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Abstract: While the NAND flash memory is widely used as the storage medium in modern 

sensor systems, the aggressive shrinking of process geometry and an increase in the number 

of bits stored in each memory cell will inevitably degrade the reliability of NAND flash 

memory. In particular, it’s critical to enhance metadata reliability, which occupies only a 

small portion of the storage space, but maintains the critical information of the file system 

and the address translations of the storage system. Metadata damage will cause the system 

to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, 

a highly reliable metadata allocation strategy for MLC NAND flash memory storage 

systems. Our technique exploits for the first time the property of the multi-page architecture 

of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to 

keep metadata in most significant bit (MSB) pages which are more reliable than least 

significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. 

Based on this idea, we propose two strategies to optimize address mapping and garbage 

collection. We have implemented Asymmetric Programming on a real hardware platform. 

The experimental results show that Asymmetric Programming can achieve a reduction in the 

number of page errors of up to 99.05% with the baseline error correction scheme. 
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1. Introduction 

Because of the increasing scale and complexity of sensor systems, large amounts of data are being 

collected, such as medical records, bioinformatics and aircraft health information. It is becoming 

increasingly more imperative to ensure the fast and safe storage of these data. NAND flash, a 

semiconductor-based nonvolatile memory, features non-volatility, low power-consumption, fast  

access time and shock-resistance and therefore is widely used in sensor systems, such as wireless  

sensor networks. 

There are mainly two kinds of NAND flash memory cells, namely single-level cell (SLC) and  

multi-level cell (MLC) flash memory. MLC NAND flash devices can cost less and have better storage 

density than SLC NAND flash devices. Therefore, MLC flash devices have been widely adopted by the 

market, and have become the mainstream flash storage media. Dramatic improvements in the price and 

capacity of MLC NAND flash memory have been achieved by technological advances, such as the 

aggressive shrinking of process geometry and an increase in the number of bits stored in each memory 

cell. These technological advances inevitably degrade the reliability of MLC NAND flash memory.  

On the issues of enhancing the reliability of NAND flash based storage systems, most existing  

works have focused on modifying the components in the current NAND flash memory architecture,  

e.g., file systems [1], the design of the flash translation layer (FTL) [2–7], and the physical address 

mapping [8–10]. Some other works suggest that error prevention techniques be implemented to reduce 

the bit error rate of data stored in NAND flash memory [11–14]. Although these approaches are effective 

at enhancing the reliability of NAND flash memory, they are not designed for the metadata, which can 

directly affect the reliability of the whole storage system. 

The most effective way of enhancing the reliability of MLC NAND flash memory is to ensure the 

reliability of metadata [15,16], which occupies only a small portion of the total storage space but 

maintains the critical information of the file system (i.e., file allocation table and the root folder) and the 

address translations of the storage system. Therefore, how to enhance the reliability of the metadata 

stored in NAND flash memory has become an important issue. 

Previous studies on the reliability of the metadata in NAND flash memory have normally used a 

stronger Error Correcting Code (ECC) or redundancy [17–19] to provide extra protection for metadata. 

Normally, the redundancy methods back up the critical pages containing metadata, and stronger ECC 

methods provide extra levels of protection for metadata using either software ECC or hardware ECC. 

They could introduce extra numbers of I/O operations and incur garbage collection overhead. As 

illustrated in our experimental results, simply applying redundancy to metadata may negatively impact 

the block erase counts. 

Recent technology in MLC NAND flash memory uses multi-page architecture [20]. The different 

allocation of the data in Least Significant Bit (LSB) pages and Most Significant Bit (MSB) pages in this 

architecture will directly affect the reliability of the corresponding physical page. This paper for the first 

time exploits this intrinsic feature of MLC NAND flash to improve the reliability of metadata in MLC 
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NAND flash storage systems. We present Asymmetric Programming, a reliability enhancement strategy 

that tries to keep all of the metadata in MSB pages following an asymmetrical programming manner, and 

aims to achieve a relatively low error. By doing this, the error rate for pages containing metadata can be 

significantly reduced, thereby enhancing the reliability of the entire MLC NAND flash storage system. 

We propose two strategies, MSB allocation and asymmetric garbage collection, to reduce the error rate and 

improve the utilization of physical blocks. Our strategies can effectively enhance the reliability of MLC 

NAND flash memory while incurring no space overhead and negligible I/O overhead. In addition, the 

proposed Asymmetric Programming scheme could supplement both ECC and redundancy methods to further 

improve the reliability of the metadata in MLC NAND flash storage systems. 

We have conducted a set of experiments on a real hardware platform. We have designed the MLC 

NAND flash memory array and implemented the proposed Asymmetric Programming inside the 

processing system of the Xilinx Zynq on-chip programmable SoC architecture [21]. Asymmetric 

Programming is compared with a representative design [17] and the default error correction scheme in 

the Linux kernel [22]. The experimental results show that, Asymmetric Programming can reduce 

uncorrectable page errors by 88.11% and 72.32% on average compared to [22] and [17], respectively. 

In terms of I/O performance, Asymmetric Programming only incurs a time overhead of less than 0.07% 

compared to the baseline error correction scheme. 

2. Background 

2.1. Flash Translation Layer and File System 

Different from hard disk drives that allow “in-place-update” operation, the physical blocks in  

NAND flash memory must be erased before they are programmed. Therefore, a software module called 

the flash translation layer (FTL) is used in NAND flash memory to handle this constraint. FTL maintains 

the address mapping table [5,23–26], conducts garbage collection operations [27], manages the bad 

blocks [28], and balances the wear leveling [29] of NAND flash memory. 

According to the granularity of address mappings, there are mainly three types of FTL schemes:  

page-level FTL, block-level FTL, and hybrid-level FTL. Most of the current FTL designs are based on 

SLC NAND flash memory storage systems. Block-level FTL and some of the hybrid-level FTLs use the 

block offset to locate the pages within a block, and the pages may be programmed randomly within a 

block [30], but for MLC NAND flash memory, programming physical pages with the “out-of-order” 

pattern is prohibited [30]. Therefore, some of these FTLs cannot be applied to MLC NAND flash 

memory storage systems directly. Since our technique adopts the page-level FTL, it can be applied to 

MLC NAND flash memory to enhance its reliability. 

Several file systems have been specifically designed for NAND flash memory, such as  

JFFS/JFFS2 [31], and YAFFS/YAFFS2 [32]. Typically, these file systems are dedicated flash file 

systems and are aimed at embedded applications. They also achieve some functions of FTL (i.e., wear 

leveling and bad block management). For large-scale storage applications, many general-purpose file 

systems, such as NTFS [33], FAT [34], and XFS [35], are used without considering the constraints of 

NAND flash memory. When these file systems are used in the NAND flash memory storage system, 

additional FTL schemes must be implemented to conceal the special characteristics of NAND  

flash memory. 
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2.2. Bit Error of MLC NAND Flash 

Bit errors in MLC NAND flash memory are mainly caused by program disturbances and leakage of 

current (also called retention errors). When programming one selected physical page, a high voltage such 

as 20 Volts must be applied to the word line (WL) of the target page. This high voltage will then cause 

disturbances on other unselected pages. An illustration of this process is given in Figure 1a. These 

disturbances will cause some electrons to be injected into the floating gate (FG) from the base. As a result, 

the reference voltage of the current will change and the information stored in this cell could be altered. 

Figure 1. (a) Program disturbances cause the bit errors in a NAND flash memory cell.  

(b) Leakages of current causes the bit errors in a NAND flash memory cell. 

 
(a) (b) 

On the other hand, the conductivity of the oxide may be higher as the P/E cycle increases or the 

temperature rises. The electrons stored in the FG will leak into the base [36], as shown in Figure 1b. 

This will also change the reference voltage of the FG and damage the stored information. The leaked 

current can be calculated using Equations (1) and (2) [20], where A, B and Vthi are constants; E is the 

electric field intensity of the Control Gate (CG); Eox is the electric field intensity of the oxide; Cono and 

Cox represent the capacitance of ONO (SiO2−Si3N4−SiO2) and the oxide, respectively; Vth is the reference 

voltage of the cell and Tox is the thickness of the oxide. Through this model we can observe that the 

lower the reference voltage of the flash memory cell, the less current will leak. The BER of this cell also 

would be lower: 

2 exp( / )leak oxI A E B E= ⋅ ⋅ −  (1)

{ / ( )} ( ) /ox ono ox ono th thi oxE C C C V V T= + ⋅ −  (2)

2.3. Multi-Page Architecture of MLC NAND Flash 

MLC NAND flash memory adopts a multi-page architecture [20] to reduce program disturbances and 

improve the program speed at the same time. Under this multipage architecture, every two pages form a 

pair of programmable pages called shared pages. These two pages are further defined as the Least 

Significant Bit (LSB) and the Most Significant Bit (MSB) pages. For a pair of shared pages, allocation 

of the data in LSB or MSB pages determines the distortion level of the MLC NAND flash which can 

directly affect the reliability of the corresponding physical page. Normally, the cell of MLC NAND flash 

is firstly programmed into two low voltage states, then other two voltage states which represent the 

information of the MSB page are generated by the second programming process as shown in Figure 2b. 
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Therefore, the MSB page has much lower program distortion as that of the LSB page and much higher 

reliability because it can directly avoid distortions induced by the first step of the programming process. 

Figure 2. SLC and MLC NAND flash coding and the corresponding reference voltage. 

 
(a) (b) 

3. Motivation 

ECC is widely used to reduce the bit error rate of NAND flash memory devices. Combining ECC 

with the different location of the data, data of the MSB pages has much lower error rates. We tested the 

raw bit error and the effect of ECC using Micron’s MLC flash package 29F64GCBAAA with capacity 

of 64 Gb and a maximum of 3000 P/E cycles. The results are shown in Figure 3. The raw bit error rate 

for two different locations of the data is compared in Figure 3a. In this experiment, we program both of 

LSB pages and MSB pages in ten blocks and analyze the raw bit error rate of the LSB page and the MSB 

page, respectively. It can be observed that the data allocation has great impact on the raw bit error rate, 

and the data of MSB pages can achieve a much lower level raw bit error rate than the data of LSB pages. 

By combining this with ECC, the uncorrectable page error rate can be further reduced (by up to 98.10% 

of page errors) as shown in Figure 3b. At the time of the maximum 3000 P/E cycles of the lifetime of 

the tested MLC NAND flash and using 3-bit error correctable BCH code, page errors of over 50% were 

incurred for the LSB pages, while a reasonably low error rate was maintained by allocating data into 

MSB pages even after the lifetime of the MLC NAND flash. 

Given an N-bit physical page, let the raw bit error rate be R, and the ECC scheme can correct E bits 

of errors. Then, the probability that there will be more than E faulty bits on a page is [37]: 
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Figure 3. RBER (Raw Bit Error Rate) and uncorrectable page errors versus different P/E cycles. 

  
(a)                                       (b) 

Based on the above equations, we can calculate the uncorrectable page error rate for LSB pages and 

MSB pages. The results are presented in Table 1. Compared to date of the LSB pages, allocating data 

into MSB pages can significantly reduce the uncorrectable page error rate. If we allocate all of the 

metadata into MSB pages, instead of allocating it into both LSB pages and MSB pages randomly and 

symmetrically, the metadata will achieve a much lower uncorrectable page error rate following this 

asymmetric programming manner. Then the reliability of the whole system will be improved. Also, 

different from redundancy methods which will induce extra space overhead and eventually harm both 

the I/O performance and endurance of NAN flash memory, LSB pages is still available when allocating 

the metadata into MSB pages, which means that there will be no space overhead. This observation 

motives us to present a fault-tolerant scheme to provide a more reliable MLC NAND flash memory 

storage system. 

Table 1. Quantized uncorrectable page error rate and corresponding RBER (Raw Bit Error Rate).  

RBER 2.00 × 10−6 4.00 × 10−6 6.00 × 10−6 8.00 × 10−6 2.00 × 10−5 4.00 × 10−5 6.00 × 10−5 8.00 × 10−5

LSB pages  

with 3-bit ECC 
3.66 × 10−9 5.78 × 10−8 2.89 × 10−7 8.99 × 10−7 3.23 × 10−5 4.51 × 10−4 2.00 × 10−3 5.50 × 10−3

MSB pages 

with 3-bit ECC 
2.30 × 10−10 3.66 × 10−9 1.84 × 10−8 5.78 × 10−8 2.17 × 10−6 3.23 × 10−5 1.53 × 10−4 4.51 × 10−4

4. Asymmetric Programming: A Reliability Enhancement Scheme for Metadata 

4.1. Framework 

Asymmetric Programming is an address mapping strategy that introduces transparent management 

between the file system and hardware to protect the metadata from errors. The system architecture  

of Asymmetric Programming is shown in Figure 4. In the architecture, the host system and the  

storage system are connected through the host interface. Most widely used host interfaces, such as SATA 

II and USB (2.0 or 3.0 version), support outstanding requests. The storage system can serve multiple 
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“out-of-order” requests and form a queue. The request queue scheduler is utilized to manage the queue 

to optimize the I/O performance by scheduling the requests in the queue. 

Figure 4. System architecture of Asymmetric Programming. 

 

In MLC NAND flash memory storage systems, physical pages must be programmed sequentially 

from the least significant page address to the most significant page address. Programming pages with 

the “out-of-order” pattern is prohibited [30]. To handle this constraint, we present Asymmetric 

Programming, which works in the flash translation layer (FTL) and reorganizes the address mappings. 

The objective is to enhance the reliability of MLC NAND flash memory by providing a more enhanced 

metadata protection mechanism. 

Asymmetric Programming adopts two reliability techniques, namely MSB allocation and asymmetric 

garbage collection, to enhance the reliability of metadata in MLC NAND flash memory storage systems. 

The MSB allocation is a reliability strategy that identifies the pages that contain metadata and allocates 

metadata pages to MSB pages that have lower bit error rates. Asymmetric garbage collection is another 

reliability strategy that aims to fully utilize the storage space when triggering garbage collection 

operations. This strategy uses a small buffer to reorganize the valid pages and assign the pages to  

free pages based on the importance of the data. In the following subsections, we will present these  

two strategies. 

4.2. Metadata Identification 

Metadata such as file system metadata are normally stored in predefined locations with fixed logical 

addresses. This characteristic helps us identify the metadata and enhances the reliability of flash. Among 

the metadata, the file system metadata contributes to the major amount of read and write accesses. File 

systems normally format the disk and write logical formatting information needed by the file system 



Sensors 2014, 14 18858 

 

 

onto the disk. File system metadata, such as file allocation table and the root folder, must be stored in a 

fixed location so that the files needed to start the system can be correctly located. 

In modern file systems, such as NTFS, every sector on an NTFS volume that is allocated belongs to 

some file. The file system metadata is also part of a file. Figure 5 illustrates the layout of an NTFS 

volume when formatting has finished. The first file on an NTFS volume is the Master File Table (MFT), 

which contains a set of files maintaining the metadata used to implement the file system structure. In 

NTFS, the location of MFT is fixed. The NTFS file system reserves the first 16 records in the MFT for 

the information about these metadata files. The NTFS file system uses about 1 MB for the metadata files 

and the first 16 records in the MFT.  

Figure 5. The layout of the NTFS volume. 

 

Besides the file system metadata, the metadata for wear-leveling are used to maintain the block erase 

counts and to select a victim block for garbage collection in NAND flash memory. Current wear-leveling 

algorithms normally use heuristics such as priority queue to find the victim block that has the minimum 

erase counts or has the lowest block utilization. The implementation of these wear-leveling algorithms 

needs to maintain metadata at the per block level. 

NAND flash memory storage also needs to maintain the address mapping table to track the mapping 

between logical addresses and physical addresses. When writing data into NAND flash memory,  

the address mapping table will be updated in the RAM and synchronized to NAND flash  

memory periodically. The tree-like data structure (e.g., B+ tree) has been widely adopted in the FTL 

schemes to manage the address mapping table. For the tree data structure, the more random writes are, 

the more indexing nodes have to be updated in the in-memory data structure (e.g., on-flash index  

in UBIFS). Since the on-chip RAM only has very limited capacity, the metadata stored in RAM has to  

be frequently flushed from volatile cache to NAND flash memory, which could cause frequent metadata 

synchronization. 

To fully utilize the limited RAM space and improve the write performance, many FTL schemes adopt 

the demand-based strategy. In demand-based FTL schemes, several physical blocks (called translation 

blocks) are used to hold the address mapping information that could not be stored in RAM. When 

running out of translation blocks, the valid pages in translation blocks have to be merged. The victim 

block that contains all invalid data will be erased. If multiple valid pages are distributed to different 

translation blocks, this case will trigger many consecutive garbage collection operations. Therefore, the 

more random the writes are, the more merge operations are triggered. Then the amount of metadata for 

address mappings is determined by the specific FTL design. 

From the above analysis, we found that the logical requests (i.e., logical page numbers) for metadata 

will be different from those for normal data. They are handled by either file systems or the dedicated 

FTL schemes. The logical locations that store the metadata have the natural isolations from those of the 

normal data. File systems or FTL schemes could further manipulate the logical to physical mappings 
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and issue the read or write requests to different physical locations. Therefore, we can utilize this feature 

and provide extra protections for metadata stored in NAND flash memory. This can significantly 

enhance the reliability of NAND flash memory storage systems. 

4.3. MSB Allocation 

Our MSB allocation strategy issues write operations based on the content stored in a page.  

Algorithm 1 describes the process of a write operation. Algorithm 1 has two inputs: a logical page 

number (LPN) and its content. The algorithm will first distinguish critical pages, which contains 

metadata of the system, from non-critical pages. If the request is a critical page, the FTL allocates one 

physical page for the request (line 1). The MSB allocation strategy tries to allocate critical pages to MSB 

pages. It will look up the shared pages mapping table, which is configured by the chip manufacturer, to 

check the allocated physical page whether a MSB page or not. To the best of our knowledge, this is the 

first work that utilizes the shared pages mapping table to achieve the recognition of the LSB page and 

the MSB page in the FTL.  

Algorithm 1. Write operation for Asymmetric Programming. 
Input: A logical page number (LPN #M), LPN page content. 

Output: Write the content to one physical page 

1: FTL allocates a PPN #N for LPN #M 

2: if LPN #M is a critical page then 

3:   Query the shared pages mapping table to check if PPN #N is MSB page  

4:   if PPN #N is MSB page then 

5:   Write LPN #M into PPN #N 

6:   else  

7:     Invalidate the mapping <LPN #M, PPN #N> 

8:     Send a signal to Request Queue Scheduler to delay the current request 

9:     if there’s no uncritical page request then 

10:     Find the nearest MSB page 

11:       Invalidate all the pages between the current page and the nearest MSB physical page 

12:     end if 

13:   end if 

14:   Finish 

15: end if 

16: Update the mapping table 

17: Write the content into NAND flash 

If the page does not contain metadata (lines 16–17), the MSB allocation strategy will bypass the 

shared pages mapping table. Such write requests will be directly issued to available free pages in the 

sequential manner of programming. Both the LSB and MSB pages can be utilized to store normal data. 

Figure 6 shows an example of the MSB allocation strategy. For the write request (LPN #2, A), where A 

is the content to be written in the NAND flash and LPN #2 belongs to a critical page, the MSB allocation 

strategy will search the logical page number to the physical page number (PPN) addressing mapping 

table maintained by the FTL and find the corresponding PPN (PPN #4). It will further check the shared 

pages mapping table provided by the chip manufacturer. This table indicates that PPN #4 belongs to 
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MSB pages. The MSB allocation strategy will then write content A to the MSB page. For the  

write request (LPN #4, B), which denotes a non-critical page, our strategy will bypass the search 

operation in the shared pages mapping table and issue a write operation to the PPN provided by the FTL 

(i.e., PPN #7). 

Figure 6. An example of the MSB allocation strategy of Asymmetric Programming. 

 

If the FTL assigns an LSB page to a critical page, the MSB allocation strategy will send a signal  

to the Request Queue Scheduler to delay this request. The next uncritical page write request will be 

kicked out to fit this LSB page. Then the Request Queue Scheduler will serve the delayed request again 

and repeat the above operations to allocate a MSB physical page for the critical write request. This 

procedure is called a request feedback operation. If no non-critical page is available in the request queue 

(lines 9–12), the next available MSB page will be found directly. The pages between the current page 

and the next available MSB page will be marked as invalid. In this way, the MSB strategy can guarantee 

that the next critical page will be served by an MSB page.  

Figure 7. An example of the request feedback operation.  

 

Figure 7 shows an example of request feedback operation where W0 is a critical page write request 

and W1-4 are three uncritical page requests. Pure page-level FTL is adopted in this example. In the first 

step, the FTL allocate PPN0 for the request W0. But as W0 is a critical page request and PPN0 is a LSB 

physical page, our asymmetric programming strategy invalidates this mapping, and delays W0. Then it 

will allocate W1 which is an uncritical page request to PPN0. This process is a request feedback 

operation. After that, the FTL allocates PPN1 for the critical page request W0, but still, the PPN1 is a 

LSB physical page, then W0 is delayed and the FTL writes W2 into PPN2. The feedback operation is 
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conducted until the FTL allocates PPN4 which is a physical MSB page for W0. Then the process of 

MSB allocation strategy is done. 

4.4. Asymmetric Garbage Collection 

In NAND flash memory storage systems, a garbage collection operation normally includes the 

following three steps: 

 Step 1: The garbage collector picks up the victim block; 

 Step 2: The garbage collector copies the valid pages of the victim block into a free block; 

 Step 3: The garbage collector erases the victim block and adds the victim block into the free  

block pool. 

Algorithm 2. Valid page copies in garbage collection for Asymmetric Programming. 
Input: Valid pages in the valid page buffer. Np: The count of physical pages in one physical block. 
Output: Write the valid pages in the valid page buffer into a free physical block 

1: for i = 0; i < Np, i++ do 

2: if PPN #L (the Physical Page Number of page i ) is LSB page then 

3: Fetch one uncritical page (LPN #K ) from the valid page buffer 

4: if there’s no uncritical page in the valid page buffer then 

5:       Do nothing. 

6:     else  

7:       Write LPN #K into PPN #L  

8:       Kick LPN #K out of the valid page buffer 

9:       Update the mapping table 

10:     end if 

11:   else  

12: if PPN #L (the Physical Page Number of page i ) is MSB page then 

13:      Fetch one critical page (LPN #Q ) from the valid page buffer 

14:      if there’s no critical page in the valid page buffer then 

15: Fetch one uncritical page (LPN #K ) from the valid page buffer 

16: if there’s no uncritical page in the valid page buffer then 

17:         Do nothing. 

18:       else  

19:         Write LPN #K into PPN #L  

20:         Kick LPN #K out of the valid page buffer 

21:         Update the mapping table 

22:       end if 

23:     else  

24:       Write LPN #Q into PPN #L  

25:       Kick LPN #Q out of the valid page buffer 

26:       Update the mapping table 

27:     end if 

28:   end if 

29: if there’s no LPNs in the valid page buffer then 

30:   break 

31: end if 

32: end for 
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Steps 1 and 3 will not influence the location of critical pages in the MLC NAND flash memory. 

However, when the garbage collector copies valid pages from the victim block to a free block, we need 

to make sure that the critical pages are still stored in the MSB physical pages. To achieve this objective, 

step 2 of the garbage collection process has to be modified. We propose the asymmetric garbage 

collection strategy to handle this issue. Our basic idea is to use a small buffer to reorganize write requests. 

Algorithm 2 presents the basic procedures of the garbage collection operations in Asymmetric 

Programming.  

In Algorithm 2, a small buffer is used to store all valid pages from the victim block. Our strategy 

issues write operations for critical pages to the free block. For the LSB page of the free block, the 

asymmetric garbage collection strategy will look up the valid page buffer and fetch one uncritical page 

and write it into this physical LSB page (lines 2–10). If the writing process is finished successfully, the 

fetched uncritical page will be kicked out from the valid page buffer. For the MSB page of the free block, 

the asymmetric garbage collection strategy will try to fetch one critical page from the valid page buffer 

and write it into this physical MSB page then kick out the copied critical page out of the valid page 

buffer (lines 24–27). Thus, critical pages can still be ensured to be stored in physical MSB pages after 

the garbage collection process. If there’s no critical pages left in the valid page buffer, then the 

asymmetric garbage collection strategy will fetch one uncritical page and copy it into this physical MSB 

page (lines 14–22). The garbage collection is done when all the valid pages in the valid page buffer are 

copied into the free block (line 30).  

We also use an example to illustrate the asymmetric garbage collection strategy. Figure 8 shows the 

example. For the purpose of illustration, we assume that there are eight pages in a physical block. One 

physical block is selected as the victim block. In this block, four pages are valid pages, and pages C and 

E belong to critical pages. These four valid pages will be copied to the buffer. Our strategy will first 

issue write operations for the uncritical page (i.e., page A). Similarly, another uncritical page will be 

written to page 1 following the sequential manner of programming in MLC NAND flash memory. For the 

physical page 2 and 3 which are MSB pages, our strategy will issue write operations for critical pages 

(i.e., pages C and E). 

Figure 8. An example of the valid page copy strategy of the asymmetric garbage collection. 
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5. Evaluation and Analysis 

To evaluate the effectiveness of our proposed Asymmetric Programming scheme, we conducted a 

series of experiments on a real hardware platform. The objective of the evaluation was to evaluate the 

approach in terms of three performance metrics: the number of uncorrectable page errors, the I/O 

performance and the garbage collection efficiency. In this section, we first introduce the experimental 

environment and performance metrics. We then present the experimental results and the discussion. 

5.1. Experimental Setup 

As shown in Figures 10a and 11, the hardware platform consists of a daughter board and a core board. 

The core board is built based on Xilinx Zynq on-chip programmable SoC architecture [21], which is 

equipped with dual hardware ARM Cortex A9 processors running at 800 MHz, 1 GB DDR3 RAM. The 

daughter board supports up to eight NAND flash packages with the sockets. In this evaluation, we used 

64 Gb Micron 29F64GCBAAA NAND flash memory chips. The configuration of this MLC NAND 

flash is shown in Table 2. 

Table 2. Configuration of the Micron 29F64GCBAAA NAND flash memory  

Configuration  

Organization 

Page Size 8192 + 448 bytes 
Block Size 256 pages 
Plane Size 2 planes 

Device Size 4096 blocks 

Performance 
Read Page 75 us (MAX) 

Program Page 1300 us (TYP) 
Erase Block 3.8 ms (TYP) 

Reliability 
Data Retention JESD47G compliant  

Endurance 3000 P/E cycles 

All of the firmware were implemented in the Zynq SoC. As shown in Figure 9, the Zynq SoC  

resource is comprised of two parts: the processing system and the programmable logic. The processing 

system has dual ARM cores and other peripheral controllers, such as USB 2.0 interface controller and a 

DDR3 controller. The NAND flash controller was implemented in the programmable logic, which is a 

standard Xilinx 7 series FPGA. The programmable logic connects to the AMBA interconnect through 

32-bit high-speed GP AXI port with a bandwidth of up to 1 GB/s. We wrapped the NAND flash 

controller with one AXI streaming interface which can achieve the maximum bandwidth of the AXI 

interface. One AXI lite slave interface was used to operate the registers of the NAND flash controller, 

making it possible to take full advantage of the bandwidth of the high-speed High Performance (HP) 

AXI port of Zynq. 
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Figure 9. The firmware architecture of the experimental platform. 

 

Due to the limited bandwidth of the USB 2.0 interface, we also designed a hardware NAND flash 

timer to precisely monitor the response time of NAND flash memory. This hardware NAND flash timer 

can reach a resolution of 10 ns, which is accurate enough for our time-related experiments. Asymmetric 

Programming was implemented in the processing system of Xilinx Zynq. 

To evaluate Asymmetric Programming, we adopted the NTFS file system on the host computer and 

connected our hardware platform with the USB interface. To evaluate the efficiency of Asymmetric 

Programming, we focused on enhancing the reliability of the metadata in the NTFS file system. The size 

of the NTFS allocation unit size is configured as 8192 bytes and the original metadata were allocated to 

the first 1024 logical pages (i.e., #LPN 0 to #LPN 1023). 

Pure page-level FTL was implemented as a thread in the FreeRTOS which is widely used free real 

time operating system and ran at the processing system of the hardware platform, which is equipped 

with dual ARM cores. We maintained the mapping table of the logical page number (LPN) and physical 

page number (PPN), and the other important data structures (e.g., bad block information and a shared 

pages mapping table) in the RAM (DDR3). The capacity of DDR3 of our hardware platform is 1 GB, 

which is big enough to keep these data structures. We modified the widely used greedy policy [38] in 

the garbage collection process and made the metric of the P/E cycles and the metric of the number of 

valid pages in the block both have 50% weight to find the victim block. Thus, the wear leveling was also 

very effective in our design. An additional system monitor module was also added into the FTL, which 

can record all of the flash operations (e.g., the number of read, program and erase operations, the overall 

request number and the number of the valid page copies in the garbage collection process).  

We compared Asymmetric Programming with a representative Meta-Cure scheme [17] and the 

default error correction scheme in the Linux kernel (labeled as “Baseline”). First, we use the real 

workload of the sensor system of Zynq board to evaluate the effectiveness of Asymmetric Programming 

scheme. Then, we apply IOMeter [39], which is widely used as a standard and configurable workload 

generator, to conduct more comprehensive experiments to further analyze the proposed scheme.  
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5.2. Experimental Results and Analysis with Zynq On-Board Sensor System 

In this section, we present the experimental results with an analysis of Asymmetric Programming 

with Zynq on-board sensor system. The system architecture of the experimental setup is shown in  

Figure 10a. The Zynq on-board sensor system is a typical sensor system which includes on-board sensors 

and a dual 12-bit, 1 Mega sample per second (MSPS) Analog to Digital Converter (ADC) as shown in 

Figure 10b [40]. On-board sensors support measurement of the power supply voltages of 11 channels 

and die temperature. The ADC conversion data is stored in dedicated registers called status registers. 

These registers are accessible through the FPGA interconnect, which is an AXI Slave interface in our 

design. As shown in Figure 10a, the data of Zynq on-board sensors is read out by the computer through 

the Ethernet interface and the computer then writes the data back into the NAND flash on the daughter 

card which is configured as the description of Section 5.1. We store the received data into binary files 

and each file has the size of 16 KB. All of the sensor data is kept in the space of 256 MB of one NAND 

flash. When the capacity runs out, we just erase the old data and continue to store the incoming data into 

this area.  

Figure 10. (a) The system architecture and illustration of the data flow (b) Zynq on-board 

sensor system block diagram. 

    
(a) (b) 

As shown in Table 3, the 29F64GCBAAA MLC NAND flash is baked to 2000 P/E cycles first and 

4-bit BCH code is applied. The statistic results of the workload gained from Zynq on-board sensor 

system are also shown in Table 3.  

Table 3. The characteristic of the workload and the status of Micron 29F64GCBAAA 

NAND flash memory of Baseline, Meta-Cure, and Asymmetric Programming (BL: Base 

Line; MC: Meta-Cure; AP: Asymmetric Programming). 

Scheme 

Workload Characteristic NAND Flash Package status 

Number  

of Requests 

Percentage of  

Write Operations 

Average 

Request Size 

Level of Wear 

(P/E Cycles) 
ECC Strength 

BL 282,710 93.34% 16.09 KB 2,000 4-bit 

MC 282,802 93.19% 16.09 KB 2,000 4-bit 

AP 282,464 93.23% 16.09 KB 2,000 4-bit 

We compared Asymmetric Programming with a representative scheme Meta-Cure [17] and the 

default error correction scheme in the Linux kernel (labeled as “Baseline”) in terms of three performance 
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metrics: the number of uncorrectable page errors, the I/O performance and the garbage collection 

efficiency. The experimental results are shown in Table 4. 

Compared with the Baseline scheme, we can observe that the proposed Asymmetric Programming 

can reduce up to 91.97% uncorrectable page errors while only inducing 0.04% and 0.23% overhead in 

terms of average response time and number of block erase counts, respectively. The additional block 

erase operations of Asymmetric Programming are caused by the request feedback operations, but its 

overhead is negligible compared with that of Meta-Cure. This further proves the effectiveness of 

Algorithm 1. The overhead of extra block erase operations eventually results in the average response 

time overhead, but it is still negligible according to Table 4. 

Table 4. The experimental results of Baseline, Meta-Cure, and Asymmetric Programming 

with Zynq on-board sensor system (BL: Base Line; MC: Meta-Cure; AP: Asymmetric 

Programming). 

Scheme 

Uncorrectable Page Errors I/O Performance Garbage Collection 

# of 

Uncorrectable 

Page Errors 

Reduction (%) 

(vs. BL) 

Average Response 

Time (ns) 

Overhead (%) 

(vs. BL) 

# of Block 

Erase Counts 

Overhead (%) 

(vs. BL) 

BL 2503 — 2,495,552 — 1,745 — 

MC 983 60.70 2,727,154 9.28 1,866 6.93 

AP 201 91.97 2,496,564 0.04 1,749 0.23 

Since Asymmetric Programming enhances the reliability of data directly in the programming process 

and allocation process and does not require extra program operations like Meta-Cure, therefore, the 

proposed scheme has much less garbage collection operations. Asymmetric Programming also does not 

need to read backup pages to search for the correctable page. Thus, it also has less read operations than 

Meta-Cure. Based on these analysis, it is reasonable for Asymmetric Programming to increase the I/O 

performance by 9.24% compared with Meta-Cure.  

Thus, we can conclude that the proposed Asymmetric Programming can achieve higher reliability 

than Meta-Cure, while induce negligible overheads in terms of the I/O performance and the garbage 

collection efficiency in a Zynq on-board sensor system. 

5.3. Experimental Results and Analysis with IOMeter Tool 

To fully evaluate the proposed Asymmetric Programming and measure its performance with more 

comprehensive metrics, we conducted more experiments with IOMeter [39]. The system architecture is 

shown in Figure 11. IOMeter is widely used as a standard and configurable workload generator and it 

conducts the write and read operations to the experimental platform according to the configuration.  

In this section, we present the experimental results with an analysis with IOMeter. We also compared 

Asymmetric Programming with a representative scheme Meta-Cure [17] and the default error correction 

scheme in the Linux kernel (labeled as “Baseline”) in terms of three performance metrics: the number 

of uncorrectable page errors, the I/O performance and the garbage collection efficiency. We also use 

256 MB space in one NAND flash package to conduct the experiment and the allocation unit size of 
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NTFS is set as 8192 bytes. Thus, the size of each read or write request of the NTFS is the integer 

multiples of the allocation unit size and is aligned to the size of physical page which is also 8192 bytes. 

Figure 11. The system architecture and illustration of the data flow with IOMeter 

IOMeter

 

5.3.1. Uncorrectable Page Errors 

As the program and erase cycles (P/E cycles) increase, the bit error rate (BER) increases 

correspondingly. Table 5 presents the number of uncorrectable page errors under two levels of wear, 

which are 1000 and 3000 P/E cycles. The objective is to quantify the error correction capability beyond 

the built-in ECC when the NAND flash is in a normal condition and a nearly worn out condition. The 

maximum number of P/E cycles of the NAND flash chip used in the experiment was 3000. In Table 5, 

“ECC strength” indicates the number of bits of errors that can be corrected by the BCH code for one 

physical page. The workload generated by the IOMeter was configured with 50% random requests and 

50% read accesses and lasted for 10 minutes. 

Table 5. The number of uncorrectable page errors for Baseline, Meta-Cure, and Asymmetric 

Programming with different ECC strengths with a P/E cycle of 1000 and a P/E cycle of 3000 

(BL: Base Line; MC: Meta-Cure; AP: Asymmetric Programming). 

ECC 

Strength 

1000 P/E Cycles 3000 P/E Cycles 

# of Uncorrectable Page Errors Reduction (%) # of Uncorrectable Page Errors Reduction (%) 

BL MC AP AP vs. BL AP vs. MC BL MC AP AP vs. BL AP vs. MC 

0-bit 9647 6572 5716 40.75 13.04 12,947 12,937 8133 37.18 37.13 

1-bit 6270 3589 1384 77.93 61.43 8238 7197 3208 61.06 55.43 

2-bit 2559 1002 295 88.47 70.56 4667 4177 1243 73.34 70.24 

3-bit 1328 361 57 95.71 84.21 2331 1230 532 77.18 56.75 

4-bit 658 135 11 98.33 91.85 1106 570 170 84.63 70.18 

5-bit 316 53 3 99.05 94.34 539 141 53 90.17 62.41 

6-bit 165 27 2 98.79 92.59 250 80 15 94.00 76.67 

7-bit 66 7 2 96.97 71.43 120 30 7 94.17 76.67 

8-bit 66 7 2 96.97 71.43 32 4 4 87.50 0.00 

Average    88.11 72.32    77.69 56.67 
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From the experimental results, it can be seen that the number of uncorrectable pages decreases 

dramatically as ECC strength increases. Although Meta-Cure can reduce the number of error pages 

significantly, our proposed Asymmetric Programming can further improve the performance and cause 

the error rate to be maintained at a very low level. When the P/E cycles are 1000 times, compared with 

the baseline scheme, Asymmetric Programming can avoid up to 40.75% of page errors even without any 

ECC (0-bit ECC). 

If Asymmetric Programming is combined with the BCH code, reduction in page errors of at least 

77.93% can be achieved. Compared with Meta-Cure, our proposed Asymmetric Programming can 

reduce page errors by 72.32% on average, which means that Asymmetric Programming can improve the 

reliability of system critical page by 72.32% compared to Meta-Cure. When the P/E cycles are 3000, the 

NAND flash is on the verge of wearing out. The number of uncorrectable pages increases sharply as 

shown in Table 5. However, Asymmetric Programming can still reduce error pages by up to 94.17%. 

Compared to the baseline scheme and Meta-Cure, Asymmetric Programming can also reduce the number 

of uncorrectable page errors by an average of 77.69% and 56.67%, respectively. These results show that 

Asymmetric Programming can work effectively even if the NAND flash is approaching its maximum 

lifetime. Through the behavior of Asymmetric Programming under the two levels of wears, we can 

conclude that Asymmetric Programming effectively enhances the reliability of critical pages during the 

whole lifetime of NAND flash memory. 

5.3.2. I/O Performance 

I/O performance is another important performance metric for evaluating the NAND flash memory 

storage system. We evaluated the I/O performance of the proposed scheme in terms of two metrics: the 

average response time and the response time for read operations. To fully evaluate these time-related 

cases of Asymmetric Programming, we ran the proposed scheme under workloads with different ratios 

of random accesses and different percentages of read operations generated by IOMeter. The error 

correction capability of the BCH code was configured as four bits. To accurately measure the response 

time of each request, we used the implemented hardware NAND flash timer. The precision of the 

response time was 10 nanosecond. We recorded the response time of each request and calculated the 

required time value. 

The experimental results for average response time are shown in Table 6 and Table 7. We observe 

that Asymmetric Programming can achieve similar average response times as the baseline scheme. From 

the results, it can be seen that the overhead for the average response time ranges between 0.002% and 

0.33%. These results show that the I/O performance overhead incurred by Asymmetric Programming  

is negligible. 

From Tables 6 and 7, we also find that the average response time of Asymmetric Programming is not 

sensitive to the percentage of random accesses but is highly sensitive to the ratio of write operations. 

That is because the more write operations in the workload, the more frequently garbage collection is 

needed and the average response time will be longer. For different ratios of random accesses, the number 

of block erase counts is relatively stable as shown in Figure 14c. Therefore, the average response time 

will also be relatively stable.  
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We conducted experiments on performance under different percentages of random accesses with a 

50% read operation workload as shown in Table 6. Compared to Meta-Cure, our scheme can improve 

the average response time by 6.57% on average, while inducing only 0.07% overhead compared with 

the baseline scheme. This means that our proposed scheme enhances the reliability of the critical pages 

of storage system with only a negligible average response time overhead. 

Table 6. The I/O performance for Baseline, Meta-Cure, and Asymmetric Programming with 

different radios of random accesses (BL: Base Line; MC: Meta-Cure; AP: Asymmetric 

Programming). 

% of Random 

Accesses 
Total Requests 

Average Response Time (ns) Overhead (%) Improvement (%) 

BL MC AP MC vs. BL AP vs. BL AP vs.MC 

0 146,443 1,638,774 1,735,443 1,635,948 6.21 0.12 6.09 

25 146,381 1,750,170 1,867,718 1,751,090 6.72 0.05 6.66 

50 146,353 1,754,543 1,871,834 1,755,464 6.68 0.05 6.64 

75 151,467 1,751,297 1,868,359 1,754,623 6.68 0.12 6.56 

100 146,355 1,753,841 1,874,425 1,753,383 6.88 0.002 6.90 

Average     6.63 0.07 6.57 

Table 7. The I/O performance for Baseline, Meta-Cure, and Asymmetric Programming with 

different percentages of read operations (BL: Base Line; MC: Meta-Cure; AP: Asymmetric 

Programming). 

% of Read 

Operations 

Total 

Requests 

Average Response Time (ns) Overhead (%) Improvement (%) 

BL MC AP MC vs. BL AP vs. BL AP vs. MC 

0 155,704 2,438,562 2,530,800 2,442,056 3.78 0.14 3.64 

25 151,518 2,089,008 2,187,306 2,095,965 4.71 0.33 4.38 

50 146,353 1,755,354 1,871,839 1,758,980 6.64 0.21 6.43 

75 151,477 1,406,386 1,545,373 1,410,152 9.88 0.27 9.61 

100 151,442 1,112,380 1,271,339 1,110,935 14.29 0.06 14.23 

Average     7.81 0.20 7.61 

Figure 12. Response time for the read operation of Baseline (BL), Meta-Cure (MC), and 

Asymmetric Programming (AP). 
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The response time of the read operation is another important issue. We used a workload with random 

accesses of 50% and a read operation of 50% to verify the performance of the Asymmetric Programming 

read operation. The workload lasted for five minutes. The experimental results shown in Figure 12 

indicate that Asymmetric Programming can achieve nearly the same response time as the baseline 

scheme for read operations, while Meta-Cure has a response time over two times longer for read 

operations. This is because Meta-Cure must read one or more redundant backup pages for critical pages 

to restore the damaged metadata. That means an overhead cost of two or more times in the response time 

of read operations. We conducted this experiment using NAND flash with 1000 P/E cycles. As the P/E 

cycles increase, the uncorrectable page errors will also increase. The response time of Meta-Cure will 

increase correspondingly. However, Asymmetric Programming improves the reliability of metadata in 

the programming process without the need to conduct any extra read operations. Therefore, Asymmetric 

Programming will not cause any overhead in terms of response time for read operations. 

5.3.3. Garbage Collection and Endurance 

The endurance of NAND flash is one of the most important factors to take into account when 

analyzing the reliability of flash memory. The endurance of NAND flash is mainly affected by the 

number of block erase counts in the flash. We also present the total number of write and read operations 

and the number of valid pages that were copied to further exploit the garbage collection efficiency of 

Asymmetric Programming. All of the workloads were generated by IOMeter, and each workload lasted 

for five minutes for each experiment. 

Figures 13 and 14 present the number of block erase counts and the total number of write and read 

operations with different percentages of read operations and different ratios of random accesses. From 

the results of Figures 13c and 14c, we observe that Asymmetric Programming can achieve almost the 

same number of block erase counts as the baseline scheme, which means that Asymmetric Programming 

will not induce overhead for the endurance of the NAND flash. This result also indicates that our 

proposed write algorithm (Algorithm 1) is very effective at improving block utilization and that it inserts 

most of the uncritical page data into the physical pages between the adjacent MSB pages by conducting 

request feedback operations using request queue scheduler. 

Compared with Figure 14c, we can see that the number of block erase counts is affected by the number 

of write operations for the baseline scheme, Meta-Cure, and Asymmetric Programming schemes. 

Because of the intrinsic feature of IOMeter, to meet the configuration of the random ratio, it divides the 

workload into several segments and every segment has accurate random request ratio according the 

configuration. There are 256 pages per block in the flash package we used in the experiments, which is 

larger than the segment size of the workload of IOMeter. Thus, except for all sequential accesses  

(0% random accesses), other different ratios of random accesses would be seemed as all random accesses 

to the flash package we use. Therefore, the erase count of different ratios of random accesses will not be 

the same except for all sequential accesses. 

The total number of read operations and that of write operations are shown in Figure 13a,b, 

respectively. Compared with Figure 13c, we can clearly see that the number of block erase counts is 

affected by the number of write operations for the baseline scheme, Meta-Cure, and Asymmetric 

Programming schemes. In addition, the total number of read and write operation of the proposed scheme 
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is still the same as that of baseline scheme and much smaller than that of Meta-Cure scheme. This result 

indicates that Asymmetric Programming scheme induces very few extra write operations when 

conducting request feedback operation. Also, by combining the results in Figure 14a–c, we can see that 

none of these three schemes are sensitive to the percentage of read/write operations. 

Figure 13. (a) The total number of read operations (b) The total number of write operations 

(c) The number of block erase counts in Asymmetric Programming (AP) with different 

percentages of read operations. 

             (a)                          (b)                        (c)             

Figure 14. (a) The total number of read operations (b) The total number of write operations 

(c) The number of block erase counts in Asymmetric Programming (AP) with different ratios 

of random accesses. 

 
             (a)                          (b)                        (c) 

The number of valid page copies is another important factor in evaluating the efficiency of the 

garbage collection process. Figure 15a,b present the number of valid page copy operations with different 

percentages of read operations and different ratios of random accesses for the baseline, Meta-Cure and 

Asymmetric Programming, respectively. We can see that Asymmetric Programming achieves nearly 

similar numbers of valid page copy operations as that of the baseline scheme with different percentages 

of read operation and the case with different ratios of random accesses. Compared with the Meta-Cure 

scheme, Asymmetric Programming and Meta-Cure have much smaller numbers of valid page copy 

operations. This is because there are few extra garbage collection operations caused by the Asymmetric 

Programming scheme. This result further proves that the proposed Asymmetric Programming scheme 

has much higher garbage collection efficiency and better endurance than that of Meta-Cure scheme. 
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Figure 15. The number of valid page copy operations for Baseline (BL), Meta-Cure (MC), 

and Asymmetric Programming (AP) during garbage collection operations with different (a) 

Percentages of read operations (b) Ratios of random accesses. 

 
(a)                               (b) 

6. Discussion and Analysis 

In this section, we present the discussion about the proposed Asymmetric Programming scheme in 

terms of performance analysis and the induced overhead. 

6.1. Performance Analysis 

We present a performance analysis of Asymmetric Programming in terms of read performance write 

performance and garbage collection efficiency. 

(1) Impact on Read Performance: When the file system conducts reading operations, the read request 

will query the mapping table of FTL to get the physical address of the corresponding logical address of 

the request. Then, the NAND flash controller will return the data of the physical page. Asymmetric 

Programming does not need to modify the FTL address mapping table or add any extra mappings for 

the read process. Therefore, Asymmetric Programming will not bring any overhead to the read 

performance as shown in results of Figure 12. 

(2) Impact on Write Performance: When performing write operations, Asymmetric Programming 

will directly bypass the uncritical page write requests, which make up the greater part of the I/O requests. 

This will not incur overhead for write performance of uncritical pages. For those write requests of critical 

pages, the time overhead is incurred by the shared pages mapping table searching time, the extra request 

feedback operations and the garbage collection process. Asymmetric Programming needs to search the 

shared pages mapping to find the MSB page. The time spent on searching for an entry is set as Tp. The 

searching time is determined by the page number of one block (set as Np). The Np of commercial NAND 

flash is usually no more than 256. For example, we used Micron’s 29F64GCBAAA NAND flash 

memory chip which consists of 256 pages in one block. Thus, there are no more than 128 (256/2) entries 

in the shared pages mapping table. Fetching these entries in the shared pages mapping table will take at 

most several hundreds of nanoseconds and its impact to the write performance can be negligible. 

As described in Algorithm 1, Asymmetric Programming may also introduce extra request feedback 

operations if the current critical page request is not allocated in the MSB page. Then there will be extra 

time overhead for write operations. The time overhead is related to the number of request feedback 
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operations. Because most of the operations of the file systems are file-based operations and metadata 

only occupies a small part of the file, most of the critical requests are random requests. That means, in 

most cases, one request feedback operation could be enough for the critical pages to be stored in MSB 

pages. Therefore, the time overhead introduced by the request feedback operation would be small. This 

conclusion is well proved by experimental results of Figures 13 and 14. 

(3) Impact on Garbage Collection Performance: During the garbage collection process, Asymmetric 

Programming copies all of the victim pages into the buffer and then reallocates the order of all the valid 

pages. Comparing the normal garbage collection process without Asymmetric Programming, it should 

be noted that Asymmetric Programming has to search the shared pages mapping table to ensure that all 

of the valid critical pages are copied into the MSB pages of the target block. Each valid page will add 

one extra search for the shared pages mapping. The total time cost is Np*Tp. Taking Micron’s 

29F64GCBAAA as an example, Np is 256 and Tp is about 300 ns. Thus, the overall time for Asymmetric 

Programming is about 38 µs. 

Assuming that the time required to read a page, program a page, and erase a block are Trd, Tprog, and 

Ters, respectively, and that half of the pages in the victim block are valid pages, then the overall time cost 

of valid page copy and block erase operations will be Np/2 ∗ (Trd + Tprog) + Ters. In typical NAND flash 

memory chips, Trd, Tprog and Ters are 75 µs, 1300 µs and 3800 µs, respectively. Thus, the time needed for 

valid copy and block erase operations of one instance of garbage collection is 179,800 µs. This means 

Asymmetric Programming will have a time overhead of less than 0.1% for the garbage collection 

process. This conclusion is indicated by the results of Figures 13 and 15, in which the proposed 

Asymmetric Programming scheme has almost the same garbage collection efficiency in terms of the 

number of block erase counts and the number of valid page copy operations.  

6.2. Overhead Analysis 

As shown in Figure 16, compared with the baseline scheme, there will be some overhead induced by 

the proposed scheme (on average 3.32%), but the worst case response time is still much smaller than 

that of Meta-Cure method, which induces 9.33% on average overhead compared with that of the baseline 

scheme. As for Meta-Cure, when the redundant write operation for every critical page or selective copy 

operation occurs during garbage collection process, the write operation time will be greatly prolonged 

and this time will be taken as the worst-case response time.  

Compared with the baseline scheme, which does not have the request feedback operation, the  

worst-case response time of Asymmetric Programming is a little longer than that of the baseline scheme. 

If the request feedback operation is conducted multiple times, the garbage collection process will be 

prolonged and that will induce some overhead for the worst case response time. 

Figure 16 presents the worst-case response time of Asymmetric Programming with different 

percentages of read operations and different ratios of random accesses. For our Asymmetric Programming 

scheme, the request with worst-case response time takes place when the request queue scheduler delays 

the current write request to serve the next request (as shown in Algorithm 1) and the garbage collection 

process is triggered at the same time. This request feedback operation may be conducted several times. 

Thus, the worst-case response time would not be constant with different workloads. 
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Figure 16. The worst-case response time for Baseline (BL), Meta-Cure (MC), and 

Asymmetric Programming (AP) with different (a) Percentages of read operations (b) Ratios 

of random accesses. 

 
(a)                               (b) 

7. Conclusions 

In this paper, we have proposed Asymmetric Programming, a reliability aware metadata allocation 

strategy for MLC NAND flash memory storage systems. Asymmetric Programming utilizes the 

characteristics of the shared pages in MLC NAND flash memory and only stores metadata pages in MSB 

pages. Asymmetric Programming enhances the reliability of metadata using two strategies: MSB 

allocation and asymmetric garbage collection. By adopting these two strategies, the error rate is reduced 

and the utilization of physical blocks is improved. We have conducted experiments on a real hardware 

platform with ARM Cortex A9 processors and multiple NAND flash memory chips. The results show 

that our Asymmetric Programming scheme can significantly reduce uncorrectable page errors, without 

incurring any space overhead. In the future, we plan to apply our strategy to hybrid storage systems with 

both SLC and MLC NAND flash or with other types of nonvolatile memory. We also plan to further add 

the issue of the performance variation between MSB and LSB page programming latencies [41,42] into 

our metadata protection scheme to further improve the reliability of the metadata in MLC NAND flash. 
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