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Abstract: Tool condition monitoring (TCM) plays an important role in improving 

machining efficiency and guaranteeing workpiece quality. In order to realize reliable 

recognition of the tool condition, a robust classifier needs to be constructed to depict the 

relationship between tool wear states and sensory information. However, because of the 

complexity of the machining process and the uncertainty of the tool wear evolution, it is 

hard for a single classifier to fit all the collected samples without sacrificing generalization 

ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition 

monitoring in which the support vector machine (SVM), hidden Markov model (HMM) 

and radius basis function (RBF) are selected as base classifiers and a stacking ensemble 

strategy is further used to reflect the relationship between the outputs of these base 

classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an 

online monitoring system is constructed in which the harmonic features are extracted from 

force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is 

utilized to select the most prominent features. To verify the effectiveness of the proposed 

method, a titanium alloy milling experiment was carried out and samples with different 

tool wear states were collected to build the proposed heterogeneous ensemble learning 

classifier. Moreover, the homogeneous ensemble learning model and majority voting 

strategy are also adopted to make a comparison. The analysis and comparison results show 

OPEN ACCESS



Sensors 2014, 14 21589 

 

 

that the proposed heterogeneous ensemble learning classifier performs better in both 

classification accuracy and stability. 

Keywords: heterogeneous ensemble learning; tool condition monitoring; stacking;  

force sensor 

 

1. Introduction 

Milling is widely used for machining many important parts, such as aviation engine blades, turbine 

disks, etc. Because of the intermittency of the cutting process and poor machinability of the material, 

tool wear severely during the machining process, which will cause deterioration of workpiece quality and 

a decrease of machining efficiency. In order to recognize the tool wear states during the milling process, 

online monitoring systems in which dynamic signals are collected and a classifier is constructed to depict 

the relationship between the tool wear states and sensory information are preferred. Currently, many 

models such as support vector machine (SVM) [1,2], artificial neural networks (ANN) [3–6], conditional 

random field (CRF) [7], hidden Markov model (HMM) [8,9], etc. have been proposed to recognize  

tool wear states. Sun et al. [1] used a revised support vector machine (SVM) approach to carry out  

multi-classification of the tool states. Moreover, a new performance evaluation function was presented 

by considering manufacturing losses. The experimental results show that the proposed method can reliably 

perform multi-classification of the tool flank wear and reduce potential manufacturing losses. Shi and 

Gindy [2] presented a new tool wear predictive model by combining least squares support vector 

machines (LS-SVM) with the principal component analysis (PCA) method. The effectiveness of the 

proposed model is demonstrated by experimental results from broaching. Ozel and Nadgir [3] built a 

system in which a predictive machining approach is combined with a back propagation neural network 

so as to predict flank wear under different cutting conditions. Based on multi-sensor integration, Kuoa 

and Cohenb [4] developed a tool condition evaluation system by integrating a radial basis function 

(RBF) network with a fuzzy logic algorithm. The experimental results show that the proposed system 

can significantly increase the accuracy of the product profile. Choudhury et al. [5] realized the 

prediction of the flank wear by combining an optoelectronic sensor with a multilayered back 

propagation network. Silva et al. [6] presented two kinds of self-adaptive resonance-based neural 

networks to classify the tool wear state. The authors claim that a reproducible diagnosis of tool wear can 

be realized accurately. Wang and Feng [7] proposed a linear chain conditional random field (CRF) model 

and utilized it for online tool condition monitoring. The application results show that the proposed 

method can accurately depict the relationship between the feature vectors and the tool wear states. Under 

three different time scales, Atlas et al. [8] adopted HMMs to realize the online monitoring of the milling 

process. The application shows that the HMMs can give accurate wear predictions. Wang et al. [9] also 

utilized HMMs to build a framework for tool wear monitoring in which feature vectors are  

extracted from vibration signals measured during the turning process. These applications show that 

classifier-based monitoring methodologies are effective to recognize the tool wear states. However, the 

above methods are all based on single classifier strategies, that is, only one classifier is utilized to map 

the feature vectors and the tool wear categories. In real applications, the spatial distribution of these 
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feature vectors are disperse and irregular due to the complexity of the machining process and tool wear 

morphology. In such case, over-fitting phenomena can easily occur for the single classifier, which will 

deteriorate the classification accuracy and generalization ability [10]. 

In this paper, a tool condition monitoring (TCM) system based on a heterogeneous ensemble 

learning model is proposed. In this system, force signals are utilized to depict the dynamic 

characteristics of the tool wear process. The reason for selecting force sensors lies in their reliability 

and robustness. In fact, as a kind of indirect means, force sensors have been adopted in many monitoring 

applications. Bhattacharyya used force signals to estimate the tool wear value by using time domain 

averaging and wavelet transformation [11]. Kaya adopted the average cutting force directly as the input 

of a neural network to predict tool wear states during machining processes [12]. Cui realized tool wear 

monitoring by using the coefficients of the cutting force as the indicator [13]. Liu and Altinas built a 

neural network model to predict the flank wear of turning processes by utilizing the ratio of different 

force signals as the input [14]. In this paper, considering the periodicity of the milling process, 

harmonic features are extracted from force sensor information. In addition, to simultaneously improve 

the relevance and reduce redundancy, a minimal redundancy and maximal relevance (mRMR) algorithm is 

adopted to filter those less prominent harmonics. Based on these selected features, three different models 

(SVM, HMM and RBF) are selected as the base classifiers considering diversity and accuracy [15]. 

Moreover, a SVM-based stacking strategy is constructed to realize nonlinear mapping between the 

base classifier output and real tool wear states [16]. To verify the effectiveness of the proposed system, 

titanium alloy milling experiments were carried out and samples from different tool wear states were 

collected to build the proposed heterogeneous ensemble learning classifier. Moreover, a single classifier, 

homogeneous ensemble learning classifier and heterogeneous ensemble classifier with majority voting 

were also constructed to make a comparison with the proposed ensemble learning classifier. The 

results show that the proposed method performs best in both classification accuracy and stability. 

The remainder of the paper is organized as follows: in Section 2, a heterogeneous ensemble learning 

framework is presented. Moreover, the principle of each base classifier and stacking strategy are also 

discussed in this section. In Section 3, a tool condition monitoring system is constructed based on 

heterogeneous ensemble learning and milling experiments are carried out to verify the effectiveness of 

the TCM system. The comparison with other kinds of classifier shows that the proposed method can 

achieve higher accuracy and stability. Some useful conclusions are given in Section 4. 

2. Principle of Heterogeneous Ensemble Learning 

2.1. Structure of Heterogeneous Ensemble Learning 

As shown in Figure 1, the heterogeneous ensemble learning model is composed of two parts. The first 

is the construction of base classifiers. One requirement for these base classifiers is that the accuracy of 

every single classifier needs to be high enough [15]. The other is the diversity of these base classifiers, 

which means they should be different from each other. This kind of diversity makes the each base 

classifier complementary to each other so as to get more accurate decision boundary [17]. In this paper, 

the SVM, HMM and RBF algorithms are selected as the base classifiers. The SVM algorithm is based on 

the statistical learning theory, which is trained based on the structural risk minimum principle.  
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In contrast, the RBF network is a multi-layer mapping structure, which is trained based on empirical 

risk minimization. As for the HMM algorithm, it is a kind of generative model, totally different from 

the other two classifiers. The second part is the stacking combination strategy in which a meta-learner 

is used to map the output of the base classifiers to the final tool wear categories. Because the stacking 

strategy realizes the ensemble of the base classifiers by training a new mapping model, it can greatly 

improve fault tolerance ability and classification accuracy [18]. Considering the strong nonlinear 

mapping ability, support vector machine (SVM) is used as a meta-learner to realize stacking combination 

in the second part. 

Figure 1. The structure of heterogeneous ensemble learning. 

 

 

2.2. Principle of Base Classifiers 

2.2.1. Support Vector Machine (SVM)  

The support vector machine (SVM) is based on the statistical learning theory [19], whose main idea 

is to transform the samples to a higher dimensional feature space by nonlinear mapping and solve a 

binary classification problem by selecting the appropriate kernel function in a hyper plane [20]. The 

main characteristic of a SVM classifier is that it attempts to minimize the structural risk instead of the 

empirical risk [21]. When the training samples are input, the SVM selects the most important samples, also 

called support vectors, to realize the maximal margin classification by taking the constraint conditions 

into consideration. When these samples are not linearly separable, a kernel function needs to be 

introduced to map the input data into a higher dimensional feature space. 

In this paper, Gaussian kernel functions are utilized because they are not sensitive to the outliers and 

have no equal variance requirement for the input data. The expression of Gaussian function is given  

as follows: 

( ) ( )2
, expi j i jK x x x x= −γ −  0γ >  (1)
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where K(xi, xj) is an inner product that maps the input vector dRx ∈  to a high-dimensional space, γ is 

the variance. 

2.2.2. Radial Basis Function (RBF) Network 

The RBF network, which was proposed by Powell [22], is a kind of artificial neural network that uses 

radial basis functions as the activation function. This network typically has three layers: input layer, 

hidden layer and linear output layer. The input layer is designed to accept the input data and pass it to the 

neurons in the hidden layers. The hidden layer consists of a set of radial basis functions by which the 

Euclidean distance between the center and the network input vector can be calculated [23]. The hidden 

layer performs a fixed nonlinear transformation and maps the input space onto a new high dimension 

space. The output layer implements a linear combiner on this new space and the only adjustable 

parameters are the weights of this linear combiner. The output of the RBF network is shown as follows: 

0
1

( )
m

k jk j
j

y w w x c
=

= φ =  (2)

where ϕ(·) is the radial basis function, wjk, j = (1, 2, …, m) and k = (1, 2, …, l) are the output weights, w0 

is the bias, x is a input vector, cj are the centers associated with the basis function, m is the number of 

hidden neurons, and l is the number of classes. The structure of the RBF network is illustrated in Figure 2. 

Figure 2. The structure of the RBF network. 

 

2.2.3. Hidden Markov Model (HMM) 

HMM is a kind of generative model-HMM [24], which includes two stochastic processes. One is a 

Markov process which is used to describe the hidden states transfer sequence. The other is a stochastic 

process, which is adopted to model the observation sequence of the hidden states. The hidden states 

transfer sequence is not observable, but can be speculated through the output of the stochastic process. 

The Markov sequence, which is described by the initial probability distribution vector π with length N 

and state transfer probability matrix A with size N × N. The stochastic process sequence is described by 
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the probability matrix of the observed values B whose sizes are equal to N × M. M is the possible 

number of observed value in each state. Therefore, a HMM model can be described as [7]: 

{ }, , , ,N M A Bω = π  (3)

There are two steps to use HMM model as a classifier. The first step is the construction of the 

HMM model. For each tool wear states, the Baum-Welch algorithm is adopted to calculate the model 

parameters so as to guarantee the maximum probability of the training data. The second is to recognize 

the tool wear state by inputting the test data into every built model, respectively. The probability of the 

test data coming from each HMM model is calculated by summing up the probabilities of each hidden 

state [7] and the final category corresponds to the tool wear state which has the maximum probability. 

2.3. Stacking Ensemble Strategy 

Stacking is a combination strategy in which a meta-learner [25] is constructed to recognize the tool 

wear category based on the output of different base classifiers. Stack generalization attempts to give an 

accurate prediction even if the output of a certain base classifier is incorrect. It includes two steps. The 

first is to organize the prediction of every base classifier into a new dataset. In the second step, a  

meta-learner is trained based on the dataset and the output is used as the final result. In this paper, 

SVM is selected as meta-learner to reflect the nonlinear relationship between the output of the base 

classifier and the final tool wear category. 

3. Tool Condition Monitoring (TCM) Based on Heterogeneous Ensemble Learning 

3.1. The Framework of TCM System 

Based on the proposed ensemble learning classifier, a tool condition monitoring system is constructed, 

whose structure is shown in Figure 3. The realization of this system is composed of four steps. 

Figure 3. Framework of the tool condition monitoring system. 

 

The first is signal acquisition. Dynamic signals from force sensor are collected to depict the 

characteristic of the cutting process. The second is feature extraction. Considering the characteristics of 

periodic entrance into and exit from the workpiece during the milling process [26], harmonic features 

are suitable for tool wear monitoring, so they are extracted as the classifier input [27]. The third step is 

feature selection. Not all amplitudes of the harmonic are sensitive to the variation of the tool wear. 

Some irrelevant and redundant features can even negatively influence the performance of the model. In 

this paper, a minimal redundancy and maximal relevance (mRMR) algorithm [28] is used to select the 

optimal features so as to realize dimension reduction and improve the robustness. The last step is to 

build a heterogeneous ensemble learning model. In this stage, the SVM, HMM and RBF are selected 

as base heterogeneous classifiers, and SVM stacking is adopted to integrate the outputs of these base 

classifiers and judge the final tool wear category. 



Sensors 2014, 14 21594 

 

 

3.2. Feature Extraction and Selection 

Harmonic features amplitude of the harmonics in the milling force has been proven to be one of the 

most effective features to depict the variation of the tool wear during milling processes because of its 

characteristics of periodic entrance into and exit from the workpiece [27]. For a given cutting force signal 

s(t), the amplitude spectrum is given as: 


+∞

∞−

−== dtetsfSfp ftπ2)()()(  (4)

where, S(f) is the Fourier transform of the original signal s(t). Based on the cutting speed and cutter 

geometry, the tooth passing frequency and its harmonics are calculated as: 

/ 60 ( 1, 2, 3, .....)lf lVZ l= =  (5)

where, V is the rotating speed of the machine tools, Z is the number of the cutter and l is the order of 

harmonics. Based on Equations (4) and (5), the amplitude of power spectrum corresponding to different 

harmonics can be calculated as the candidate feature vectors. 

Considering the redundancy of these harmonic features, mRMR feature selection algorithm is further 

presented to realize dimension reduction. This algorithm is realized by considering the maximum relevance 

and minimum redundancy criterion simultaneously. The expression is given as follows: 

RDRD −=ΦΦ ),,(max  (6)

where, D is average mutual information and R denotes the redundancy of the individual feature  

vectors. This algorithm is realized by using incremental search strategies and the selection process is 

terminated if the number of the features meets the requirement. The detailed description of this algorithm is 

given in [28]. 

3.3. Experimental Setup 

In order to verify the effectiveness of this system, titanium alloy milling experiments based on the 

force sensor were carried out. The structure of the experiment is shown in Figure 4. The experiment 

was carried out on a FNC-A2 vertical machining center by using the end mill cutter. The cutter is an 

APMT1604PDER-H2 with three inserts and the tool holder was a DEREK 400R C32-32-200. Besides, 

the experiment proceeded under lubrication with EP690 half synthetic water soluble cutting fluid.  

A Kistler 9257 dynamometer was used to collect the force signals in the feeding direction with a 

sampling rate of 10 K. The cutting parameters used in this experiment are listed in Table 1. The milling 

of titanium alloy was carried out and the length for each cutting pass was 100 mm. After each pass, the 

tool wear values on the flank face of all inserts were measured by microscope and their average value 

was adopted as the indicator of the current tool wear state. As the cutting process proceeded repeatedly, 

the cutter wore gradually and the experiment was terminated if the tool wear value was larger than  

0.35 mm because the cutter was viewed as broken in that case. Finally, the tool wear states are divided 

into four categories whose scopes are shown in Table 2. 
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Figure 4. Scheme of tool wear experiment. 
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Table 1. List of cutting parameters. 

Cutting Speed Feed Rate Cutting Width Cutting Depth Cutter Diameter Number of Tooth 

597 rpm 0.1 mm/rev 18 mm 1 mm 30 mm 3 

Table 2. Tool wear categories and its corresponding wear scope. 

Tool Wear Category New Tool  Initial Wear Middle Wear Severe Wear 

Wear value (mm) <0.1 0.1–0.2 0.2–0.35 >0.35 

3.4. Data Preparation 

Within each tool wear category, the dynamic force signal is split into 240 segments with the length of 

4096 points so as to cover the dynamic characteristic of all inserts. Therefore the number of the samples 

in the whole dataset is 960. Figure 5 depicts the waveforms of typical force signals under four kinds of 

tool wear states. It can be seen that the periodicity of the sensory signal is obvious. Moreover, noisy 

interference also exists, which makes it hard to be used directly as feature vector. To depict the dynamic 

characteristics of the force signal, the first 16 order harmonic features are extracted for each sample in 

the dataset by using Equations (4) and (5). Moreover, to improve relevance and reduce redundancy 

simultaneously, the mRMR algorithm is further adopted to select the most prominent features based on 

the whole dataset. Finally, the first, second, fifth, eleventh and thirteenth harmonic features are selected. 

The spatial distribution of these feature vectors is illustrated in Figure 6. It can be seen that these feature 

vectors distribute dispersedly and the shape is irregular, which casts higher demand on the construction 

of the classifier. To analyze the accuracy and stability of the classifier, the whole dataset is divided into 

two parts equally. One part is used to train the ensemble learning classifier and the other is to test the 
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accuracy of the built classifier. Moreover, the training and testing process of the classifier is repeated 

10 times and both the average accuracy and deviation are calculated simultaneously to accurately 

evaluate the classifier. 

Figure 5. Force waveforms for different tool wear categories. (a) New tool; (b) Initial 

wear; (c) Middle wear; (d) Severe wear. 
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Figure 6. Spatial distributions of feature vectors for different tool wear categories. (a) The 

first and fifth harmonic feature; (b) The eleventh and thirteenth harmonic feature. 
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3.5. Analysis and Discussion 

3.5.1. Comparison with Single Classifiers 

Based on the above training samples, the heterogeneous ensemble learning classifier with stacking 

strategy is constructed. The classification results for the test samples are given in Figure 7. It can be seen 

that the maximum accuracy of the heterogeneous ensemble learning classifier is 100% and the minimum 

accuracy is 99.38%. The average accuracy can reach 99.79%. For comparison purposes, the single 

classifiers based on SVM, HMM and RBF, respectively, are also built and the classification results are 

given in Figure 7. It can be seen that SVM can achieve the highest accuracy among these single 

classifiers, which amounts to 93.94%, while the average accuracy of HMM is lowest, which is 73.1%. 

In order to further illustrate the stability of the classifier, the standard deviation of single classifier and 

heterogeneous ensemble learning classifier are computed and listed in Table 3. It can be found that 

HMM has the best stability among the three single classifiers while the stability of the SVM classifier 

is the worst. In contrast, the standard deviation of heterogeneous ensemble learning model is only 

0.22%, which is far less than that of the HMM classifier. Therefore, it can be concluded that the 

heterogeneous ensemble can lower the risk of wrong classification so as to improve the stability and 

accuracy of the classifier [29]. 

Figure 7. Comparison of single classifier with heterogeneous ensemble classifier  

(Het-s—heterogeneous stacking; AVE—averaging accuracy; MAX—maximum accuracy; 

Min—minimum accuracy). 
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Table 3. Standard deviation of accuracy for different classifiers. 

 Single Classifier Heterogeneous Ensemble Homogeneous Ensemble 

Classifier SVM HMM RBF SVM stacking Majority Voting SVM HMM RBF 

Deviation (%) 4.77 2.39 4.09 0.22 0.96 2.3 2.04 0.81 
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3.5.2. Comparison with Homogeneous Ensemble Learning 

In this section, heterogeneous ensemble learning is further compared with the homogeneous ensemble 

learning based on the same stacking strategy. Different from the heterogeneous ensemble, homogeneous 

ensemble learning uses the same kind of model as base classifiers [30]. However, their initialization 

parameters and weight values are totally different from each other. Therefore, in comparison with single 

classifiers, some wrong results within each single model are revised by combining different outputs and 

the final classification accuracy can be improved to some extent [31]. In this paper, based on SVM, RBF 

and HMM, respectively, three homogeneous ensemble learning classifiers are constructed. The comparison 

between the heterogeneous and homogeneous classifiers is shown in Figure 8. It can be seen that, among 

the three homogeneous ensemble classifiers, the SVM-based model has the best average and maximum 

accuracy, which are 97.73% and 99.79% respectively. What’s more, the RBF-based model has the best 

minimum accuracy, which is 94.17%. While for the heterogeneous ensemble classifier, the average 

accuracy can achieve 99.79%, the maximum accuracy is 100% and the minimum accuracy is 99.38%. 

The deviations of these homogeneous classifiers are given in Table 3. It is shown that RBF has the best 

stability among these homogeneous classifiers and SVM is the worst. In contrast, the standard deviation 

of classifier is only 0.22%, which is far lower than that of homogeneous ensemble classifiers. These 

results prove that the heterogeneous ensemble has better accuracy and stability than the homogeneous 

ensemble. One reason is that the lower correlation between the errors of each heterogeneous base 

classifier reduces the ensemble error of the final ensemble learning classifier. Another reason for these 

results is that the diversity of the heterogeneous ensemble learning is larger than that of the homogeneous 

ensemble, which makes the SVM stacking in the second levels more likely pick up the most useful 

support vectors so as to depict the final decision boundary more accurately if the accuracy of the base 

classifiers is high enough [30]. 

Figure 8. Comparison of heterogeneous with homogeneous ensemble classifier  

(Het-s—heterogeneous ensemble with stacking, SVM-s—SVM homogeneous ensemble 

with stacking, HMM-s—HMM homogeneous ensemble with stacking; RBF-s—RBF 

homogeneous ensemble with stacking). 
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3.5.3. Comparison with Majority Voting 

In order to show the advantage of SVM-based stacking strategy, another kind of ensemble  

strategy-majority voting is also adopted to construct a heterogeneous ensemble learning classifier based  

on the above three base classifiers. Different from the SVM stacking strategy, majority voting sums the 

predictions of every base classifier and picks the most popular class [21]. The classification results of the 

majority voting are illustrated in Figure 9 and the deviations are listed in Table 3. The comparison with 

SVM-based stacking demonstrates that the average accuracy and deviation of the SVM-based stacking 

exceeds that of the majority voting algorithm, which proves that strong nonlinear mapping ability of 

SVM-based stacking is more effective to rectify the prediction errors of certain base classifiers, which 

guarantees that the final classification results is more accurate [21]. 

Figure 9. Comparison of major voting with stacking strategy for heterogeneous ensemble 

classifier (Het-v—heterogeneous ensemble with majority voting and Het-s—heterogeneous 

ensemble with stacking). 
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4. Conclusions 

A tool condition monitoring system is built based on the heterogeneous ensemble learning classifier. 

In this system, three kinds of different models, i.e., SVM, RBF and HMM are selected as the base 

classifiers and a stacking strategy is used to integrate the outputs of these base classifiers and judge the 

final tool wear category. In order to verify the effectiveness of the proposed method, titanium alloy 

milling experiments were carried out and signals from the force sensor were collected to depict the 

dynamic characteristics of the machining process. The harmonic feature vectors are extracted and further 

selected based on the mRMR algorithm to build the heterogeneous ensemble learning classifier. Moreover, a 

homogeneous ensemble learning and majority voting strategy are also adopted to make a comparison. 

The analysis and comparison results show that the average accuracy of the heterogeneous learning 

classifier is the highest, while its standard deviation is the lowest among these classifiers. These results 

testify to the effectiveness of the proposed heterogeneous ensemble classifier in the field of tool 

condition monitoring. 
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