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Abstract: The Internet of Things (IoT) enables the communication among smart objects 
promoting the pervasive presence around us of a variety of things or objects that are able to 
interact and cooperate jointly to reach common goals. IoT objects can obtain data from 
their context, such as the home, office, industry or body. These data can be combined to 
obtain new and more complex information applying data fusion processes. However, to 
apply data fusion algorithms in IoT environments, the full system must deal with 
distributed nodes, decentralized communication and support scalability and nodes 
dynamicity, among others restrictions. In this paper, a novel method to manage data 
acquisition and fusion based on a distributed service composition model is presented, 
improving the data treatment in IoT pervasive environments. 
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1. Introduction 

The main idea of the Internet of Things (IoT) is the pervasive presence around us of many smart 
things or objects. These objects can be real-world physical devices as sensors, actuators or devices,  
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as well as data resources that are able to interact and cooperate with their neighbors to reach  
common goals [1].  

IoT has direct applications and involves new paradigms of software development in fields, such as  
home-automation, ambient assisted living, healthcare, smart-cities, industrial management and 
artificial intelligent computing [2]. IoT promotes that all objects of the real world, at home, at the 
office and everywhere, are interconnected and provide new applications and functionalities with an 
autonomous, smart collaborative behavior. However, the development of IoT software infrastructures 
has new problems to overcome related to networking and composition aspects. The classical 
distributed software model does not work well with a network of heterogeneous devices that are 
capable of collaborating among them to provide higher value-added functionality to end users. 
Thousands, even millions, of devices should be identified, having a well-defined functionality and 
being connected to a network, as well. IoT objects are resource-constrained devices in terms of both 
computation and energy capacity. Then, the proposed solutions must be lightweight applications that 
use efficiently the resources and manage the scalability and interoperability of devices [3]. 

The big heterogeneity of hardware devices used in IoT makes it suitable to adopt a middleware 
layer, which guarantees scalability and interoperability. Service-oriented architecture (SOA) is 
becoming the most widespread approach to implement middleware for distributed systems [4]. 
However, the application of SOA principles without an appropriate setting of non-functional 
requirements in terms of quality attributes (e.g., performance or bandwidth) and system configuration 
(e.g., involved technology or platforms) provides useless systems that can hardly guarantee the 
robustness, reliability, availability and scalability properties required in current pervasive spaces. The 
idea of assembling application components into a network of loosely coupled services to create 
flexible and dynamic processes with agile applications running on different computing platforms 
reinforces the role of the service as the main abstraction to support the development of  
distributed applications.  

The success of IoT application development will be strongly linked with the cooperation and 
collaboration among heterogeneous networked embedded devices through services. Real-world 
devices in the next generation Internet will be able to share their functionality and cooperate with other 
components dynamically. An example of a real IoT scenario could be a recommender system (RS), 
which predicts items or ratings of items that users are interested in. The RS will combine and fuse the 
information provided by sensors as heterogeneous data to obtain new information and to suggest 
something interesting to final users [5]. 

Data fusion processes have been traditionally carried out in a centralized fashion using powerful 
servers that analyze, apply reasoning and perform inference of new knowledge with data [6]. In this 
paper, we propose a new method to manage data acquisition and fusion based on a distributed service 
composition model applied to an IoT case study. It provides a high level model of representation, 
which abstracts the underlying complexity and heterogeneity of devices that it is typical in IoT 
scenarios. Developers can model the IoT scenario using services and the interaction between services 
using a well-defined service composition model. The service composition model allows us to design an 
IoT system from basic elements, devices, to high level software units, services with complex 
functionality, in a distributed fashion. The service interaction modeled by using the service 
composition model adds relevant QoS properties to the system, such as bounded execution time or 
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latency. If developers know bounded values of execution time in the request of service operations, they 
can add soft-real time restrictions to the system execution. Considering these soft-real time properties, 
developers can analyze their systems before to deploy them into real scenarios and optimize the use of 
the whole system defining, for instance, the most appropriate sampling time of specific services. 

The proposed idea has already been discussed in other contexts related to IoT before, such as 
environmental monitoring and energy management [7], logistics [8] or healthcare [9]. All of the 
applications proposed in these studies set a unified identification and communication framework 
between smart sensors and the transmission of data via the Internet. Data transmitted from sensors are 
then processed and managed by a server or a specific powerful computing node in a cloud. However, 
they hardly ever argue about the possibility to compute the information at different levels on devices, 
even in sensors themselves. The solution presented in this paper claims that data fusion in IoT has to 
be processed distributively following a service composition model in every device according to its 
computing capacity over the IoT network, without needing a centralized server. 

The applicability of the proposed method and the consequences in the execution of the system are 
shown in detail with a case study focused on weather forecaster. However, there are other situations of 
real life where the proposed solution can be applied. For example, in a home automation scenario, the 
information from sensors can be combined with user preferences to accommodate the house state, such 
as temperature, illumination, etc. In an industrial scenario, where the production can be affected by 
several situations, the proposed method can be applied, as well. During the procedure, sensors may 
obtain and process information, whereas high level services may analyze the data. If a critical situation 
is detected, other services will be started to inform the responsible person that something has happened.  

The method proposed has several relevant properties desirables in IoT environments. It is scalable, 
since new services can be easily added to the system and then collaborate with the rest of services, 
aiming at a common goal. The scalability of the system is based in the underlying SOA middleware, 
which support the service composition model. It is also decentralized, i.e., each service has available 
all the information about its required services in order to process that information according to its 
computing capabilities, and is efficient, because the correctness of the collaboration between services 
is ensured by construction. Hence, the system can be analyzed without any complex verification 
procedure and to detect the possible errors regarding the model. Moreover, it favors a lightweight 
composition procedure, because services do not need to know which service is requesting its 
functionality, only what the required services are. 

The rest of the paper is organized as follows. Section 2 introduces the research background related 
to this work. Section 3 details the main aspects of the data fusion method using the service 
composition model presented in this paper. Section 4 details a case study, analyzing the hardware 
devices used, the services implemented and the results obtained after running the test. Finally,  
Section 5 shows the future research lines and the conclusions of the work. 

2. Background  

Pervasive computing and IoT are changing the way we live. There is a virtual world of services 
with which we interact at work, at home and even in our relationship with other people. The 
application of IoT goes from ambient assisted living, industrial equipment to the healthcare  
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domain [10], including sensing, data collection and monitoring personal, health and environmental 
parameters. Fused and combined information from sensors embedded in mobile devices can be used by 
IoT applications to determine the user’s situation and to build adaptive context-aware services [11].  

Considering data and functions as services is well suited in pervasive computing and IoT [12]. The 
building of new collaborative services with complex functionality, data fusion algorithms applied to 
obtain context-awareness, the semantic representation of the information and the final applications can 
be seen as composite operations distributed between services over a well-formed middleware [13]. In 
this context, we analyze data acquisition and fusion methods using lightweight collaborative services. 
One of our research objectives is to give distributed support to, for instance, the fusion process, 
avoiding the centralized figure of the fuser using quality of service (QoS) properties to select the best 
service to carry out the functionality of an application.  

SOA-based architecture implemented in mOSGi is used by Bernardos et al., to develop  
context-aware applications over a framework called CASanDRA (Context Acquisition Services and 
Reasoning Algorithm) [14]. In the scope of the interconnected embedded devices, the Open Services 
Gateway initiative (OSGi) alliance has created several specifications to make easier the development 
of distributed applications. This specification defines a system that allows designing compatible 
platforms to share services [15]. All services can be executed and dynamically linked into a particular 
node or remotely among independent network nodes from OSGi 4.2. Other interesting approach is to 
use the Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the 
Model Driven Architecture (MDA) to carry out the development of Internet-oriented platforms [16]. In 
this case, the middleware is designed to manage and control directly network resources (instead of 
services) that are available and accessible through specific nodes in the network.  

Wireless sensor network for healthcare [17] and, more specifically, body sensor networks (BSNs) 
are also very popular challenges related to IoT [18]. BSNs come with the promise to improve the 
quality of life and healthcare of disabled and elderly people and also to improve our daily routines, 
such as playing sports [19]. However, the distributed and changeable character of this kind of network 
has new challenges to solve. Research in the area of BSNs must cover low-level hardware design to 
higher level communication and data fusion algorithms, up to top-level applications [20]. Therefore, it 
is advisable to use a distributed service middleware to support scalability and reusability. Moreover, 
services and SOA-oriented middleware also are presented in IoT research projects that use semantic 
and ontologies to enrich the information with which the applications work [21,22]. 

QoS properties are also relevant in pervasive service platforms, and there are several research  
works that consider QoS properties in the composition process of their middleware platforms:  
Estévez-Ayres et al. define a hybrid approach for selecting services using real-time composition 
algorithms [23]; Chang and Lee consider a multi-criteria quality model in three dimensions, services, 
contents and devices, to define its composition methodology [24]; Moser et al. define non-deterministic 
QoS attributes to facilitate the domain-specific service selection [25]. 

In terms of communication, an effort to bring lightweight Internet connectivity to smart IoT objects 
is being carried out by several organizations, such as IETF (Internet Engineering Task Force) and the 
IPSO (Internet Protocol for Smart Object) Alliance [26,27]. In this sense, it has been designed several 
protocols to be used by constrained nodes in a lightweight fashion; such as CoAP (Constrained 
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Application Protocol) [28], MQTT (Message Queue Telemetry Transport) [29] and CoSIP 
(Constrained Session Initiation Protocol) [30]. These protocols can be adopted in IoT environments. 

A complementary approach to SOA-based systems has been also applied to multisensor data fusion 
based on multi-agent systems (MAS) [31]. In MAS, agents represent software entities that can be 
equivalent to services. In fact, since agents are autonomous, interactive and adaptive, a hierarchy of 
communicating agents can be conformed from basic agents till more abstract agents to accomplish a 
specific goal [32] in a similar way as a complex service in an SOA context encapsulates its 
functionality by the composition of simpler services. However, although SOA and MAS may share 
some particular objectives, their main focus seems to be different. Unlike services, agents are powerful 
in their communication capacity and interaction with other agents, allowing them to react to changes in 
the environment and adapting its behavior [33,34]. Then, the agent paradigm is best suited to give 
support to service-oriented systems [35,36]. The service-oriented system are focused on the structural 
part of the system profiting from the enhanced capacity to define syntactically systems, even from 
diverse organizations, while agents as active elements of the system are responsible for making smart, 
efficient and optimum use of defined services; i.e., agents can determine the best way to compose 
services dynamically [37]. In our case, the proposal in this paper is more concentrated in determining 
how the system can be structured into service entities to be integrated correctly by the service 
composition model. Moreover, it analyzes how this service composition model can be the support for 
the development of data fusion processes in a distributed fashion considering the restrictions imposed 
by the QoS properties of each service, especially in IoT environments. In a scenario where a service 
consumer (or even an agent) can consume the functionality or resources provided by services statically 
or dynamically, the proposed model addresses several requirements that help to ensure the correction 
of the whole system (e.g., scalability). 

3. Data Fusion Using Service Composition Model 

Next generation Internet comes with the promise to integrate several technologies and communication 
systems with the aim of building an intelligent abstraction of the information around the world. On the 
other hand, machine-to-machine (M2M) communication systems combine multiple sensor interactions and 
merge the information obtained by sensors applying several data fusion algorithms [38].  

In this paper, the distributed data fusion mechanism is based on a well-defined service composition 
model using device services to encapsulate the functionality and restrictions of physical devices. 
Device services are not only abstract physical devices, but they also provide a high level model of 
identification, characterization and communication among services. These aspects are very relevant in 
IoT scenarios, where the amount of devices can be huge. Furthermore, in contrast to hardware-based 
approaches, a change in the functionality of a service should not affect physical devices, because the 
deployment is controlled at a high level of abstraction, without repercussions at the physical level. 

To carry out data fusion, we have to distinguish mechanisms used for acquiring data to be fused 
with respect to specific algorithms applied to produce new data. In this paper, we have worked with the 
first one, i.e., mechanisms for data provision. In general, the papers in the bibliography are more 
focused on the determination of algorithms for data fusion, investigations about its complexity and the 
provision of good estimators and classifiers [39]. 
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Traditionally, data fusion is processed by a software/hardware component, which has direct access 
to external data sources, invoking API functions or reading digital data transmissions through system 
buses. These components have to run by imposing a sustained data provision and also satisfying 
specific restrictions (e.g., real-time communication). The implementation of a time-out facility helps to 
control both above issues and determines when fusion is not possible (e.g., data is not available). 
Therefore, this mechanism has to enable the use of time parameters to specify the time interval 
required by an operation to be executed, providing the possibility of designing deterministic algorithms 
with soft real-time requirements.  

Instead of implementing in-house or legacy components, the application of a distributed technology 
for data fusion has some advantages with respect to traditional approaches. A distributed paradigm 
supplies a well-established communication model (e.g., message passing primitives) with the control 
of networks fails, giving a reliable binding mechanism with external data sources. In addition, the 
computing processing is shared between devices instead of performing all on a single device or server. 

The SOA paradigm benefits the overall building of a system, since the system can be seen as a 
group of interconnected low coupled services. Each service is in charge of its part of functionality and 
must maintain its produced data. Besides, the service composition model gives a natural way to 
implement a distributed data fusion mechanism.  

3.1. IoT Services 

The service is the main element of the SOA paradigm [40]. In general a service is an autonomous, 
self-contained component capable of performing specific activities or functions independently, which 
accepts one or more requests and delivers one or more responses through a well-defined, standard 
interface. From an IoT point of view, services can represent hardware devices, software resources and 
any other thing or object that can be identified and located in specific places.  

An IoT service needs a set of elements to characterize itself with respect to the rest of services in 
the network. Formally, we can represent an IoT service by the five-tuple that we can show in 
Definition 1, where Idi is the identification, Psi its purpose, Ipi the provided interface, Iri the required 
interface and, finally, Ati the set of attributes. 

𝐼𝐼𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =< 𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑖𝑖 , 𝐼𝐼𝐼𝐼𝑖𝑖 , 𝐼𝐼𝐼𝐼𝑖𝑖 ,𝐴𝐴𝐴𝐴𝑖𝑖 > (1)  

First of all, an IoT service needs identification, i.e., a unique name/ID that identifies the service 
unequivocally. Each IoT service can have many runnable instances with the same functionality, but 
executed at different locations. The identification must be unique for each instance of the IoT service and 
readable by any other IoT services, although the service is not in execution. In order to identify univocally 
each IoT service, the identification is based on the uniform resource name (URN), a type of URI (Uniform 
Resource Identifier) that is intended to be persistent resource identifiers, independent of location. 

Second, the IoT service has to specify its purpose, i.e., what its functionality is or what the 
responsibilities of this service are. Service functionality can be expressed in terms of functional 
requirements using natural language, but it is preferred to use a description on the basis of a set of 
operations that can be provided to the rest of IoT services. These operations are public and are 
accessible for any other IoT service that requests them.  
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An IoT service is able to assume different roles, depending on how the interaction is set between 
two services, accordingly a SOA service. As the service provider, it is responsible of supplying its 
specific functionality by the invocation of a set of operations to any other IoT service, which would act 
as a service consumer. An IoT service can perform two types of operations: simple or composite. A 
simple operation is a single transaction that the service can perform by itself, i.e., the service has all of 
the necessary resources to carry it out and it does not require interaction with any other service. In 
contrast, a composite operation involves, in addition, the execution of a set of operations on at least 
one service provider. 

Third, the IoT service needs to specify the interface that defines the interaction capacity that an IoT 
service may have with other services. The interface used by the service to act as consumer is different 
than the interface used to act as provider. Therefore, the interface can be provided or required. The 
provided interface exposes the signature of the functions or operations accessible to other external 
services as a service provider. With the role of the service provider, it is responsible for receiving 
requests from other consumer services and then manages the execution of invoked operations, giving a 
response to them when necessary. At the opposite, the required interface includes the signature of 
functions or operations that an IoT service may invoke in other services as a consumer service. Then, 
both interfaces, required and provided, could be seen as the set of operations that service must run on 
its own service or on required services. The ports are the communication channels available to and 
from the service. In the scope of the provided interface, each operation has an independent port. This 
establishes a control and synchronization mechanism with respect to executed operations, because the 
service may receive different requests associated with the same operation from different consumer 
services. Each port at the required interface includes one of the operations requested in other services. 

In addition, each service has other properties that restrict its execution and its applicability. These 
properties define the attributes of the service and should also be known by consumer services before 
using it. In general, they provide additional information about the service content (data, algorithm, 
software or hardware resource) and the service execution, but its configuration can also partially 
modify the behavior of the IoT service. Some of the service attributes are defined specifically for each 
service instance, whereas other ones are defined for all instances of a specific service. 

3.2. Device and Fuser Services 

In the context of data fusion, we can set two additional roles for IoT services: device services and 
fuser services. Device services encapsulate hardware resources (e.g., devices, sensors and actuators) 
that interact with the environment and provide operations to manage them. These services always act 
as service providers. In contrast, fuser services use the information provided by device services as data 
sources and fuse this information in order to infer new or filtered information to other service 
consumers. They can also collaborate with other services or carry out actions over the environment 
proactively, as well. Then, these services are composable by nature and can act as service consumers 
or service providers. 

The use of device services gives us a way to harmonize the access to hardware resources (e.g., 
sensors and actuators), hiding their particularities to outside. A device service is responsible for 
including mechanisms to control and manage these hardware resources, which are addressed by 
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operations defined in the provided interface Ip(Si). Device services do not have required interface 
Ir(Si), because they do not interact with other services to carry out their operations. 

The device service has to offer extended information about hardware resources and service 
execution, which defines both of the device service attributes. On the one hand, knowing device data 
of hardware resources might be essential for the system engineer to build a specific fuser from device 
services, e.g., properties such as device calibration, device diagnostics, data quality of device readings 
in sensors or actions in actuators, types of transducers, manufacturers-related information, or where the 
device is connected. Thus, not only device data is transferred, but also the metadata that describes the 
device data [41]. Then, provided interface Ip(Si) of device services will include operations to consult 
the extended information of hardware resources behind the service and operations to modify or delete 
these ones when the device provides configuration capability. 

On the other hand, the implementation of the service restricts the service execution and overall 
capabilities of that service. This implementation is obviously linked with the performance and the 
dependability of the hardware device. Therefore, the implementation of a device service must include 
the specification of information related to its execution, even with real-time constraints, e.g., the time 
involved in reading/writing the device or the frequency of updating the device.  

The information captured in a real environment by device services have to be processed and 
interpreted before carrying out a proactive behavior or giving a result to the user. This is the role of the 
fuser services, which can invoke the operations of device services to get the data that will be fused and 
enriched to generate additional, new information. This information can be completely new or filtered 
from data sources. 

In this kind of service, the service composition may have a special importance. Fuser services can 
act as service consumers, requesting data or demanding actions on device services, as well as service 
providers, offering fused data to other fuser services. Thus, services can be scaled building a 
composition of interacted services. These interactions among services define the data fusion 
mechanism based on a service composition model, which is detailed in the next section. 

3.3. Service Composition Model 

The service composition model depicts an abstract model of interactions among low-coupled, 
reusable services with the purpose to build scalable applications from the integration of such services. 
The use of a service composition model can benefit data fusion systems, since it provides a flexible 
mechanism to arrange data sources and fuser nodes and to perform fusion with them as shared 
resources. In this paper, the proposed data fusion mechanism is based on a well-defined service 
composition model [42,43]. Next, the mathematical formulation of service composition is presented. 

In the above section, we have seen that services offer their functionality by means of operations. A 
service that only has simple operations is called a basic service; e.g., a device service. In contrast, there 
are services that implement composite operations, which invoke other services, they are called 
composite services; e.g., a fuser service. Composite operations are the base of the collaboration model 
and are defined in the required interface Ir(Si) of the service definition (see Definition 1). 

A full pre-designed set of these composite operations defines the service composition map. Its 
awareness a priori before holding up the service determines a static service composition model, since 
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the collaborative process is clearly predefined. In contrast, in a dynamic service composition model, 
the service and the invoked operations are selected at runtime using semantic information, ontologies 
or inference [44]. Although there exists a controversy about what (and what not) dynamic composition 
is, there are many research works that confuse dynamic composition with the dynamic selection of 
services. When information and functionality related to all services and their operations are known, 
dynamic composition will dynamically decide which services are able to achieve the requested 
functionality. In contrast, in dynamic selection of services, the composite functionality is established a 
priori, but the specific instance of the service that will execute the operation is selected at runtime 
between all of the available instances of the service. Dynamic composition is very powerful, but it also 
increases the complexity of the behavior adaptation at runtime. In the presented service composition 
model, if there are two or more instances of the same service, the specific instance used in the 
composite operation will be selected at runtime using its QoS properties. However, this is not dynamic 
composition. We know a priori the kind of services that we should use, but we choose at runtime the 
specific instance of each service that better accomplish the requirements. In our opinion, this process 
may be called dynamic selection of services and not dynamic composition. 

An example of a QoS property that we use in the dynamic selection of services is related to the 
execution time of the operations. Each operation, simple or composite, has an estimated execution 
time. The execution time of an operation is fixed by the worst-case execution time (WCET), which 
represents the maximum possible value for this execution time. Each operation has its own WCET, 
which is determined using the WCET of the requested operations in the case of the composite ones. 
Furthermore, in composite operations, a bound for the networks communication delays is necessary to 
be added. This execution time is used as a QoS property to select the best available instance of the 
service to execute that operation. When an operation is invoked, the requester knows its maximum 
execution time and, hence, the maximum time that it has to wait to receive a response. This mechanism 
ensures executing operations with soft real-time quality properties. 

Service composition has been modeled using graph theory. The composition map of a service is 
formed by composite operations, and the relation between these operations, invoker or requested, can 
be seen as a composition graph. Then, each composite operation op of a service S can be seen as a 
directed graph, as we can see in Definition 2, where: 

Gop S = �oop s , V(G), L(G), E(G)� (2)  

• oops is the main vertex of the graph and corresponds to the origin service S of the composite 
operation ops. 

• V(G) is the set of vertices of the graph where each vertex represents a required service on which an 
operation is invoked from the composite operation ops. 

• L(G) is the set of labels where each label embodies a requested operation in a required service of V(G).  
• E(G) is the set of direct edges between the origin vertex oops and a destination vertex in V(G) 

labeled with an element of L(G). Accordingly, each element of this set is defined by Function 3. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖�𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠 , 𝑜𝑜𝑜𝑜𝑖𝑖 , 𝑣𝑣𝑗𝑗 � (3)  

In Function 3, oops is the origin service and opi is the requested operation in the required service vj, 
verifiying that 𝐸𝐸(𝐺𝐺) ⊆ 𝑜𝑜 𝑥𝑥 𝐿𝐿(𝐺𝐺)𝑥𝑥 𝑉𝑉(𝐺𝐺). 
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The composition graph of a given service may contain calls to several services operations in the 
same composite operation, but these operations are performed in a sequential fashion, not nested. The 
depth of the composition graph of a service is always of one level, since a service starting a composite 
operation does not know if one of the operations in its required services will be composite, too. In this 
case, we could have a chain of composite operations allowing one to call an operation from inside 
another one. However, to ensure the execution time in composite operations, it is not possible to have 
cyclic calls of operations, i.e., operations of the owner service cannot be required by an operation from 
its required services along the execution of the composite operation. Because of this, we define the 
function complexDeg(Gops) as the degree of complexity of an operation, which establishes the depth of 
its graph. A simple operation has degree of complexity zero, i.e., complexDeg(op) = 0. The degree of 
complexity of a composite operation Gops is specified by Definition 4. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐺𝐺𝑜𝑜𝑜𝑜𝑆𝑆 � = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑖𝑖)� + 1 ∀𝑜𝑜𝑜𝑜𝑖𝑖 ∈ 𝐿𝐿(𝐺𝐺) (4)  

We can say that the degree of complexity of a service is the maximum degree of complexity of all 
of the composite operations of its composition map plus one, as we can see in Figure 1. We have 
defined Axiom 5 based on the restriction imposed over the invocations between composite operations 
for the function complexDeg(op). Let opv1 be a composite operation in the service v1 (origin vertex) 
and opv2 a requested operation in service v2 (destination vertex). Using this axiom, we can prove by 
transitivity the property of acyclicity of the service composition map.  

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣1 , 𝑜𝑜𝑜𝑜𝑣𝑣2, 𝑣𝑣2� → 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑣𝑣1) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑣𝑣2) (5)  

Figure 1. A graphical view reflecting how the degree of complexity of composite 
operation is increased. 

 

In a typical pervasive computing scenario, services can join and drop spontaneously at any time. It 
is important to have a robust composition model that ensures the correctness of the distributed 
communication. The complexity degree of services defined in the composition model presented allows 
us to determine the complexity of a single service or a full application that uses a lot of services. The 
degree of complexity of an operation gives us useful information about the collaboration capabilities of 
each service, and it also helps us to determine the time involved in the operation execution. Composite 
operations with a higher degree of complexity will have also higher WCET, because they must add to 
their own execution time the execution time of the requested operations. 
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The degree of complexity must be updated when composition map changes. This updating process 
is necessary to ensure the acyclicity of the composition graph. By means of the composition graph, we 
can design distributed data fusion algorithms based on collaborative services and delimiting their 
execution time as a QoS property. 

3.4. Service-Based Middleware Platform 

The service-based middleware used to implement data fusion in IoT is called Dynamic Open Home 
Automation (DOHA) [45]. The DOHA middleware provides support for the development of decentralized 
applications, which hide the communication complexities. DOHA enables developers to build applications 
based on a set of independent services, where new services can be added without knowing the 
implementation or operations of the rest of services already running on the underlying platform.  

To test the applicability of the distributed data acquisition mechanism based on DOHA services, we 
have chosen an implementation of DOHA using DPWS (Device Profile Web Service) as the 
underlying platform. DPWS is a framework to develop lightweight web services, especially for 
embedded devices [46]. DPWS adds some restrictions to the standard specification of web services, 
such as the messages size and use Web Services Dynamic Discovery (WS-Discovery) for locating 
services on a local network instead of centralized service directory. These restrictions ensure that web 
services run properly on devices with limited resources. DWPS is focused on the development of 
applications in devices with the IP protocol and allows basic functions with web services, such as the 
use of reliable mechanisms for sending and receiving messages, the dynamic discovering of web 
services with WS-Discovery [46], the specification of a web service and the subscription/reception of 
events from another web service. There are other research works that have used DPWS to develop 
services platforms in ubiquitous scenarios with good results, which reinforces the selection done [47]. 

An IoT service can be represented using a UML (Unified Modeling Language) component diagram, as 
we can see in Figure 2. The component diagram allows us to achieve a global vision of how the set of 
services can be combined to implement a composite application. Each service is a black box that exposes 
the set of operations that can be invoked by a consumer service without revealing its implementation. Thus, 
consumer services do not know how that service carries out its operations, even if these operations are 
simple or composite. 

Each IoT service requires the implementation of the set of operations that accomplishes the 
functionality of the service and the specification of the service definition, which determines a 
description of its functionality, its collaborative behavior, its configuration properties and other service 
attributes. There are three main elements associated with the service definition of each IoT service that 
are conforming to the formal definition introduced in previous Section 3.1 (Definition 1). These 
elements are service contract, service composition map and service configuration.  

Each IoT service according to DOHA has a public service contract. The service contract describes 
the purpose of the service defined in Ps(Si). The set of operations of the service is equivalent with the 
provided interface of the service definition, Ip(Si). This description is public and accessible to service 
consumers when they want to use the service.  

The service composition map defines the composite operations of services. As described above, 
each composite operation has its own composition map. Then, the service composition map of a given 
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service will be the set of composition maps of its operations. The set of requested operations in the 
service composition map is equivalent with the Ir(Si) of the service definition. This document is 
private, and it is accessible only by its own service. 

Figure 2. A UML component diagram for modeling a system 

 

Finally, the service configuration specifies the configuration parameters required to execute the 
service properly, as well as the execution attributes of the service; e.g., the physical location of the 
node where the service is running, the type of connectivity, the service life time or QoS properties, 
among others. However, it also includes an identification of the service instance that can be queried by 
service consumers and other additional information about its service content. Then, these values can be 
different among different instances of the same service, i.e., different instances of the same service will 
have different service configuration. The identification and configuration properties of each service 
included in this set are equivalent with the elements Id(Si) and the service attributes At(Si) specified in 
the service definition. In some case, the service configuration can contain non-typed information in the 
form of file resources, such as a pdf document or image that can be downloaded through a URL. 

Using Definition 1 and the concepts of contract, map and configuration, we can define each IoT 
service in a formal way. To do this, we have used a tuple set, encapsulating service contract, 
composition map and service configuration info, as we can see in Definition 6. 

𝐼𝐼𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =< 𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑖𝑖 , 𝐼𝐼𝐼𝐼𝑖𝑖 , 𝐼𝐼𝐼𝐼𝑖𝑖 ,𝐴𝐴𝐴𝐴𝑖𝑖 > 

edge�oop v 1 , opv2, v2� → complexDeg(opv1) > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(opv2) 
(6)  

All the specification documents of the service, i.e., contract, composition map and configuration are 
stored in XML (Extensible Markup Language) files according to an XSD (XML Schema Definition) 
schema. The external consumer services will process and interpret the service data by first acquiring 
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the metadata from XSD. In particular, the service contract is enclosed in a WSDL document for the 
DPWS implementation of DOHA, as is usual in web service technologies.  

In the case of device services, a description of hardware resources and service execution can be 
important to consumer services, especially when a fusion algorithm is performed with particular time 
restrictions (even real time). Service consumers can obtain the required typed information from the 
specification documents of the service, especially from the service configuration. In addition, a 
standardize model to describe the hardware resource can be included in the service configuration to 
further simplify their reading and improve their interoperability. Hu et al. [41] discusses some of the 
possible standards for specifying information about sensors. Thus, the IEEE 1451 family offers a 
standard definition for describing hardware resources, the Transducer Electronic Data Sheet (TEDS), 
which is essentially an electronic replacement of a transducer data sheet on paper. Device services can 
store a TEDS when it is available to provide more information about the sensor or actuator enclosed in 
the service that can be processed directly by service consumers (e.g., a service fuser). In other cases, a 
data sheet of the manufacturer device in a pdf document is downloaded from a URL. 

4. Case Study 

Summing up the concepts previously presented in the paper, the proposed data fusion acquisition 
method is based on a static composition model with dynamic selection of service implementations or 
instances. The composition model determines several parameters to the correct execution of composite 
operations. The composition map establishes how the composition is carried out and helps to avoid 
cycles, maintaining the correctness of the degree of complexity associated with the operations and 
services involved in the collaboration.  

To illustrate the proposed data fusion model based on service composition, a weather forecast 
system was developed. This system is able to determine a local weather prediction from the 
measurement of atmospheric conditions of a specific location. To achieve this, several device services 
were implemented to know the atmospheric conditions of temperature, pressure and humidity. These 
device services were replicated for two reasons: (1) to ensure the correctness of the measurements; and 
(2) to detect sensors/actuators that are not working properly. Once the measurements were verified, an 
algorithm was applied to estimate a local weather prediction. The evaluation of the correctness and the 
determination of weather were carried out by the implementation of other IoT services applying data 
fusion schemes, as we detail below. 

4.1. Hardware Devices 

Tests have been executed in six different distributed embedded devices, five Raspberry-Pi’s and one 
Android tablet. Each Raspberry-Pi will be called R1, R2, R3, R4 and R5 in the rest of the paper. The 
Raspberry-Pi is a powerful embedded device with a processor ARM1176JZF-S 700 MHz, 512 Mb 
RAM, Ethernet 100 and Java JDK 1.7 running over Linux Debian [48]. The Android tablet, henceforth 
called AT, has been used to interact with the users. It is a T30s with four cores, 1 GB RAM and Wi-Fi 
connection running over Android 4.1.2. 

Three different types of sensors have been connected to Raspberry boards to measure the values of 
humidity, temperature and pressure. The sensors used are FreeScale MPL115A2 Digital Barometer 
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(FreeScale) [49], Atmel AVR4210 Digital Pressure Sensor (Atmel) [50] and the Sensirion SHT7x 
Humidity and Temperature Sensor Integrated Circuit (Sensirion) [51]. We have used three Raspberries 
to connect these sensors, R1, R2 and R3. An Atmel AVR4201 and a Sensirion SHT71 are connected to 
R1 and R2, whereas a FreeScale MLP115A2 and a Sensirion SHT75 are connected to R3. Figure 3 
shows the Raspberries R1 and R3 and some of the sensors connected to them. 

Tables 1 and 2 show the properties of the sensors connected to R1, R2 and R3, as well their relation 
with the type of value measured, i.e., humidity, pressure or temperature. The values of humidity were 
measured using the Sensirion sensor. The values of pressure were measured using the Atmel sensor in 
R1 and R2 and the FreeScale in R3. Finally, the values of temperature were obtained as the mean 
between the value of temperature read in Atmel and Sensirion in R1 and R2 and FreeScale and 
Sensirion in R3. The objective of the paper is not to analyze the quality of each of these sensors, 
although we recommend that the reader revise the corresponding datasheet to obtain extended information.  

Figure 3. Devices used in the prototype development. 

 

Table 1. Properties of the sensors from the manufacturer datasheet connected to the 
Raspberry-Pi 1 and Raspberry-Pi 2. 

 
Type Sensor Chip Resolution Accuracy Repeatability Output 

Humidity Sensirion SHT71 12 bits ±3.0 ±0.1 2-wire interface 
Pressure Atmel BMP085 0.01 ±0.2 - I2C 

Temperature AVR/Sensirion BMP085/SHT71 0.1/14 bits ±0.5 ±0.1 I2C/2-wire 

Table 2. Properties of sensors from manufacturer datasheet connected to the Raspberry-Pi 3. 

 Type Sensor Chip Resolution Accuracy Repeatability Output 

Humidity Sensirion SHT75 14bits ±1.8 ±0.1 2-wire 
interface 

Pressure FreeScale MPL115A2 0.15 ±1 kPa - I2C 
Temperature FreeScale/Sensirion MPL115A2/SHT75 0.1/14bits ±0.1 ±0.1 I2C/2-wire 
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4.2. IoT Services 

A set of scalable services must be designed and prepared to build the weather forecast system. 
Firstly, a device service was implemented for each sensor, obtaining three device services, temperature 
device service (TDS), humidity device service (HDS) and pressure device service (PDS). In addition, 
these services are replicated three times, because the use of multiple sensors may increase the accuracy 
with which a quantity can be observed and characterized [11]. Then, we had different instances of each 
device service, i.e., three different objects with the same functionality: TDS1, TDS2 and TDS3, to 
measure the temperature; HDS1, HDS2 and HDS3 to measure the humidity; and PDS1, PDS2 and 
PDS3 to measure the pressure.  

The identification of services is one of the most challenging areas of research in IoT. In the case of 
DOHA, we resolved it in the previous stage of services definition using the formal schema to represent 
the ubiquitous services presented in Section 3.1.  

We fused the information obtained by replicated services of each kind of sensor using an N-Version 
algorithm to ensure the correctness of the values in new services, i.e., the device services requested are 
replicated N times. Fusing multisensor data provides us significant advantages over single-source  
data [52]. The services which apply the N-Version algorithm are temperature N-Version service (TNVS), 
humidity N-Version service (HNVS) and pressure N-Version service (PNVS), all with N equals three. 
Algorithm 1 shows a pseudocode for this kind of service. The operation requestSensorValue() corresponds 
with the specific operation in the device service, which returns the value of the sensor: the operation 
getTemp() of the service TNVS invokes getTValue() in each TDS; the operation getHumidity() of the 
service HNVS invokes getHValue() in each HDS; and the operation getPressure() of the service PNVS 
invokes getPValue() in each PDS. 

Algorithm 1. N-Version services: operations getTemp(), getHumidity() and getPressure(). 
Input: threshold (double) 
Output: value (double) 
/* Stage 1: request sensor values */ 
for s:Sensors do 
 value[s] = requestSensorValue(); 
/* Stage 2: validate sensor values using threshold */ 
for n = 1 to numSensors-1 do 
 for i = n + 1 to numSensors do 
  if abs((value[n]-value[i]) > threshold) 
   version[n] = 0 
/* Stage 3: calculate nVersion value */ 
for n=1 to numSensors 
 if (version[n]! = 0) 
  sumVersion + = version [n] 
  nVersion++ 
return nVersion > 0 ? sumVersion/nVersion : 0 
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The weather forecast service (WFS) uses N-Version services to apply an algorithm based on the 
probability of determining the weather that users could find outside their house or when they leave 
home. The algorithm implemented in the WFS is an extension of the Zambretti forecaster [53], which 
uses measurements of pressure and wind direction to predict the weather. We have modified the 
original Zambretti algorithm, and our WFS also uses temperature and humidity to improve the weather 
prediction. Algorithm 2 shows the pseudocode of the operation getPrediction() of this service.  

Algorithm 2. Weather forecast service: operation getPrediction(). 
Input: temperature (double), pressure (double), humidity (double) 
Output: weather-forecaster-index (int) 
/* Calculate the Cloud Base value */ 
dewPoint = calculateDewPoint(temperature, humidity); 
cloudBase = calculateCloudBase(temperature, dewPoint); 
/* Calculate the prediction */ 
return matchPreddiction(pressure, cloudBase); 

The values of temperature, pressure and humidity that the Algorithm 2 receives as inputs 
correspond with the results obtained after the execution of each N-Version services algorithm. The 
value of temperature is the result of execute the operation getTemp() in the TNVS; humidity is the 
result of execute the operation getHumidity() in the HNVS; and pressure is the result of execute the 
operation getPressure() in the service PNVS. 

Finally, the climate service (CS) uses the information provided by WFS and N-Version services to 
generate a complete pack of weather information to give better and more comprehensive suggestions 
to the users. The operation that this service implement has been called getClimate(). 

Services collaborate with each other with the common goal of fusing sensor data and giving 
complete information to the users. Each service with composite operations will have its own 
composition map with a specific value of degree of complexity, which depends on the maximum 
degree of all of its composite operations. Figure 4 shows the full composition map of the system and 
the relation between the degree of complexity of each service, its operations and its position in the 
graph of the full system composition map. As we can see in this figure, N-Version services, HNVS, 
PNVS, TNVS, WFS and CS are composite services. Moreover, their composite operations are fusing 
information that is obtained from other services with a lower degree of complexity. Then, in this 
example, all of these composite services are working as fuser services.  

The use of composite operations in fuser services for data acquisition favors the scalability of the 
system, i.e., it does not matter if fuser services change or if new services have been included: they will 
be able to get the data following the service composition model. The system does not need centralized 
servers, and it provides an easier mechanism to add new services and devices, increasing the set of data 
sources. Thereby, the developer will have more information available to implement their algorithms.  

The data fusion process is part of the collaborative model of the service platform, and therefore, it is 
executed in a distributed, lightweight manner over the services network. Moreover, data can be  
obtained from services as data sources, including time constraints. This allows us to consider the 
setting of time parameters as QoS properties for the development of data fusion algorithms in the 
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context of soft real-time. Then, in this case, a fuser service could ensure their clients timely fused 
information, providing additionally a maximum delay time to achieve a response and the minimum 
sampling time required for invoking its operations. 

All services introduced in this section have been deployed using devices enumerated in Section 4.1. 
Services have been implemented using DOHA and are interconnected with a local area network. 
TDS1, HDS1 and PDS1 were running in R1; TDS2, HDS2 and PDS2 in R2; TDS3, HDS3 and PDS3 
in R3; TNVS, HNVS and PNVS in R4; WFS in R5 and CS in AT. Figure 5 shows the deployment 
diagram of the system. 

Figure 4. Full composition map of the system. 
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Figure 5. Deployment diagram of the system. 

 

4.3. Evaluation 

To evaluate the proposed approach, we have measured the execution time of all operations involved 
in the services of the case study. These values help us to analyze the data acquisition mechanism 
implemented by the service composition model. Controlling the maximum response time, we can also 
guarantee the soft real-time execution of the operations.  

The analysis of the case study has been carried out taking into account two alternative execution 
modes of the services: 

- Request/response mode (RRM): In this mode, when an operation of a service is invoked by a 
consumer service, the service executes its implementation, including the invocation of all 
required operations, composite or simple, in other services, according to its composition map. If 
the required operations are also composite, then the corresponding nested operations are also 
called sequentially. The flow control of invoker is then blocked, until the operation of the 
service has finished and a response is returned.  

- Virtualized mode (VM): In this mode, the service virtualizes the resources, status or data 
belonging to other required services by saving a temporary copy of them in its memory. Then, 
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after an operation is requested by a consumer service, the service executes its implementation, 
substituting the invocation of required operations defined in its composition map by a call to 
local operations, which provide the corresponding previous saved values in memory. 
Consequently, the service may respond by almost immediately returning the expected results, 
reducing also significantly the execution time of the operation. To achieve that, a background 
process in the service has to be executed periodically in order to invoke all of the required 
operations defined in the composition map to update the memory with the most recent values.  

Two different types of tests have been executed: (1) a network traffic analysis during the execution 
of the services involved in the case study; and (2) measuring the execution time of each operation for 
each service contained in the case study. 

4.3.1. Network Traffic Analysis 

An analysis of the network traffic is performed when the network is resting, during the initialization 
of services and during the execution of services in the two possible modes, RRM and VM. Figure 6 
shows the differences between these four states.  

Figure 6. Network traffic evolution in four states: (a) without traffic; (b) with the 
initialization (init) of services; (c) in request-response mode and (d) virtualized mode. 

 

The graphic in Figure 6a shows the normal state of the network in a resting situation, i.e., without any 
service in execution. However, Figure 6b shows an increase of the traffic along the initialization of 
services. This increase in the traffic network is directly related to the use of the network done by IoT 
services. Since IoT services use DPWS as underlying communication middleware, during their 
initialization, they send hello messages by broadcast using UDP, which is softly higher than in Figure 6a. 
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With services running in RRM mode, Figure 6c shows higher network traffic with the presence of 
several peaks. These peaks represent the execution of composite operations with a high degree of 
complexity. This happens because composite operations with a high degree of complexity trigger the 
execution of other requested operations in a chain with the corresponding increasing in the number of 
messages in the network.  

In the case of VM execution mode in Figure 6d, the network traffic is increased with respect to 
resting mode, but without the presence of peaks. The reason is because all composite operations are 
periodically executing their requested operations in a background process to save in memory the most 
recent results regardless of whether such composite operations are invoked. This enables a faster 
response to the invoker services and provides a load balancing for the network. 

4.3.2. Service Execution Analysis 

An analysis of the service execution is carried out by evaluating the execution time of the 
operations of each service involved in the case study considering the two proposed execution modes, 
request-response (RRM) and virtualized (VM). The experiment consists of starting the services and 
then tracks the executions of their operations repeatedly in order to measure their execution times.  

Two types of results are presented. On the one hand, Table 3 includes a summary of the performed 
experiments, providing the results of the average time execution, the standard deviation and WCET 
obtained in both modes for each operation of the services used in the case study. On the other hand, a 
graphic is presented to show the variances of the execution time for each analyzed operation. 

Some important decisions have to be considered in the elaboration of Table 3. The first values of 
execution time in VM mode are outliers and have been deleted in order to not impact the statistic.  

Table 3. The table shows the average execution times, standard deviation and worst-case 
execution time (WCET) for each operation of the services of Weather Forecast System. For 
request/response mode (RRM) mode, the table includes the value of BWCET, which is 
explained in the text. VM, virtualized mode; BWCET, best worst-case execution time; 
PDS, pressure device service; TDS, temperature device service; HDS, humidity device 
service; PNVS, pressure N-Version service; TNVS, temperature N-Version service; 
HNVS, humidity N-Version service; WFS, weather forecast service; CS, climate service. 

IoT 
Service 

Operation 

RRM mode VM mode 
Average 

Execution 
Time (s) 

Standard 
Deviation 

(s) 

WCET 
(s) 

BWCET 
(s) 

Average 
Execution 
Time (s) 

Standard 
Deviation 

(s) 

WCET 
(s) 

PDS1 getPValue 0.013 0.004 0.027 0.015 0.021 0.006 0.117 
TDS1 getTValue 0.420 0.012 0.463 0.428 0.026 0.024 0.111 
HDS1 getHValue 0.238 0.013 0.283 0.246 0.027 0.027 0.121 
PNVS getPressure 0.910 1.975 8.001 2.224 0.313 0.409 1.687 
TNVS getTemp 1.873 0.084 2.169 1.929 0.207 0.095 0.533 
HNVS getHumidity 1.196 0.181 1.640 1.317 0.810 2.309 9.148 
WFS getPrediction 3.812 0.500 5.135 4.144 0.390 0.278 1.353 
CS getClimate 12.486 2.223 19.026 13.964 0.001 0.001 0.004 
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Figure 7 shows the execution time of simple operations for PDS, TDS and HDS device services in 
order to obtain the corresponding sensor values of atmospheric pressure, temperature and relative 
humidity in the Raspberry-Pi R1. These device services shared the same I2C bus to access the 
BMP085 and SHT71 chips that had the physical sensors. Then, the readings of the sensors had to be 
performed sequentially.  

Figure 7. Execution times of device services located in R1 in (a) RRM mode and  
(b) VM mode. 

  
(a) (b) 

The experiments were carried out in two modes, RRM and VM. In this case, RRM indicates that the 
simple operation of a device service enables a request-response message to the physical sensor over the 
I2C bus. Likewise, VM mode implies that the device service has the virtual value of the physical 
sensor in memory. Then, the invocation of each simple operation returns immediately with the 
temporarily saved value of the sensor, which is updated in the device service periodically by a 
background process.  

Figure 7a and Table 3 show that the execution time of device service operations located in R1 in 
RRM is not high, less than 500 ms for each simple operation. However, we have found differences in 
the execution time of the simple operation among services for three reasons. Firstly, there was a 
bottleneck in the access of the I2C bus for the sensor reading, which depends on the order of requests. 
Secondly, with a lower influence, the time involved in the ADC conversion depends on the resolution 
of ADC and the sampling period of the sensor. This explains the delay of the operation execution for 
TDS and HDS with respect to PDS. However, in addition, TDS has a higher execution time than PDS, 
because it fuses the temperature reading of both chips. In fact, the temperature value is obtained as the 
medium values of two sensors, the Atmel in R1 and R2 or the Freescale in R3 and the Sensirion 
located in each Raspberry-Pi. Figure 7b shows the execution time of device service operations in VM 
mode. In this case, we observed a decrease in execution time with the same scale, since the operation 
of device services returns immediately. 

Figure 8 shows a comparison between the execution of the operations specified in Table 3 for CS, 
WFS, HNVS, TNVS and PNVS in both modes, RRM and VM. In the case of N-Version services with 
a degree of complexity of one, HNVS, TNVS and PNVS, each operation “get” requires the invocation 
of a simple operation in three different instances of the same device service to fuse data, according to 
Figures 4 and 5; e.g., the operation getPressure() in PVNS must invoke the operation getPValue() in 
three different PDS. In RRM mode, the execution time of an operation in an N-Version service is 
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higher, because it has to invoke and execute sequentially all of the required operations on device 
services. Likewise, this behavior is also found for the execution of getPrediction() of WFS with nine 
operations and getClimate() of CS with 19 operations. The fluctuations in execution time of some 
iterations observed in Figure 8a are caused mainly by noise in the network.  

Figure 8. Execution times of the composite services in (a) RRM and (b) VM. 

  
(a) (b) 

In contrast, in VM mode, the execution time of an N-Version service is lower, since the execution 
of required operations is solved only by local operations in the scope of the same service. The minor 
fluctuations of the execution time observed in Figure 8b, especially at first executions, respond to the 
interference that the background process, responsible for updating the memory with the most recent 
values, can cause to the foreground process. This behavior is also found for the operation 
getPrediction() of WFS and getClimate() of CS. 

We can conclude that the execution time of an operation in RRM mode depends directly on the 
degree of complexity of that operation. A higher degree of complexity imposes higher execution time, 
because the number of requested operations grows, as well. In fact, the execution time of an operation 
is influenced by the number of operations invoked during the execution of an operation, the network 
delay round-trip or the end-to-end time required for the invocation of each requested operation and, 
finally, the execution time of each requested operation. However, in VM mode, the execution time of 
an operation is much lower, depending only on the implementation of that operation, because its 
execution is local.  

The execution time observed for an operation of a particular service determines also the rate at 
which that operation can be invoked. This time defines the sampling period of an operation, a 
parameter that can be important to setup a data fusion algorithm, for example, to fix the time for 
sustaining data provision from a data source. A good first choice is to set the minimum sampling 
period for each operation equals to its WCET, because WCET guarantees an upper bound for every 
possible execution of the operation. Then, the operation cannot exceed ever this deadline, and regular 
behavior can be achieved for the specific data fusion algorithm.  

In Table 3, we have seen that in RRM mode, the operations of device services have a WCET with a 
magnitude order of hundreds of milliseconds; the N-Version services have a WCET with an order of 
one second; the WFS service has an order of five seconds; and finally, a CS service has an order of ten 
of seconds. However, the obtained WCET was measured experimentally from the execution times  
data set of every operation recorded during the test executions, and some outliers of the data set can 
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have a negative impact, over-estimating the WCET determination. The result can be a very pessimistic 
value, far away from the average execution time, which leads to a significant waste of computing 
resources; e.g., the WCET for getPressure() of PNVS is greater than the WCET for getPrediction() of 
WFS. A lower upper bound could be considered to optimize the WCET closer to the average execution 
time, which we call the best worst-case execution time (BWCET). The BWCET is determined by 
evaluating the maximum of the 99% confidence interval for a standard normal distribution of 
execution times, which give us a 99% probability that the execution time of an operation has a value 
within the interval. Table 3 shows the BWCET for each operation of the study case, with a value in all 
cases closer to the average execution time, allowing a better utilization of computing resources. 

The WCET and, better, the BWCET can be used to set also the sampling period of each operation 
of a specific service in VM mode, in spite of the execution time being much lower. This is because the 
service is updated by the background process with a period of execution, which must be equal to the 
sampling period of the operation. This period is larger than the execution time of the operation and 
depends on the number of requested operations in other services and their sampling periods. In VM 
mode, there is a limited interchange of messages between services compared with RRM mode, because 
each service is responsible for performing the requests of the required operations in provider services 
autonomously and at regular rate, ensuring even the satisfaction of soft real-time constraints. This 
contributes to improving the network load, as we have observed in Figure 6d.  

In summary, from the analysis of the results obtained in this case study, we can set some guidelines 
and recommendations for the implementation of data fusion programs according to the proposed 
distributed service-based approach: 

(1) The building of a scalable system for data fusion processes is safer when a service composition 
model is considered. 

A service composition model, such as is presented in this paper, gives a correct way to build 
scalable services. In general, the service composition model gives mechanisms to improve the 
interconnections and the communications between services, addressed by the services in the case of 
orchestration or evaluating the possible interconnections in each service in the case of choreography. 
In our case, the proposed service composition model goes beyond providing a way to verify globally 
all of the services of the system. This is particularly interesting in the implementation of data fusion 
processes, especially when the system must be built gradually at different times without the need of  
re-implementing the system whenever a new data source is included or a new fusion algorithm  
is implemented. 

(2) It is preferable to build systems that contain services with a low degree of complexity of operations. 
When the degree of complexity of an operation is low, the operation does not have to invoke many 

operations in the chain. Hence, its execution time may have a lower magnitude order, as well as its 
sampling period. However, the system is completely scalable, and it is possible to add services with a 
higher degree of complexity of operations assuming the costs in execution time. 

(3) When the service contains operations with a high degree of complexity, the execution in VM is 
preferred rather than the execution in RRM. 

When the degree of complexity of an operation in a service is high, the invocation of this operation 
in RRM is penalized for two reasons. First, the invocation of this operation can require enough 
network resources (e.g., high bandwidth or low network noise), because the number of messages 
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transmitted to the network can be very high in short time intervals, provoking peaks of network load, 
that it may not be assumed. Second, the flow control of the invoker consequently blocks large amounts 
of time, because it is suspended until the response is received. An excessive blocking time of flow 
control favors the building of poor and underutilized systems. 

The use of VM for the execution of a service can benefit the overall execution of the systems, 
because the network load is shared among all services instead of addressed by a specific service. Each 
service is responsible for keeping updated the required data acquired from other services according to 
its composition map. In addition, the blocking of the flow control of any invoker operation to the 
service is reduced significantly, which consequently improves the responsiveness of the system.  

(4) In a real-time context it is preferable to fix the sampling period of every operation of each 
service, especially composite operations, with WCET or, better, BWCET, depending on the stringent 
conditions of real time. 

The idempotence property of the service ensures that the service can manage multiple requests at 
the same time without changing or otherwise affecting the data. However, a continuous invocation of 
an operation with a rate greater than the minimum sampling period may overload the service without 
gaining useful information, since the service does not have sufficient time to achieve or update the 
results. The application of real-time constraints into a data fusion system can benefit the global 
execution of the system, performing better control of computing resources of the system. Depending 
on the criticality conditions of the system, the engineer can set the sampling period with WCET when 
the managed data or involved services are critical or with BWCET in another cases. 

5. Conclusions 

The relevance of the IoT in the scope of pervasive computing is growing. The number of embedded 
devices present currently in daily life is increasing in an exponential way. At home, at work and even 
in our relationship with other people, we use continuously multiple interconnected embedded devices. 
The information provided by these kinds of objects and devices must be interpreted and, sometimes, 
merged to obtain richer information.  

A lot of research works pose data fusion process using complex algorithms, always centralized on a 
powerful computing node, where data is acquired and processed from heterogeneous sources. In this 
paper, we have proposed a novel method to implement a distributed data fusion acquisition using a 
lightweight service composition model, which ensures the correctness of collaborations without a 
cyclic behavior. This method allows working with data in a distributed, decentralized manner. The 
high level model of representation proposed abstracts the typical underlying complexity in IoT 
scenarios due to its heterogeneity of devices. Thanks to this high level of abstraction, developers can 
use the concept of service and the interaction among services to design the IoT scenario.  

The interaction among services is carried out using a well-defined service composition model. This 
allows one to use basic elements or high level software units during the design of an IoT system. At 
the service level, each service is responsible for acquiring data from external services by means of its 
composite operations in order to manage, combine, fuse or build new information, which, in turn, is 
shared with any other service that claims it. Using the service composition model adds relevant QoS 
properties to the system, such as a bounded execution time and sampling period. If developers know 
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what the WCET or BWCET of a composite operation is, they can add soft real-time restrictions to the 
system execution. 

The distributed character of the proposed approach for data fusion makes the service model very 
scalable, a really important aspect in the development of current and future applications, which will be 
deployed in embedded devices. Moreover, the proposed data fusion model allows developers to have a 
macroscopic view of the complete system or almost a partial view of the involved services in the 
system. In software environments where there are many embedded devices with several restrictions, 
such as low resources, memory or process power, and communications deadlines, this panoramic 
vision helps developers to optimize the use of the whole system. Furthermore, developers can test their 
services before deploying them in a real system, analyzing their network use, their composite behavior, 
the maximum execution time and other aspects related to the collaboration between services relevant 
for the real execution of the full system.  

We are working to improve the service composition model presented in an IoT environment using 
semantic information, QoS properties and ontologies to facilitate the dynamic selection of services at 
runtime. This will transform the data fusion acquisition model presented in this paper into a richer 
dynamic tool to use in the IoT scope, among others. 
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