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Abstract: Shrinking water resources all over the world and increasing costs of water
consumption have prompted water users and distribution companies to come up with
water conserving strategies. We have proposed an energy-efficient smart water monitoring
application in [1], using low power RFIDs. In the home environment, there exist many
primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals,
cordless phones and WiFi devices. In order to reduce the interference from our proposed
RFID network for these primary devices, we have proposed a cooperating underlay RFID
cognitive network for our smart application on water. These underlay RFIDs should
strictly adhere to the interference thresholds to work in parallel with the primary wireless
devices [2]. This work is an extension of our previous ventures proposed in [2,3], and
we enhanced the previous efforts by introducing a new system model and RFIDs. Our
proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR)
for the RFID link, while keeping the interference levels for the primary network below a
certain threshold. A closed form expression for the probability density function (pdf) of
the SNR at the destination reader/writer and outage probability are derived. Analytical
results are verified through simulations. It is also shown that in comparison to non-cognitive
selective cooperation, this scheme performs better in the low SNR region for cognitive
networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical
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hidden Markov model (HHMM) approach is used for pattern recognition and event detection
for the data received for this system [4]. Using this model, a feedback and decision algorithm
is also developed. This approach has been applied to simulated water pressure data from
RFID motes, which were embedded in metallic water pipes.

Keywords: leak detection; selective cooperation; cognitive networks; RFID; underlay
networks and water monitoring; smart homes

1. Introduction

The pressure provided by pumps and roof tanks is needed to deliver water to consumers. From
this pressure information, we can determine the water flow, which is the direct measure of the water
usage. The pressure change gives unique signatures for different taping points, like the kitchen sink,
the washing machine, the wash basin and showers. Furthermore, the change in pressure information
in a single section of the pipe shows a possible leak or seepage. In our previous work, using
PipeSense [1], an RFID-based in-pipe monitoring system, we have determined the feasibility of
developing a monitoring system to measure the quality of water. The shrinking water resources all around
the world have made it absolutely necessary for us to conserve water; this fact has also made water quite
expensive. Usually for us, there is no way to know how much water has already been consumed, nor
the cost of this consumption, until the bill arrives at the end of the month. Moreover, the bill is not
easy to interpret, and it is difficult to extract information about consumption during a particular period
of time. Secondly, there are unpredictable leaks or seepage occurs in the water pipes, accumulating the
costs of the utility, the details of which remain unobserved; leaks alone are the reason for considerable
loss in terms of money and resources per year. Repairing these leaks also incurs a cost and leads to the
wasting of time and effort. We lack a wireless automatic system that can measure water usage in real
time, monitor events, such as tap opening and closing, daily consumption patterns and predict possible
leaks and seepage developing in the pipe network. For this system, we need to come up with methods
and algorithms to localize the leaks and seepage in smart homes.

RFIDs integrated with pressure sensors are embedded in the pipe infrastructure. They collect pressure
information and send it along with their IDs to the reader/writer destination node. From the available
pressure data from the sensors, the determined usage patterns, tap events and their patterns assist
the real-time control of the home water system. The information from the sensors is then run by
the algorithms on the cyber system to render decisions in order to support the hardware controllers
responsible for managing the water distribution parameters. Several methods have been used in
the setting of multi-agent systems; however, we have chosen the hierarchical hidden Markov model
(HHMM), which is a famous tool for pattern recognition [4,5]. The framework described in [4] is an
integrated set of two separate four-tier frameworks; here, two HMMs were discussed for determining the
CO2 and CO levels from the vehicle’s exhaust. These two HMMs were separate and are not dependent
on each other, as the data is coming from two different sensors; while the HHMMs proposed in our
current proposal are hierarchical in nature, due to the fact that the consumption patterns, tap and seepage
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event data are interdependent or, in some other way, coming from the same sensors. Normally, HMMs
are used as a speech recognition tool world over. Due to the similarities of the sensor data that we
received from the pipes to speech signals, we adopted the HHMM to solve the problem presented in the
proposed solution. We can also make the smart home water system consumer friendly by making the
data visualization easy to interpret, along the same lines as [6]. The integrated RFID motes collect and
send the data to the reader/writer mote. We propose an event detection and prediction scheme based on
HHMM, which is a hierarchical variant of HMM [7]. Our approach would be to detect the differences by
statistically comparing the observed pattern with that predicted by a model to discover events of interest
while minimizing the delays and false alarms. A preliminary version of this research appeared in [3].
The framework described in [3] is utilized for a human-centric in-pipe water distribution monitoring
system (WDS) with the goal of determining the patterns and probabilities of future water demand,
water quality and contamination spread using HMM; while our proposed work uses HHMM instead
of HMM to determine the consumption pattern, tap events and seepage events in the context of a water
smart home.

The term “smart home” has been used to introduce the notion of networking devices and equipment
that distribute information and commands among the networked devices in the home via wired and
wireless communication [8]. A smart home can accommodate a number of information gadgets, home
appliances and other Internet-based applications, which can communicate with each other, forming a
ubiquitous home network system [9]. This presents the idea of having a server-based home gateway
system, which becomes the brain of the smart home, which will surely make life easier for the common
household. However, there exist several other wireless devices simultaneously operating under the same
roof. These two systems are bound to interfere with each other, resulting in higher energy consumption
due to handshaking protocols. Hence, cognitive underlay networks come to the rescue in this scenario.

The available wireless spectrum has become a scarce resource, due to the rising demand for high data
rate wireless services. Due to this scarcity, emergent communication systems are required to exploit
the unused licensed spectrum in an opportunistic fashion [10]. It is proposed in [11] that in the case
that the licensed or primary user of the spectrum is inactive, any cognitive or secondary users can
use this available spectrum. When the primary user becomes active, the secondary user must switch
off its communication and look for another spectrum hole. This technique is generally referred to as
the interweave approach and involves spectrum sensing and detection. Generally, the overlay method
simultaneously allows both the primary and secondary users to approach the spectrum; however, the
interference for the primary user is subjugated by the secondary user through advanced signal processing.
Another approach, called the underlay approach, allows the sharing of the spectrum by both primary and
secondary users simultaneously. In this approach, the secondary user has to satisfy strict interference
constraints, and its transmission power should be below a certain threshold all of the time [11]. Underlay
cognitive networks use very limited transmission powers and, hence, make the system energy efficient. A
subset of these RFID motes were allowed to send the data, which increases the received SNR ratios and
will be useful in decision making. In our monitoring application, for better parameter monitoring, we
will need to accumulate the maximum number of nodes satisfying the threshold requirements to increase
the overall received SNR.
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The work by Akbar et al. [12] presents the use of hidden Markov models (HMMs) to model
and predict the spectrum occupancy of licensed radio bands. The proposed HMM by Akbar et al.,
dynamically selects licensed frequency bands for its own use and, thus, in the process, reduces the
interference from and to the users, where the channel state occupancy of the licensed primary users
was assumed to be Poisson distributed. Hence, here, HMMs were employed to predict the duration of
the spectrum holes for primary users. On the contrary, the HMMs and HHMMs proposed in our smart
home were not used by the cognitive radio to predict the spectrum holes; instead, these models were
engaged during the processing of the acquired sensor data at the base station to determine a potentially
hazardous event. The working and predicting process of the two HMMs discussed are fairly similar,
as by inheritance, the HMMs first train themselves by using a huge amount of data in order to develop
reliable prediction models. Our proposed HMM and HHMM processes are not utilized in the cognitive
spectrum sensing; in our case, the spectrum sensing is done by a very simple energy detector algorithm,
and HMMs were used during the processing of the sensor’s data to determine an event.

In this paper, we analyzed an underlay RFID network with fixed transmission power near a primary
user, which is a special case and an extension of our previous work [2]. The system model defined in [2]
has a single source (non-RFID), ‘L’ number of relays (non-RFID) and a single destination with a primary
interferer, while our proposed system is comprised of several sources (RFIDs) with a single destination
and a primary interferer. Moreover, the system in our proposal is energy efficient, as compared to the
one described in [2], due to the use of RFIDs. We propose a new commutative node selection criterion
based on satisfying the interference constraint, while maintaining the maximum SNR of the node link
at the destination. We derive closed form expressions for the probability density function (pdf) of the
total SNR at the destination. We also derive closed form expressions for the outage probability of the
system. Here, we have also discussed our approach to identify the taping and other known events in
order to recognize unknown events, such as a leak or seepage, when they occur and track them, so as
to have an efficient system with less false alarms. This type of system implementation can be seen as a
cyber physical system (CPS), where the user can also give feedback and actuate certain mechanisms to
achieve efficiency. We have opted for a cyber-physical approach for an efficient feedback control system
for wireless sensor networks.

The remainder of the paper is arranged as follows. In the next section, we will give an overview of
our system. Section 3 describes the system model and introduces various notations used throughout.
Section 4 presents the received SNR statistics and the derivations of some important pdfs required for
performance analysis at the destination. In Section 5, we give the details of our proposed cyber system
model. Section 6 details the event detection analysis. Section 7 gives the system’s performance analysis
in terms of outage probability and a discussion on the results obtained. Section 8 describes some future
directions, and finally, Section 9 concludes the paper with summarizing comments.

2. System Overview

In our proposed system diagram shown in Figure 1, cost effectiveness is achieved by opting for low
power and low cost active RFID motes and allowing only those motes to send data that satisfy the
interference threshold of the primary user. These motes can be programmed to send data after some set
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limit with their IDs to the reader/writer mote, and a few motes may be needed to complete the monitoring
task. A simple sleep and wake-up protocol is initially utilized in the RFID motes. Once the data is
received at the access mote, it first separates the data from the ID information, makes a packet and sends
this packet to the water smart server through WiFi or 3G networks. At the server, the event detection
and decision algorithms analyze the data and predict the future 50 or 100 states of the system. The RFID
motes are renowned for their low power consumption; however, the reader/writer mote with a WiFi or
3G option will consume some energy. It will be slightly costlier to monitor the piping system than not
monitoring it at all, but in the long run, it may possibly save much more by reducing maintenance and
manpower costs. An Internet-based web portal application and an Android phone application running on
hand held devices take the data from the server and visualize the data for the consumers. The data on the
server also get archived, so that the consumers can always compare the consumption and find previous
events. Due to the different nature of the events related to the timing of the occurrences, for instance
the daily consumption behavior and seepage can be an hourly event, while tap opening and closing is
an event that can only be detected in a few seconds’ or minutes’ time, this caused us to use hierarchical
HMM, which will first look at the per second data, while checking for any unusual behavior leading to a
tapping event; if no such event is detected for an hour, then the model shifts to the per-hour hierarchical
level to detect consumption patterns and find the seepage. In the context of water consumption, it is
expected that consumers’ behavior can change when they are regularly made aware of the amount and,
in particular, the cost of what they consume.

Figure 1. System diagram showing the RFID cognitive nodes, the primary interference and
the smart home server as the destination.
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3. System Model

We consider an underlay cognitive RFID network operating near a primary user P . The cognitive
network consists of L secondary nodes broadcasting their data signals to the destination D, as shown
in Figure 2. This broadcast is also received at the primary user P and causes some interference. The
channel coefficients from the i − th node (Ni → D) are hi, i = 1, 2, 3, ...L. The interference channel
from the i − th node (Ni → P ) to the primary user is hip, i = 1, 2, 3, ...L. In addition, we assume
that the channels are subjected to additive white Gaussian noise (AWGN) with zero mean and variance
N0. The available power at each node is P . In underlay cognitive networks, the secondary users must
maintain strict interference constraint, i.e., the interference at the primary user must be below a certain
threshold, say λ. Depending upon the channel gain hip from the i − th node to the primary user, some
nodes may not be able to satisfy the interference constraint and, hence, would refrain from sending the
data to the destination. We assume that the nodes estimate their interference channel when the primary
user is transmitting or acknowledging any received information. This information may also be available
on a dedicated feedback channel from the primary user to the i − th node in the form of a yes or no
decision. Let us say l nodes satisfy the interference constraint out of the available L nodes. We group
the node indexes into different sets, such as U , representing the set of all node indexes and A ⊆ U , the
set of l node indexes satisfying interference constrain. We assume that all of the channel coefficients are
Rayleigh distributed, and hence, their squared amplitudes are exponentially distributed.

Figure 2. System model: RFID cognitive nodes, the destination node and the
primary interferer.

The received SNR from the i− th node transmission can be given as:

γi =
P |hi|2

N0

(1)

Similarly, the interference for the primary user due to the i− th node is given by:

Iip = P |hip|2 ≤ λ (2)
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4. Received SNR Statistics

Based on the above discussion, the SNR received at the destination can be defined as the sum of the
SNRs of all of the nodes satisfying the interference constraint. Mathematically,

γT =
∑
iεA

γi such that Iip ≤ λ (3)

Since Iip is an exponentially distributed RV, the probability of satisfying the interference threshold is:

Pλ = 1− e−
λ
σ (4)

where σ are the average strengths of the interfering channels. We have assumed that the nodes are
present in the form of a cluster and are roughly at the same distance from the primary user. In this
case, the average strengths of the interfering channels can be assumed to be the same; however, their
instantaneous values may be different. Therefore, σ1P = σ2P = .... = σ.

Similarly, γi are also exponentially distributed with pdf pγi(γ) = 1
γi
e
− γ
γ̄i and cumulative distribution

function (cdf) Pγi(γ) = 1− e−
γ
γ̄i , where γi is the average SNR of the i− th node branch.

It is important to note that the number of nodes satisfying the interference constraint, i.e., l may vary
from zero to L. If l = 0, the destination would not receive any signal from the nodes. For l = 1, only one
node will be sending the data, hence no SNR aggregation is possible. In fact, the node SNR aggregation
begins with l = 2, but the events with l < 2 should be included when evaluating the averages of various
performance parameters. Hence, in summary, l nodes out of a total L can satisfy the interference
constraint λ with a probability Pλ. This dictates Bernoulli’s distribution; however, in order to average
over all possible values of l, a binomial distribution should be used, which is given below:

pl(l;L;Pλ) =

(
L

l

)
Pλ(1− Pλ)L−l (5)

where
(
L
l

)
= L!

l!(L−1)!
.

The conditional pdf of the sum of SNR among the l nodes can be obtained by the
following expressions.

pγT (γ|l) =
1

γ̄i
e
− γ
γ̄i ; l = 1 (6)

pγT (γ|l) =

[∏
iεA

1

γi

]∑
jεA

 e
− γ
γ̄j∏

kεA
k 6=j

( 1
γ̄k
− 1

γ̄j
)

 ; l ≥ 2 (7)

The unconditional pdf of the SNR at the destination through the node aggregation can be obtained by
averaging the conditional pdf over the pdf of l, given as:

pγT (γ) =
L∑
l=1

(
L

l

)
P l
λ(1− Pλ)L−lpγT (γ/l) (8)
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Hence, substituting Equation (6) in Equation (8), we have,

pγT (γ) = P 1
λ (1− Pλ)L−1

L∑
i=1

1

γ̄i
e
− γ
γ̄i︸ ︷︷ ︸

l=1

+

L∑
l=2

(
L

l

)
P l
λ(1− Pλ)L−l

[∏
iεA

1

γi

]∑
jεA

 e
− γ
γ̄j∏

kεA
k 6=j

( 1
γ̄k
− 1

γ̄j
)


︸ ︷︷ ︸

l≥2

(9)

The cdf of γT can be obtained by integrating Equation (9) from zero to∞ given below:

PγT (γ) = P 1
λ (1− Pλ)L−1

L∑
i=1

(1− e−
γ
γ̄i )︸ ︷︷ ︸

l=1

+

L∑
l=2

(
L

l

)
P l
λ(1− Pλ)L−l

[∏
iεA

1

γi

]∑
jεA

 γ̄i(1− e
− γ
γ̄j )∏

kεA
k 6=j

( 1
γ̄k
− 1

γ̄j
)


︸ ︷︷ ︸

l≥2

(10)

5. Performance Analysis

In this section, we derived closed form expressions for the outage probability of the system using the
results obtained in the previous section.

5.1. Outage Probability

A communication system is said to be in an outage when the received SNR is fallen below a certain
threshold η. The total SNR expression in Equation (9) is for the situation when at least one node satisfies
the interference constraint. However, as mentioned earlier, it is possible that none of the relays satisfy
the interference constraint. The probability of this event is (1 − Pλ)L. Hence, the outage probability of
the system can be evaluated as:

Pout = PγT (η) + (1− Pλ)L (11)

6. Numerical Results

In this section, we present simulation results to verify the derived analytical expressions. First,
we define the parametric setup for the simulations, and later, the results are discussed in detail.

6.1. Simulation Setup

All of the simulation results are generated by varying the average SNR γi, where γi = α_i P
N0

. The
value of α = 0.1 in the case of an interference channel. The noise is considered to be AWGN with
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zero mean and unit variance. The transmission power at the nodes is also assumed to be PN = 1. The
maximum number of nodes in the system is L = 5, and all of the situations are compared with equal
power conditions.

6.2. Discussion

The outage performance of the system is plotted in Figure 3 with L = 1, 2, 3, 4, 5, and the values
of interference constraint and outage threshold are set to be 10. The outage graph initially follows the
regular water-fall curve, until it reaches a point where the nodes started to have better SNR than the
outage threshold. At this point, the outage graph shows an increase of probability. As the number of
nodes increases, the outage graph’s probability values decrease steeply (shown as a solid line). On the
same graph, we have shown the case of the interference constraint having a very large value (shown as
a dashed line); all of the nodes satisfy the interference constraint all of the time, and hence, the system
acts like a non-cognitive network. The graph shown in Figure 4, is with L = 5 and outage threshold = 10
with varying interference constraint λ = 1, 5, 10, 20. The figure shows that the elbow point, indicating
the event when the nodes started to meet the interference constraint, slopes down with the increase in the
interference constraint.

Figure 5, shows the outage probability when L = 5, and the interference constraint is set to λ = 10 and
varying the values of the outage threshold η = 5, 10, 20, 30, 40. It shows that the probability decreases
with the increase in the outage threshold.

Figure 3. Outage probability of the system with L = 1, 2, 3, 4, 5 for interference constraint
λ = 10 and outage threshold η = 10.
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Figure 4. Outage probability of the system with L = 5 for interference constraint λ = 1, 5,
10, 20 and outage threshold η = 10.
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Figure 5. Outage probability of the system with L = 5 for interference constraint λ = 10 and
outage threshold η = 5, 10, 20, 30, 40.
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7. Proposed Model for Cyber System

Our smart home system diagram is shown in Figure 1. Our proposed model will allow us to detect,
as well as to predict various events of interest. Every state is associated with a probability distribution
over the possible output symbols. In our context, an event can be a tap event, high/low usage of water
and/or seepage. The HHMM to solve and predict the tap, seepages and consumption pattern events is
shown in Figure 6. An off-the-shelf 125-KHz RFID module was utilized in the experiments. Pressure
sensors were deployed at the main tapping points to emulate the taping and seeping events. However,
due to the requirement of a large data set in order to predict the events correctly, pseudo pressure data
closely matching the actual received data was constructed to get the predictions.

Figure 6. Proposed HHMM for event detection and future event prediction.
(CP, consumption pattern event; T/SE, tap and seepage event.)

7.1. Hierarchical Hidden Markov Models

Hierarchical hidden Markov models [7] are simplifications of HMMs, which provide an answer to
two main problems that arise in complex sequence modeling. At first, HHMMs can correlate events
that happen comparatively distant from each other in an observation sequence and still maintain the
ease and flexibility of a simple Markov process. Hierarchical hidden Markov models (HHMMs) are
structured multi-level stochastic processes. HHMMs make each of the hidden states an autonomous
probabilistic model, hence making each state an HMM, as well. Therefore, the states of an HHMM emit
sequences rather than a single symbol. Figure 6 shows our HHMM to determine consumption patterns,
tap events and to predict seepage events hierarchically; the third state is also an HMM to detect the
usage patterns on top of seepage and tap events. An HHMM works by generating sequences repeatedly
through activating one of the lower states of a selected state, since each HHMM is generally made up of
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a standard single-level HMM. Therefore, the individual states of the HMM are, in fact, the production
states of the next HHMM, having a non-zero probability of going from any one state to another state.
This process of recursive activations ends when we reach a special state, called the production state. In
our context, the production state is the final state of the third-tier hierarchy of consumption patterns. The
output symbols are only emitted through the production states; this output symbol is picked out from the
set of output symbols according to a probability distribution, while the internal states are hidden states
that do not give off observable symbols directly. The control then returns to the state that initiated the
algorithmic activation chain. This constitutes a tree structure, where the node at the top of the structure
is called the root state, while the production states makes the leaves.

8. Event Detection and Analysis

To determine patterns, a model has to be formulated that can be utilized to identify real instances of
abnormal events from the suspicious ones. Because of this, the model should detect possible abnormal
activities, expeditiously examine large sets of data and produce hypotheses with only partial and fallible
information. The transition-based model shown in Figure 6 identifies the event by comparing the
anticipated outputs with the data sets from different nodes in the network. It is used to detect the water
consumption patterns, seepage and tap events hierarchically. We have used the expectation-maximization
(EM) algorithm for HMM parameter training and performed the hypothesis testing using the maximum
likelihood (ML) principles from [1,4] to identify the data samples as either normal, a possible event or a
confirmed event during the recognition phase of the algorithm; as the stability is directly proportional to
the amount of data collected and the number of events occurring. Our proposed system will periodically
train itself, and as the data set grows, the stability increases. the initial transition matrix when there were
no real data sets available will be stationary, while we next obtain the matrix of transition and emission
probabilities. Here, we estimate these probabilities based on our pseudo data. The emission matrix is
initialized based on the following assumptions; if usage increases, then there is a 30% chance of the need
to repair and expand the water supply network. If seepage and leak events increase, then there is a 50%
chance that we need to repair the system. If the water utility cost increases, then there is a 20% chance
that we need to conserve water. We have logically assumed the emission matrix with a 30% chance for
the water system expansion and a 50% chance for repair. This matrix can be determined through real
analysis of the home piping system during one year. In short, we can set the emission matrix values on
the analyzed real data, but here, for simplicity, we assumed the matrix. Furthermore, we can map the
location of the seepages and can alert households to take evasive actions. After collecting a sufficiently
large data set, large enough to train our model to give meaningful predictions and decisions, we can tune
the model parameters, such as the transition, emission and initial probabilities, so as to maximize the
system’s event detection performance. For instance, a data set of a mere few hours is sufficient for the
detection of a taping event, while a consumption event will require at least the data of the whole day.
Given this model, we use the forward HMM algorithm to generate predicted states for the three features
of interest illustrated in Figure 7. The predictions were made after adjusting the transition and emission
probabilities over 500 iterations.
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Figure 7. Pseudo pressure values in ‘bar’ on the y-axis for (a) consumption pattern (CP)
(per hour on the x-axis), (b) tap event (TE) (per second on the x-axis) and (c) seepage event
(SE) (per second on the x-axis).

Tap events occur within the consumption pattern measurements; this makes it easier and efficient to
model using a single HHMM rather than two HMMs. HHMMs train themselves after getting hourly,
daily and monthly data and determining the events from this data set, so it may take as short as a couple
of hours to capture the tapping events and a minimum of two days to determine the daily consumption
patterns. Figure 7 shows the pseudo daily consumption pattern and tap event pressure data. These
data are quantized to determine the systems’ observation sequence states in Figure 8. The HHMM
starts with the root state, which can, in turn, activate and pass the control to any one of the internal
states at the second hierarchy, according to an initial probability matrix. The third sub-state of the
second hierarchy of the consumption measurements can also pass the control to the tap event states at
the third hierarchy, according to its own initial non-zero probability matrix. The third tier predicts the
tapping event, generates the outcome and passes the control to the hierarchy that activated it through
the production state. After that, the second hierarchy completes its generation of the predicted events
and passes the control back to the root state. As the data set grows and the system comes across a
number of events, our proposed HHMM trains itself using daily and monthly event data sets. This
training and parameter determination can be done in a few minutes. Figure 9 shows the generated state
prediction for the two events. HHMM generated prediction states indicate what may be the expected
behavior of the system. Given the current obtained readings, the higher the prediction span, the more
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complex will be the decision. Therefore, we need an algorithm to detect these predictions to come
up with any sort of decision. These HHMM-based predictions for 300 points of data from each node
are given to a decision algorithm, which searches for 50 or more continuous State 3 predictions in the
predicted sequence for each node and compares them with the other nodes in the region. If three or
more nodes show similar predicted behavior, then a SMS alert is sent to the households and an alarm
signal to the water smart server. The process then waits for acknowledgment, and after receiving it,
the system provides visualization of the event with the location of the event. These 300 points indicate
hours in the case of the consumption pattern and seconds in the case of tap and seepage events. In other
words, we can make HHMM predict a sequence of any number of points (hours, seconds) regarding the
consumption, tap and seepage events. The output of Figure 9 shows that the predicted events hop around
in three distinct states. If the predicted pattern depicts more transactions in State 3, this means that we
have more chances of having an actual event in the future, and if the predicted sequence mostly remains
in the second or first states, the chances of having this event are very rare.

Figure 8. (a) Consumption patterns (CPs) (per hour on the x-axis); (b) tap event (TE) (per
second on the x-axis); and (c) seepage event (SE) (per second on the x-axis); quantized state
sequences are on the y-axis.
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Figure 9. (a) Consumption pattern (CP) predicted states; (b) tap event (TE) predicted states
and (c) seepage event (SE) predicted states against 300 future points (hours for (a) and
seconds for (b) and (c)) from HHMM.

9. Future Work

Human-centric sensing allows us to derive the most out of water monitoring research and applications.
We intend to enhance our system with a multi-interface data service for administrative functions and a
map service for normal users who are interested in the overall consumptions and ways to conserve
water. It can also utilize existing sensor modules and feed their data to the users’ hand-held computing
devices for processing and analysis. We are exploring the use of communication methods, such as WiFi,
Bluetooth, etc. These provide a wide choice of data transfer speeds and flexibility in building a network.
At the later stage of the research, an improved energy-efficient event-driven MAC protocol for in-pipe
RFID motes can be introduced. Some of the applications where this system can also be applied are
sewage monitoring, oil and gas installations, industrial gas leak detections and quality management.

10. Conclusions

We proposed a best node selection scheme for a cognitive network operating near a primary user.
We deduced through analysis and simulations that SNR is not the only criterion to pick up the best
node in the cognitive setting. The proposed scheme works by first eliminating those nodes that do not
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satisfy the interference constraint. Then, among those nodes that successfully satisfy the constraint, the
one giving the maximum end-to-end SNR is chosen to forward the source message to the destination.
We derived the closed form pdf of the total SNR at the destination using the MGF approach and then
used it to derive BER and outage probability in closed forms. Analytical formulae are verified through
simulations. Some important features and tradeoffs of the proposed scheme are also discussed. Our key
interest is to conserve water and control the cost by sensing various aspects of the water network in a
water smart home and to share the information to users to control, preserve and improve their life styles.
The end-user, which can be a household or an authority, is informed each day about the consumption
and can decide how to be more efficient. This paper presents a human-centric CPS cycle for an in-pipe
water monitoring system. The CPS cycle and the proposed models for consumption patterns and tap
opening/closing events for the water network system have been described. We also have described the
application of HHMMs for modeling the system and their use for detecting events, identifying patterns
in the data, predicting events and in making decisions. We also presented modeling results and analysis
based on the pseudo pressure data. In addition, directions for further research and development and its
impact were presented.
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