Fpz-Cz region, providing 

approximately 69% of the total features. Among the four frequency bands, a sole delta wave is a superb 

fatigue indicator, whereas the mutual addition of alpha, beta (fast), and theta (slow) waves exhibit a 

greater satisfactory effect compared to alpha, beta, and theta waves alone. In addition, a frequency 

variation analysis shows that it is worthy as one of the promising features in the top sixteen descriptive 

features. Overall, an accuracy rate of up to 98.6% can be achieved using a test with the optimized top 

twelve features selected by the MI algorithm. The authors would like to investigate the interaction 

dynamics between oscillations generated by different neuronal population with wavelet coherence 

suggested by [45].  
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