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Abstract: This paper presents a flexible deployment of ultrasonic position sensors and a 

novel positioning algorithm suitable for the navigation of mobile robots (MRs) in extensive 

indoor environments. Our proposal uses several independently-referenced local positioning 

systems (LPS), which means that each one of them operates within its own local reference 

system. In a typical layout, an indoor extensive area can be covered using just a reduced set 

of globally-referenced LPS (GRLPS), whose beacon positions are known to the global 

reference system, while the rest of the space can be covered using locally-referenced LPSs 

(LRLPS) that can be distributed arbitrarily. The number of LRLPS and their position can 

be also changed at any moment. The algorithm is composed of several Bayesian filters 

running in parallel, so that when an MR is under the GRLPS coverage area, its position is 

updated by a global filter, whereas when the MR is inside the LRLPS area, its position is 

updated using position increments within a local filter. The navigation algorithm has been 

tested by simulation and with actual data obtained using a real set of ultrasonic LPSs. 

Keywords: ultrasonic local positioning systems; globally-referenced LPS; locally-referenced 

LPS; indoor navigation; mobile robot; data fusion 
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1. Introduction 

The estimation of the position and navigation tasks of a mobile robot (MR) in indoor environments 

has been an important research topic during the last few years. Some systems try to replicate indoors 

the GPS behavior and performances outdoors. The most popular technologies used in order to 

implement an indoor positioning system are Ultrasound (US) [1–4] and Radiofrequency (RF) [5–7]. 

Usually, these technologies are used to build local position systems (LPS) [8–10] composed of a set of 

beacons, placed on known fixed positions that emit a signal (RF, US), which is captured by a mobile 

receptor in order to estimate its position. Using some kind of distance-dependent information included 

within the beacons’ signals (i.e., time of flight, signal intensity), the receptor can estimate its position. 

If the recovered information is an absolute distance to each beacon, the estimation of the position can 

be obtained by a spherical trilateration [11]. The drawback of the spherical trilateration is that it is 

necessary to synchronize in time beacons and receivers. Alternatively, using the difference of distances 

to a reference beacon, the estimation of the position can be computed using a hyperbolic trilateration 

algorithm [12]. However, in such case of hyperbolic trilateration, the minimum set of beacons needed 

to estimate the receiver’s position increases. 

In the case of MR navigation, the most used positioning technique is odometry, based on the 

information provided by the encoders linked with their movement axes. Nevertheless, odometry is a 

relative positioning system whose estimations have an error that gets higher with time and that can also 

reflect impulsive error behavior related with skids or some other traction defects. Using process 

filtering, the odometry errors can be lowered to some grade. The most commonly used algorithms are 

based on Bayesian theory, like the unscented and extended Kalman filter (EKF, UKF) [13,14], the  

H-infinity [15] and the particle filter [16]. 

The best way to prevent heavy odometry errors is to fuse this source of information with 

complementary absolute positioning systems, like GPS outdoors. However, indoors, GPS cannot be used 

because of degradations in the reception from satellites, and that is why LPS are needed in  

those environments. 

In extensive areas (for instance, inside large buildings), the deployed LPSs should cover most of the 

area, using as many additional LPS around as required by the degree of precision needed in the 

positioning task [10]. Ultrasonic beacons, for instance, give very good results when measuring distances 

by time of flight techniques (TOF), but the reduced range forces one to install several of these systems to 

cover large areas. Moreover, each LPS needs to be calibrated at their position after being deployed and 

before beginning the localization tasks. Therefore, the deployment of such systems is complicated 

when there are dynamic changes or a fast installation is required, for instance in emergencies or similar 

situations. If some or all of the LPSs in an extensive area could be installed without a previous 

calibration stage, many of those drawbacks would be avoided. 

This paper presents a novel algorithm that allows one to navigate an MR in extensive areas using a 

set of LPSs, most of them without calibration. Section 2 describes the scenario and the statement of the 

problem. Section 3 introduces the proposed algorithm in both the spherical and the hyperbolic cases. 

Section 4 shows some simulated results. Section 5 presents real results. Section 6 describes the 

possibility to adapt the system for human tracking, and finally, Section 7 discusses some conclusions 

derived from the proposal. 
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2. Statement of the Problem and Definitions 

The test scenario is an extended indoor area where it is necessary to locate an MR. This large area is 

covered using a set of calibrated and uncalibrated LPSs (Figure 1). A calibrated LPS is the one whose 

beacons have been referenced to a global system, for instance after a calibration procedure; we will 

denote it as globally-referenced LPS (GRLPS). Normally, a GRLPS will be placed in strategic 

waypoints, like, for instance, the main entrances to a section in a building. The uncalibrated LPS will 

be identified as locally-referenced LPS (LRLPS), because only the relative positions of the beacons 

inside each LRLPS are known, and they have been determined prior to the deployment; they only 

depend on the geometry of the LPS and not on the place in which it is installed. LRLPSs can be  

placed all around the movement area, and their number and positions can be changed dynamically (at 

any time). 

Figure 1. Particular case of globally-referenced LPS (GRLPS) and locally-referenced LPS 

(LRLPS) structures, with five and four beacons, respectively. MR, mobile robot. 

 

Each LPS has to be composed of at least three beacons in the spherical case or four beacons in the 

hyperbolic one, in order to have enough distance measurements to apply the algorithms. Figure 2 shows 

a simulated scenario, where all beacons are placed on the ceiling, including GRLPSs, LRLPSs and 

their coverage areas on the ground. In this particular case, the GRPLS is composed of five beacons and 

the LRLPS of four beacons (so the GRLPS has more redundancy). Because of the performances 

achieved with the actual LPS used in real tests [9], we will suppose that for all of the LPSs, the 

coverage area is a circle on the ground with a radius of five meters. 

The structure of each LPS must be known. In this case, we have used four beacons for each  

non-calibrated LPS structure (the LRLPS) composing a square with a side of 1 m; and five beacons, one 

more in the center of the square, for each calibrated LPS structure (the GRLPS). Some kind of overlapping 

between the LRLPSs’ coverage area is recommended in order to reduce the positioning error of a mobile 

robot while navigating in the environment. If the MR moves outside the LPS coverage area (either a GR 

or LR LPS), it will only estimate its position using the odometry, so the error will increase accumulatively. 
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Figure 2. Simulated workspace based on the real plan of a building. 

 

In order to make the paper more self-contained and to understand the proposed algorithm, some 

notations are included in this section: 

, : Global state vector at instant k. This vector is composed of the global coordinates of 

the MR and its orientation. G indicates that the reference is global. 

, , : Local state vector at instant k. This vector is composed of the local coordinates of the MR 

and its orientation. L indicates that the reference is local, and n is the specific LRLPS. ¯ , : A priori global state vector at instant k. ¯ , , : A priori n-local state vector at instant k. 

, , , : Real distance measured between the global position of the MR at instant k and the m-th 

global beacon of GRLPS. 

, , , : Estimated distance between the global position of the MR at instant k and the m-th 

global beacon of GRLPS. 

, , , : Real distance measured between the local position of the MR at instant k and the m-th 

local beacon of the n-LRLPS. 

, , , : Estimated distance between the local position of the MR at instant k and the m-th local 

beacon of the n-LRLPS. ∆ , , , : Real difference of distances measured between beacon m and beacon 1 of GRLPS to 

the global position of the MR at instant k. ∆ , , , : Estimated difference of distances between beacon m and beacon 1 of GRLPS to the 

global position of the MR at instant k. ∆ , , , : Real difference of distances measured between beacon m and beacon 1 of the n-LRLPS 

to the global position of the MR at instant k. ∆ , , , : Estimated difference of distanced between beacon m and beacon 1 of the n-LRLPS to 

the global position of the MR at instant k. 
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, : Global transition matrix of the dynamic model. , , : n-local transition matrix of the dynamic model. ℎ ,¯ : Global matrix observations obtained by the a priori information. ℎ , ,¯ : n-local matrix observations obtained by the n-local a priori information. , : Global measurement model matrix. , , : n-local measurement model matrix. , : Global covariance matrix , , : n-local covariance matrix. , : Global process noise covariance matrix. , , : n-local process noise covariance matrix. : Global measure noise covariance matrix. , : n-local measure noise covariance matrix. : Global measure variance (variance of distance in spherical case or difference of distances 

in hyperbolic one). , : n-local measure variance. 

3. Proposed Algorithm 

The pseudocode of the proposed algorithm is presented in Algorithm 1, and it can be applied for 

both the spherical and the hyperbolic cases. Basically, this pseudocode points out which state vector 

(local or global) is updated depending on the measurements performed by the MR according to its 

localization and the coverage area of the different LPSs. The process for the main lines of this 

pseudocode is explained with more detail in the following paragraphs. 

The algorithm estimates the 2D location and the orientation of a mobile node inside the global 

coordinates system. The estimated position values for the actual instant k are described by the global 

state vector (1): 

, = , , ,  (1)

When the mobile node is located inside the coverage area of a LRLPS, another local state vector (2) 

is defined additionally to the global vector: 

, , = , , , , , ,  (2)

where n = 1, 2, …, N is the specific LRLPS. 

In order to have always a globally referenced position and orientation of the MR, let us suppose that 

the first iteration of this algorithm will be computed when the MR is inside the coverage area of a 

GRLPS. This is a convenient condition and is also quite easy to accomplish, because GRLPSs have 

been specified to be installed on the entry points of the main building sections’ areas of interest. 
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 Algorithm 1. Pseudocode of the proposed algorithm. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

 

 

21: 

22: 

23: 

24: 

25: 

while the MR is navigating … do 

if (GRLPS coverage exists) then 

if (first iteration of GRLPS) then 

Global vector initialization 

Global covariance matrix initialization 

else 

Global state vector update using EKF 

Global covariance matrix update 

end if 

else if (LRLPS coverage exists) then 

for all LRLPS with coverage do 

if (first iteration of LRLPS(n)) then 

Local vector initialization 

Local covariance matrix update 

else 

Local state vector update using EKF 

Local covariance matrix update 

end if 

end for 

Global state vector update using the increment of distance and angle 

between k and k – 1 iteration of the local state vector that has the least 

value of its covariance matrix 

else 

Global state vector update using only odometry 

Global covariance matrix update 

end if 

end while 

3.1. Global Initialization for the GRLPS Area (Lines 4 and 5 in Algorithm 1) 

When the MR goes into a GRLPS area for the first time, the global state vector (3) is obtained using 

a Gauss–Newton minimization algorithm in order to minimize the Equations (4) or (5) depending on 

the case (spherical or hyperbolic): 

, = , , ,  (3)

,  ,  = arg min , , , − , , ,  (4)

, ,  = arg min ∆ , , , − ∆ , , ,  (5)
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where m = 1, 2, …, M represents each specific beacon of this GRLPS. Note that in the hyperbolic case, 

m = 2, 3, …, M, because the first beacon is the reference one. 

In the case of spherical trilateration, the estimated distance between the MR to each beacon for that 

specific GRLPS is used as defined in Equation (6): 

, , , = ,  − , + , − , + − ,   (6)

where zMR is the height of the MR. 

For the hyperbolic trilateration, the differences of distances are used, as defined in Equation (7): ∆ , , , = ,  − ,  + ,  − ,  +  − ,   − ,  − ,  + , − , + − ,   
(7)

3.2. Global Navigation inside a GRLPS Area (Lines 7 and 8 in Algorithm 1) 

For the rest of iterations, when the robot is navigating inside a GRLPS area, the global state vector 

and its covariance matrix are updated following the EKF structure: 

Prediction stage: 

,¯ = , ,  (8)

,¯ = , ∙ , ∙ , +  (9)

Update stage = ,¯ ∙ , ∙ , ∙ ,¯ ∙ , + , +  (10)

,¯ = , + ∙ , − ℎ ,¯  (11)

, = − ∙ , ∙ ,¯  (12)

Let us suppose that Δdodo is the increment of distance and Δθodo is the angular increment extracted 

from the MR odometry. The a priori estimation of the global state vector is defined by Equation (13), 

where we have used such odometry information to estimate this state. 

,¯ = , + ∆ ∙ cos , + ∆, + ∆ ∙ sin ,  + ∆, + ∆  (13)

The global transition matrix of the dynamic model is defined by Equation (14): 

, =
,¯ ,,  ,¯ ,,  ,¯ ,,  

= 1 0 −∆ ∙ sin ,  + ∆0 1 ∆ ∙ cos ,  + ∆0 0 1  (14)
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The global covariance matrix is obtained by Equation (15): 

, = , ,, ,, ,  (15)

and the process noise is modeled by the diagonal matrix (16). 

= , 0 00 , 00 0 ,
 (16)

where 
G,

2

xvσ , 
G,

2

yvσ and 
G,

2
v θ

σ  are the variances related to each value of the global state vector. 

The global matrix observations obtained by the a priori information are shown in Equation (17) for 

the spherical case. Its derivative represents the global measurement model matrix and is defined in 

Equation (18): 

ℎ ,¯ = ℎ ,¯⋮ℎ ,¯ = ,¯ − ,  + ,¯ − ,  +  − ,  ⋮
,¯ − , + ,¯ − , +  − ,  

 (17)

, =
ℎ ,¯

,⋮̄ℎ ,¯
,¯

=
ℎ ,¯

,¯ ℎ ,¯
,¯ ℎ ,¯

,¯⋮ ⋮ ⋮ℎ ,¯
,¯ ℎ ,¯

,¯ ℎ ,¯
,¯

 (18)

Regarding the hyperbolic case, the global matrix observation is given by Equation (19): 

ℎ ,¯ = ℎ ,¯⋮ℎ ,¯ =
,¯ − ,  + ,¯ − ,  +  − ,  − ,¯ − ,  + ,¯ − ,  +  − ,  ⋮

,¯ − ,  + ,¯ − ,  +  − ,  − ,¯ − , + ,¯ − , +  − ,  
 (19)

For the spherical case, as the distance measurements are directly used, we can assume that the noise 

for each measurement is Gaussian and uncorrelated, so RG is a diagonal matrix as defined in  

Equation (20), whose diagonal elements are the variance in the distance measurements: 

= 0 00 ⋱ 00 0  (20)
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For the hyperbolic case, we also assume that the noise is Gaussian, but now, as differences of 

distances are used, the noise is correlated [17] and RG is the matrix shown in Equation (21): 

= 0.5 ∙ 0.5 ∙0.5 ∙ ⋱ 0.5 ∙0.5 ∙ 0.5 ∙  (21)

3.3. Local Initialization for the LRLPS Area (Lines 13 and 14 in Algorithm 1) 

When the MR moves into an LRLPS area, the first iteration of the n-local vector (22) is obtained 

using the same procedure as for the GRLPS case. The aim is to minimize the Equations (23) or (24) 

depending on the case, spherical or hyperbolic, respectively: 

, , = , , , , , ,  (22)

, , , ,  = arg min , , , , , − , , , , ,  (23)

, , , ,  = arg min ∆ , , , , , − ∆ , , ,  (24)

where m = 1, 2, …, M represents each beacon of the LRLPS and the distances are calculated by 

Equations (25) and (26) in each case. 

, , , , , = , ,  − , , + , , − , , +  − , ,   (25)

∆ , , , , , = , ,  − , , + , , − , , +  − , ,   

  − , ,  − , ,  + , , − , , + − , ,   

(26)

3.4. Local Navigation inside an LRLPS Area (Lines 16 and 17 of Algorithm 1) 

If the MR navigates inside a LRLPS area, the local state vector and the covariance matrix are updated 

with an extended Kalman filter (EKF) particularized to the specific LRLPS and run in parallel to the 

global one and other LRLPS in the case that the corresponding coverage areas intersect. The Equations 

are described as follows: 

Prediction stage: 

, ,¯ = , , ,  (27)

, ,¯ = , , ∙ , , ∙ , , +  (28)

Update stage: = , ,¯ ∙ , , ∙ , , ∙ , ,¯ ∙ , , + , , +  (29)

, ,¯ = , , + ∙ , , − ℎ , ,¯  (30)



Sensors 2014, 14 21759 

 

 

, , = − ∙ , , ∙ , ,¯  (31)

The a priori information of the n-local state vector is defined by Equation (32), in which, we have 

used the odometry information (Δdodo, Δθodo) in order to estimate this state: 

, ,¯ = , , + ∆ ∙ cos , , + ∆, , + ∆ ∙ sin , ,  + ∆, , + ∆  (32)

The Expression (33) is obtained taking the derivative of the matrix (32) with respect to each one of 

the local state variables: 

, , =
, ,¯ ,, ,  , ,¯ ,, ,  , ,¯ ,, ,  

= 1 0 −∆ ∙ sin , ,  + ∆0 1 ∆ ∙ cos , ,  + ∆0 0 1  (33)

The local covariance matrix (34) represents the variance for each local state variable and is updated 

in every iteration of the local EKF: 

, , = , , , , , , ,, , , , , , ,
, , , , , , ,

 (34)

Regarding the process noise, it is modeled by a diagonal matrix (35): 

, = , , 0 00 , , 00 0 , ,
 (35)

The local matrix observations obtained by the a priori information is shown in Equation (36) for  

the spherical case. Its derivative represents the global measurement model matrix and is defined in 

Equation (37): 

ℎ , ,¯ = ℎ , ,⋮̄ℎ , ,¯ =
= , ,¯ − , ,  + , ,¯ − , ,  +  − , ,  ⋮

, ,¯ − , , + , ,¯ − , , +  − , ,  
 

(36)
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, , =
ℎ , ,¯

, ,⋮̄ℎ , ,¯
, ,¯

=
ℎ , ,¯

, ,¯ ℎ , ,¯
, ,¯ ℎ , ,¯

, ,¯⋮ ⋮ ⋮ℎ , ,¯
, ,¯ ℎ , ,¯

, ,¯ ℎ , ,¯
, ,¯

 (37)

In the hyperbolic case, the observation matrix is defined by Equation (38): 

ℎ , ,¯ = ℎ , ,⋮̄ℎ , ,¯ =

=
, ,¯ − , ,  + , ,¯ − , ,  +  − , ,  − , ,¯ − , ,  + , ,¯ − , ,  +  − , ,  ⋮

, ,¯ − , ,  + , ,¯ − , ,  +  − , ,  − , ,¯ − , , + , ,¯ − , , +  − , ,  
 

(38)

For the spherical case, the observation noise is Gaussian and uncorrelated Equation (39): 

, = , 0 00 ⋱ 00 0 ,  (39)

In the hyperbolic case, the noise is Gaussian, but correlated, and it can be simplified as indicated in 

Expression (40) according to [17]: 

, = , 0.5 ∙ , 0.5 ∙ ,0.5 ∙ , ⋱ 0.5 ∙ ,0.5 ∙ , 0.5 ∙ , ,
 (40)

3.5. Global Navigation in a LRLPS Area (Line 20 of Algorithm 1) 

One of the major challenges of this algorithm is to solve the case in which the MR is navigating 

inside LRLPS areas and the position of the MR is required according to the global reference system.  

In this case, the global vector Equation (43) is updated using the increments of distance and angle 

between the current point (k) Equation (41) and the previous point (k−1) Equation (42) of the local state 

vector. In the case of having the coverage of several LRLPSs, the global state vector is updated 

considering only the one which has the least trace of its covariance matrix. ∆ | ( , , ) = , , − , , + , , − , ,   (41)

∆ | ( , , ) = , , − , ,  (42)
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, = , + ∆ | ( , , ) ∙ cos , + ∆ | ( , , ), + ∆ | ( , , ) ∙ sin ,  + ∆ | ( , , ), + ∆ | ( , , )
 (43)

Figure 3 shows graphically how the global positioning (related to the global reference system) is 

performed from the local positioning (obtained regarding the local reference system of an LRLPS). 

The filter that computes the local positioning algorithm gives positions that are translated and rotated 

regarding to the global reference system, although the increments of distance and angle between two 

successive instants of time can be translated from the local path to the global one. 

Figure 3. Diagram that shows the update of the global position from the increments of 

distance and angle between two consecutive instants of time in the local reference system. 

 

3.6. Global Navigation with Only Odometry (Lines 22 and 23 in Algorithm 1) 

Of course, when the MR is navigating without any coverage from an LRLPS or a GRLPS, the 

global state vector is updated using only the odometry information, and the covariance matrix is equal 

to the a priori estimation, as was shown in Equation (13). 

Finally, in the cases in which the robot is covered partly by GRLPS and partly by LRLPS, the global 

state vector is updated using the global beacons. In parallel, the local state vector for the particular 

LRLPS is updated using the measurements from the local beacons (to be used just in case of losing the 

global coverage). 
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4. Simulated Results 

In order to evaluate the performance of the algorithm, different trajectories have been simulated 

using the workspace shown in Figure 2. We have compared the proposed algorithm based on GRLPS 

and LRLPS to a case in which all LPSs were previously calibrated. Results are simulated for both the 

spherical and the hyperbolic cases. 

In the first test, we simulated a trajectory where the MR follows a rectangular path. In this 

simulation, we have introduced Gaussian noises for the odometry and for the measurement of 

distances. The typical deviation of the odometry error for the MR increment of distance has been set to 

zero, while for the increment of angle, we have used a relatively high value (compared with real systems) 

in order to evaluate the effect of errors when the MR rotates in the corners of the rectangular path. 

Finally, for distance measurements, we have used a typical error of 1 cm, obtained from real 

measurements in an Ultrasonic Local Positioning System (ULPS), as seen in Equation (44): ∆ = 0 m,       ∆ = 0.07 rad, = , = 0.01 m (44)

Figure 4 shows the trajectory with only odometry information (lines in black), the ground truth of 

the trajectory (lines in magenta), the navigation estimation supposing all beacons previously calibrated 

(lines in red) and the navigation estimation using the proposed algorithm (lines in blue). Obviously, the 

navigation errors supposing all LPS calibrated are less than the ones using the proposed algorithm, but 

in the last case, better than the case with only odometry information. The performance of each method 

can be better seen in Figure 4, where the accumulative mean error evolution is shown. 

Figure 4. Evaluation of the algorithm for a rectangular trajectory. (Left) Spherical case; 

(right) hyperbolic case. 

  

In order to evaluate the accumulative error, we have simulated 50 iterations per step of the 

trajectory assuming the errors described in Equation (44). Note that in Figure 4, only one of these 

iterations was represented. After all of the iterations, the simulation results are shown in Figure 5, 

where Step 1 corresponds to the starting point and Step 110 to the finishing point. It can be observed 

that the navigation errors assuming all LPS calibrated are close to zero and are not accumulative. The 

odometry has an accumulative error that gets higher right after the first turning of the MR (it is very 

sensitive to angle errors). Concerning the proposed algorithm, it has a relatively low accumulative 
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error, even when the MR navigates inside LRLPS areas (less than 40 cm for the spherical case and 

double for the hyperbolic).  

Figure 5. Accumulative mean error evolution. (Left) Spherical case; (right) hyperbolic case. 

Let us pay attention to the navigation error evolution when the MR returns to GRLPS at the end of the 

trajectory. This happens roughly around Step 100. The error figures go suddenly to very low values 

again. This is because of the reduced absolute errors that can be obtained under the GRLPS coverage 

areas [10]. 

In the second test, an arbitrary route was defined to be followed by the MR. In this case, the 

odometry errors have been changed, considering typical errors obtained for our real MR and ultrasonic 

distance measurements based on empirical tests Equation (45): 

∆ = 0.07 m,       ∆ = 0.05 rad, = , = 0.01 m  (45)

Figure 6. Simulated trajectory. (Left) Spherical case; (right) hyperbolic case. 
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The defined trajectory covers almost all of the working area, and it was thought to be a practical route.  

Figure 6 shows the results to compare the performance between the proposed algorithm using 

GRLPS and LRLPS and the case in which all of the LPSs were calibrated, as well as the case with  

only odometry.  

Figure 7 shows the accumulative error for the trajectory in this simulation. Now, the trajectory is 

longer than in the previous simulation, and the accumulative error for the case of using only odometry 

increases until more than ten meters; while for the proposed algorithms, it remains below 1 m (and 

better for the spherical case). Finally, Figures 8 and 9 show the cumulative distribution function (cdf) in 

different error conditions.  

Figure 7. Accumulative mean error evolution for trajectories in Figure 6. (Left) Spherical 

case; (right) hyperbolic case. 

Figure 8. cdf of the navigation errors for different odometry error conditions assuming that 

the ultrasonic distance errors remain constant. (Left) Spherical case; (right) hyperbolic case. 
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Figure 9. cdf of the navigation errors for different ultrasonic distance error  

conditions assuming that the odometry errors remain constant. (Left) Spherical case;  

(right) hyperbolic case. 

For the first test, it can be observed that the variation of odometry errors does not degrade the 

system performance very much when the ultrasonic distance errors remain constant (Figure 7), whereas 

when the odometry errors are constant and the ultrasonic distance errors change, the navigation errors 

increase considerably, especially in the hyperbolic case. Note that in any case, the results for the 

hyperbolic trilateration show twice the errors that are obtained using the spherical trilateration. 

5. Real Results 

In order to evaluate the algorithm behavior in a real scenario, we have used two ultrasonic LPSs. One 

of them will work as a GRLPS, while the other will operate as an LRPLS. The layout and hardware of 

both LPSs are the same. Each LPS has the structure shown in Figure 10.  

Figure 10. Structure of a real ULPS. 
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There are five emitters (beacons) placed, four of them on the corners of a square and the fifth one in 

its center. All of them emit a 1023-bit Kasami code in order to increase the detection performance. Full 

details of the system are explained in [10]. 

Figure 11 shows the test trajectory performed with a Pioneer 3-DX MR [18]. The coverage area of the 

GRLPS is shown in green, while the coverage area of the LRLPS is shown in magenta. To estimate the 

MR location, it is only possible to use the hyperbolic case, since there is no synchronization between the 

beacons and the receiver. 

Figure 11. Real results with a GRLPS and an LRLPS. 

 

In this Figure 11, the red line (with squares) is the estimated path assuming all LPSs were globally 

referenced. As the position errors in this case are close to the ground truth, this path will be used as the 

reference one to be compared with the results obtained in other conditions. The black line (with crossings) 

represents the trajectory described by the odometry of the robot, while the blue line (with asterisks) 

illustrates the results obtained using our proposed algorithm. It can be observed that using this algorithm, 

the estimated trajectory is close to the one assuming that all LPS were calibrated. 

6. Use of the System for Human Tracking 

The approach presented in this paper is suitable for human navigation, provided that the equipment 

is conveniently adapted. 

Regarding the US reception stage, the MR uses a receiver system developed by Avisoft [19] connected 

to a laptop. However, this receiver is too huge to be carried by a person, and thus, in [20] we proposed 

an ultrasonic signal acquisition module for mobile devices (smartphones, tablets).  
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Regarding the odometry data obtained from people walking, different approaches have been 

published. For instance, taking advantage of the smartphone sensors, some authors, as in [21], propose a 

pedestrian dead reckoning technique based on the accelerometer sensor, which permits the recognition of 

some step patterns. On the other hand, Inertial Measurement Units (IMUs) allow getting better estimations 

than smartphones; although the equipment required is more intrusive. Each IMU is usually composed 

of three accelerometers and tree gyroscopes and is mounted on the foot. An example of this approach 

can be found in [22]. 

As future work, we intend to use the ultrasonic signal acquisition module and a pedestrian dead 

reckoning method in order to apply the navigation algorithm presented in this paper for human tracking 

and navigation. A major challenge will be the adaptation of our algorithm to a smartphone due to  

real-time restrictions. Figure 12 shows a scheme of the adaptation for human tracking. 

Figure 12. Proposed scheme for human tracking. 

 

7. Conclusions 

In this paper, we have proposed a novel algorithm that allows navigating with increased performance 

inside an extensive area covered by a set of LPSs, some of them with a global reference (GRLPSs) and 

most with a local reference system (LRLPSs). The main advantage of the proposed algorithm is the 

possibility of navigating in extensive indoor environments without calibration of all of the needed 

LPSs, useful in cases of changing environments or when a fast installation is required. 

In the case that the MR navigates inside an LRLPS coverage area, the accumulative position error 

increases slowly (compared with the case of only using odometry), and usually, it can be admissible for 

MR indoor navigation; this error is reset (decreases to a low value) when the MR is inside a GRLPS 

coverage area. The performance of the system has been tested with different simulated and real trajectories. 

Finally, we have studied the possibility to adapt the system to human tracking as future work. 
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