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Abstract: This paper presents a real-time motion planning approach for autonomous vehicles 

with complex dynamics and state uncertainty. The approach is motivated by the motion planning 

problem for autonomous vehicles navigating in GPS-denied dynamic environments, which 

involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and 

constraints imposed by uncertain and cluttered environments. To address the above motion 

planning problem, we propose an extension of the closed-loop rapid belief trees, the  

closed-loop random belief trees (CL-RBT), which incorporates predictions of the position 

estimation uncertainty, using a factored form of the covariance provided by the Kalman 

filter-based estimator. The proposed motion planner operates by incrementally constructing 

a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting 

candidate paths with low uncertainty using efficient covariance update and propagation. The 

algorithm can operate in real-time, continuously providing the controller with feasible paths 

for execution, enabling the vehicle to account for dynamic and uncertain environments. 

Simulation results demonstrate that the proposed approach can generate feasible trajectories 

that reduce the state estimation uncertainty, while handling complex vehicle dynamics and 

environment constraints. 
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1. Introduction 

Autonomous micro-aerial vehicles (MAV) are playing an increasingly important role in many civil and 

military applications. MAVs that are capable of autonomously making decisions and operating can be 

applied in many tasks scenarios that are not accessible by humans and ground mobile robots, such as 

indoor exploration and mapping, search and rescue, disaster relief, etc. As a result, there has been an 

increasing interest in developing autonomous MAV systems for indoor navigation. In recent years,  

many researchers have developed and implemented various kinds of MAV systems demonstrating various 

degrees of autonomy in performing tasks, such as indoor exploration [1], environment mapping [2] and 

agile flight [3]. 

Despite the considerable progress achieved in this domain, there are still many challenges in developing 

fully autonomous MAV systems. One of the key problems is the motion/path planning for MAVs capable 

of operating in GPS-denied complex environments. For MAVs performing tasks in such scenarios, the 

motion planning algorithm must comply with constraints, including complex vehicle dynamics (non-linear 

and/or non-holonomic dynamics with a high dimensional state space) and environmental constraints 

(unstructured and uncertain, time-varying operating environments). Particularly, since MAVs typically 

cannot directly get access to the information of the current state, they must estimate the distribution over 

the states using measurements from onboard sensors or external aids (GPS [4], external motion capture 

system [5]). However, GPS is unreliable in urban canyons and completely unavailable in most indoor 

environments; the external motion capture system is also impractical for such scenarios, since it requires 

pre-installation of camera arrays in the environment. As a result, the state estimation of MAVs must rely 

only on onboard sensing capabilities, which is highly constrained in terms of precision and range due to 

the size and weight constraints of the MAVs. Moreover, the performance of MAV state estimation and 

localization using exteroceptive sensors (laser rangefinder [6], camera [7] and RGB-D sensor [8])  

varies across the environment depending on the distinctive features and perceptual structure of the 

environments. As a result, the motion planning progress must also integrate the uncertainty of state 

estimation to ensure reliability and robustness to imperfect and noisy state estimates caused by limited 

sensing capability. These challenges require that the motion/path planner must be able to generate 

feasible paths that satisfy the constraints imposed by uncertain and unstructured environments, as well 

as complex vehicle dynamics, while ensuring measurement gathering along the path to reduce state 

estimation uncertainty. 

In this paper, we propose a real-time motion planning strategy (closed-loop random belief trees,  

CL-RBT) for autonomous vehicles with complex dynamics and in the presence of state estimation 

uncertainty, while handling the constraints imposed by the uncertain and dynamic operating environments. 

The proposed motion planning strategy is built upon the randomized sampling-based motion framework, 

the real-time closed-loop rapidly exploring random trees (CL-RRT) [9], which operates by sampling in 

the input space of the controller and generates trajectories through forward closed-loop simulation using 
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the vehicle dynamics model and path-tracking controller. This allows the motion planner to easily account 

for non-linear and non-holonomic vehicle dynamics and dynamic uncertain environments. We extend 

the general CL-RRT to handle the state uncertainty by incorporating the prediction of posterior  

state estimation uncertainty in the motion planning framework. The uncertainty of state estimation is 

characterized using a factored form of the covariance [10] provided by the Kalman filter class-based 

estimator. This factored form enables efficient covariance propagation in that it combines the update  

of covariance along a path from multi-step observations into a single linear step, and the posterior 

covariance of a certain path after adding new nodes can also be updated online. The overall motion 

planning operates by incrementally constructing a tree of dynamically feasible trajectories in real time, 

while continuously selecting and executing trajectories that are a tradeoff between minimizing path cost 

and reducing localization uncertainty. We validated the proposed algorithm in various illustrative 

scenarios of a simulated quadrotor MAV with non-linear dynamics and limited sensing in enclosed  

and unstructured GPS-denied environments. Simulation results demonstrate that the CL-RBT can 

efficiently generate dynamically feasible trajectories that ensure state estimation accuracy, while 

preserving the property of the CL-RRT framework. The CL-RBT can handle complex vehicle dynamics 

and state uncertainty, enabling the MAV to autonomously navigate in uncertain, unstructured and  

GPS-denied environments. 

The paper is organized as follows: Section 2 reviews related work on motion planning under uncertainty. 

Section 3 presents the formulation of the motion planning problem. Section 4 provides the covariance 

propagation approach. A detailed description of the CL-RBT is presented in Section 5, followed by the 

simulation results and analysis in Section 6. Finally, the paper is concluded in Section 7, with a 

discussion on future work. 

2. Related Work 

Conventionally, motion planning approaches under state uncertainty are typically formulated as a partially 

observable Markov decision process (POMDP) problem [11], which provides the most general mathematical 

framework for solving the planning problem with partial observability. While POMDP has been applied 

to low-dimensional and small-scale problems [12], most POMDP-based approaches rely on discretizing 

the state space, making it computationally intractable for realistic applications. Recently, many approaches 

have been proposed to address the problem of scalability using approximation and iterative methods. Van 

den Berg et al. [13] proposed an iterative motion planning approach to solve the continuous POMDP 

problem, using a belief space variant of the iterative LQG (linear-quadratic Gaussian) method. Similarly, 

Bai et al. [14] also formulated the problem as a continuous POMDP and solved the problem with a 

Monte Carlo value iteration method. However, these approaches are still less effective at addressing 

problems with complex vehicle dynamics and motion planning with large-scale, high dimensional state 

space or configuration space. 

In contrast, sampling-based motion planning strategies have been widely acknowledged as effective 

approaches for solving motion planning problems with high dimensional configuration space and complex 

vehicle dynamics. In particular, the PRM (probabilistic roadmap) [15] and RRT (rapidly exploring random 

trees) [16] and their variants are the most widely applied sampling-based approaches, and they have been 

successfully applied in a number of applications. More recently, the closed-loop RRT [9,17,18] extends 



Sensors 2014, 14 21794 

 

 

the conventional RRT by incorporating forward prediction using closed-loop dynamics model with 

controller. The CL-RRT can generate more feasible paths that account for complex vehicle dynamics, 

and it can be implemented in real-time to handle dynamic, uncertain environments. Several approaches 

have been proposed to incorporate state uncertainty in the sampling-based motion planning framework. 

Van den Berg et al. [19] proposed the LQG-MP strategy by integrating the a priori distribution over 

state estimates into the standard RRT framework. However, the LQG-MP algorithm is intractable for 

real-time applications, due to its high computation cost. In [20], Bry et al., combined an LQG-based 

covariance pruning technique with the RRT* framework for planning in belief space. Alternative to 

RRT-based approaches, the belief roadmap (BRM) extends the PRM by integrating the predictions of state 

estimation uncertainty using an EKF (extended Kalman filter) estimator and performs belief planning by 

searching paths with the lowest uncertainty from the roadmap. The BRM was later extended to use the 

UKF estimator and heuristic sampling strategy [21], and it was further implemented on a quadrotor and 

proven successful for indoor flight tests [22]. However, the BRM assumes that the vehicle is fully 

controllable and treats the problem as a simple kinematic motion planning problem, e.g., it does not 

consider complex vehicle dynamics and the feasibility of the generated paths. As a result, it is not yet 

well suited to vehicles with complex dynamic constraints and dynamic environments. In addition, the BRM 

operates by planning on pre-constructed static graphs, and therefore, it is not a real-time planning algorithm 

in essence. Recent research has also considered another similar kind of planning problem with 

uncertainty, where the planner must generate paths that maximize information collection and reduce the 

uncertainty on the location estimates of features or targets in the environment. The information-rich RRT 

(IRRT) [23] addresses this path planning problem by incorporating the qualification of information gain 

into the CL-RRT framework, using the Fisher information matrix. This kind of problem can be regarded 

as the inverse problem of planning with uncertainty on the vehicle’s own state.  

3. Problem Formulation 

3.1. Motion Planning under State Uncertainty 

Consider a vehicle with non-linear dynamics that operates in an environment without external 

positioning systems. The vehicle typically does not have direct access to the accurate information of  

its current state, but instead obtains the estimates of the state using observations derived from the 

measurements of onboard sensors, which are typically noisy and incomplete. The stochastic dynamics 

and observation model of the system can be given by the following discrete time state-transition form:  

1 ( , , ) ~ (0, )

( , ) ~ (0, )
t t t t t

t t t t

f N

f N
+ =
=

x x u w w Q

z x v v R
 (1)

where ,X U∈ ∈x u  and Z∈z  are the vehicle’s state, control input and observation, respectively. wt and 

vt denote the process disturbance and measurement noise, and both can be formulated as Gaussian noise 

with zero mean and covariance (Q and R, respectively). Assuming that all probability distributions are 

Gaussian, given the previous observation (z1:t) and control inputs (u1:t), the state is typically estimated 

using a Bayesian filter, providing the distribution of the vehicle’s state (or the belief of the state): 

1: 1:( ) ( | , )t t t tp p=x x u z  
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which is characterized by a mean state μt and a covariance Σt(b(xt) = (μt, Σt)). The mean μt provided by 

the Bayesian filter is a optimal estimation of the vehicle’s state distribution, and it can be used for control 

and decision making, while the mean Σt characterizes the confidence (or uncertainty) of state estimation. 
Denoting Xfree as the subset of all collision-free states, given the initial state x0 ∈ Xfree and the goal 

region goal freeX X⊂ , as well as the partial knowledge of the environment, then the primary objective of 

motion planning is to find the control policy u0:T = π[b(x0:T)] and corresponding sequence of states x0:T, 

such that the vehicle reaches the goal region in a finite time horizon by applying the control policy: 

, (0, ], (0, )T goal f fX t t t∈ ∈ ∈ ∞x  

meanwhile minimizing the following objective function: 

0:( )| ( ),
0

( ( )) [ ( | )] ( , )
goal t T

T

t b b t goal t t
t

J b E C C
=

= +x x ux x x x u  

where C(xt|xgoal) is the expected cost function from xt to xgoal; note that it takes the expectation form, 

since the measurement and state are both probabilistic, and C (xt, ut) is the cost by applying control ut. 

The generated trajectory must also satisfy the constraints imposed by the vehicle dynamics Equation (1) 

and environments (i.e., collision avoidance, 0:T freeX∈x ). Moreover, when the vehicle does not have 

accurate knowledge of the estimate of its state, the motion planner must take the uncertainty of the state 

estimate along the generated paths into account, thus the motion planning problem into the belief 

planning problem (i.e., planning in belief space [20]). By integrating the information from the mean and 

covariance of the belief, the motion planning algorithm must choose actions and beliefs, such that the 

posterior covariance at the end of the trajectory is minimized, yielding trajectories that achieve a  

trade-off between low path cost and high confidence in the state estimation.  

3.2. State Estimation of Gaussian Systems 

Consider a system with the dynamic and observation model in the form of Equation (1), one of the 

most common and robust methods for estimating the distribution over its state is the Bayesian  

filtering [10]. Given knowledge of the prior control input ut and sensor measurement zt+1, the belief of 

the state b(xt+1) after a sequence of control and observation can be estimated as:  

1 1 1: 1: 1 1 1( ) ( | , ) ( | ) ( | , ) ( )t t t t t t t t t t tb p p p b dλ+ + + + += = x x u z z x x x u x x  (2)

where λ is a normalization factor. 

Assuming the state and observation transition function (f, h) are linear with state and observation, 

which are both Gaussian distributions; the Bayesian filtering can be implemented as the Kalman  

filter [24], while the extended Kalman filter (EKF) [25] is typically applied for estimating the state 

distribution of the system with nonlinear state and observation transition functions. For a system model 

of the form of Equation (1), the EKF state estimation can be divided into the process step and 

measurement update step. Denoting the distribution of the state ˆ( ) ( , )t t tb N= Σx x , the process step first 

predicts the state using the control and state of the previous step, which is given as: 

1

1

ˆ ˆ( , )t t t

T T
t t t t t t t

g

G G V Q V

−

−

=

Σ = Σ +

x x u
 (3)
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where Gt is the Jacobian of g with respect to the state, and Vt is the Jacobian of g with respect to wt.  

Then, the measurement step adjusts the estimate and covariance by incorporating the information from 

new observations: 

ˆ ˆ ˆ( )t t t t t t

t t t t t

K H

K H

= + −
Σ = Σ − Σ
x x z x

 (4)

where Ht denotes the Jacobian of h with respect to the state, and Kt is the Kalman gain, which is updated by: 
1( )T T

t t t t t tt tK H R H H −= Σ + Σ  

Typically, the control and decision making are based on the mean ˆ tx  of the estimated distribution 

provided by the EKF, and the covariance, while the covariance Σt captures the uncertainty of the state 

estimate using the sensor measurements. Therefore, the uncertainty of the state estimate along the 

trajectory from the path planner can be evaluated using the norm of the covariance, which will be 

discussed in the next section. 

4. Linear Covariance Propagation 

In order to evaluate the state uncertainty resulting from a specific planned trajectory, the most 

common approach for a system with the EKF estimator is to compute the posterior covariance of the 

ending belief b(xt) from the sequence of actions and measurements along the trajectory. However, the 

propagation of the posterior covariance requires multiple iterative calculations of the EKF process and 

measurement updating from the initial belief according to Equation (4), leading to a heavy computational 

cost. This is even worse when the initial belief is modified, since the posterior covariance must be  

re-computed using the entire EKF updates from the new initial belief. In particular, this fact has a more 

significant effect on a sampling-based motion planner, since it generally constructs a graph and tree of 

multiple trajectories, thus different paths can result in different posterior covariance to the same node, 

this requires that the motion planner must perform the propagation process for each covariance. 

To reduce the computational cost of the covariance propagation, we rely on previous results on the 

factorization of the covariance [10], which allows the propagation of posterior covariance to be 

propagated in a single linear update step instead of multiple non-linear updates for the EKF filter. 

Following Theorem 1 in [10], the factorization of covariance is given by: 
1

t t t
−Σ = Λ Π  

where Λt and Пt can be calculated as linear functions of Λt−1 and Пt−1, using the EKF process and 

measurement update step. 

The factorization of the covariance matrix can be proved using the following matrix inversion lemma: 

Lemma 1. For matrices 1 2 3, , R n nM M M ×∈ , we have:  
1 1 1

1 2 3 3 2 1 3( ) ( )M M M M M M M− − −+ = +  (5)

Denote the initial state covariance as Σ0, and Σ0 can be factored as:  

1
0 0

−Σ = Σ I  (6)
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Given Σt−1 = Λt−1П−1 
t−1 and denoting St = VtQtVT 

t , the process update of EKF (Equation (3)) can be 

written as: 
1 1

1 1 1 1 1( )T T T
t t t t t t t t t t t t t t tG G S G G S G G S− − −

− − − − −Σ = Σ + = Λ Π + = Λ Π +  

Following Equation (5), we have: 

( ) 11 1 1 1
1 1 1( )( ) ( )T T

t t t t t t t t t t t tG G S G E F F E
−− − − − − −

− − −Σ = Π Λ + Π = =  (7)

where 1
T

t t tE G−
−= Π  and 1 1

T
t t t t t tF G S G−

− −= Λ + Π , 

For computation considerations, the covariance update of the measurement update step can be given 

by the information form [11]: 
1 1 1

1

1

( )T
t t t t t t

T
t t t t t

G G T

H R H

− − −
−

−

Ω = Σ = Ω +

Ω = Ω +
 (8)

Denoting Nt = HT 
t R−1  

t Ht, Equation (8) can be rewritten as t t tNΩ = Ω + . Therefore, from Equations (7) 

and (8), we can write:  
1 1 1 1 1( ) ( )t t t t t t tN E F N− − − − −Σ = Ω = Σ + = +  

Following Equation (5), 
1 1( )t t t t t t tF E N F − −Σ = + = Λ Π  

where: 

1 1

1 1 1

1 1

( )

( )

T
t t t t t t t

T T
t t t t t t t t t t t t

T
t t t t t t t

F G S G

E N F G N G S G

N G I N S G

−
− −

− −
− − −

−
− −

Λ = = Λ + Π

Π = + = Π + Λ + Π

= Λ + + Π

 
(9)

As can be seen from Equation (9), Λt, Пt are both linear functions of Λt−1, Пt−1. 

Denoting Ψ as the stacked block matrix of Λ and П: 

 Λ 
Ψ =  Π   

(10)

Equation (10) can be rewritten as: 

1
1

1

0 0 T
t t

t t tT
t tt t

I G

I N G SG
ς

−
−

−−
−

Λ Λ     
Ψ = = = Ψ     Π Π       

(11)

where: 

0 0 T T

t T T T
t t t

I G G S G

I N G S G N G G N S G
ς

− −

− − −

    
= =     +     

 (12)

is the one-step transfer function matrix. Therefore, the covariance at t can be recovered using the factors 

of Ψt: 
1

t t t
−Σ = Λ Π  (13)

Using the above factorization and the linear transfer function, the non-linear Kalman update process 

of the covariance can be transformed into a linear propagation step of the covariance factors, and the 

multiple updates can be combined into a single transfer step. This allows for efficient covariance 

propagation and uncertainty prediction for the sampling-based motion planning strategy: The posterior 
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covariance ΣT resulting from any initial belief (μt, Σt) along the trajectory can be recovered by 

multiplying multiple transfer functions: 

1...T T t t T t tς ς ς+ −Ψ = Ψ = Ψ  (14)

and in a sampling-based path planner that represents paths in the form of trees and nodes, for any 

arbitrary node nj in the trajectory, the posterior covariance of the state at the node can be propagated 

from the predecessor node j–1 along the path in one efficient step using the transfer function ς0:j (Figure 1): 

1 0 0: 0...j j jς ς ςΨ = Ψ = Ψ  (15)

Figure 1. Linear covariance prediction procedure using the transfer function. 

0 0 0( , , )μ Σ Ψ

( , , )j j jμ Σ Ψ


( , , )i i iμ Σ Ψ

,i jς

iς

1ς

1 0 0: 0...j j jς ς ςΨ = Ψ = Ψ
 

Taking advantage of the above linear covariance propagation approach, the state estimation covariance of 

one point ni (node or time step) can be predicted using the covariance of its adjacent point, as well as the 

EKF Jacobian matrix set associated with the trajectory between ni−1 and ni; this procedure can be given  

as follows: 

Step 1: Extract the covariance factors Λi−1 and Пi−1 from block matrix Ψi−1 of ni−1.  

Step 2: Compute the EKF matrix set (Si, Gi and Ni) based on the state transition model and observation model, 

as well as the predicted state and simulated observation (Equation (1)). 

Step 3: Compute the transfer function ςi using Si, Gi and Ni, according to Equation (12). 

Step 4: Propagate the block matrix Ψi of ni based on ςi and Ψi−1, according to Equation (11), then extract 

the covariance factors Λi and Пi from block matrix Ψi. 

Step 5: Recover the covariance Σi of ni using Λi and Пi: Σi = ΛiП−1 
i . 

This covariance propagation procedure allows the path planning algorithm to incorporate the 

covariance-based qualification of state estimation uncertainty into the planning progress in an efficient way. 

In the CL-RBT algorithm, which is described in detail in the following section, the state estimation 

uncertainty is qualified using the trace of the covariance: 

( ) ( )i iJ trΣ = Σ  (16)
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5. Closed-Loop Random Belief Trees Algorithm (CL-RBT) 

5.1. Data Structure 

Similar to the conventional RRT, the CL-RBT operates by constructing a tree of trajectories in the 

state space (more precisely, the belief space). The tree is defined by nodes and edges that connect different 

nodes. The primary information stored in a node n consists of the mean of the state, uncertainty qualification, 

the path cost and the parent node:  

 

where μi and Σi represent the mean and the covariance of the state distribution, respectively. Ψi is the 

factored form of the covariance. Ji(Σ) qualifies the uncertainty along the trajectory form the root node to 

node ni, which can be calculated using the covariance propagation process described in Section 4:  

Ji(Σ) = tr(Σi); C(ni) stores the data of the path execution cost associated with node ni, which can be split 

into two parts:  

1 2 ˆ( | ) ( | )i i root goal iC c n n c x nω ω= +  

where c(ni|nroot) denotes the accumulated execution cost resulting from following the trajectory form tree 
root nroot to ni, and ˆ( | )goal ic x n  is the estimated cost from ni to the goal state xgoal (cost-to-go). ω1, ω2 ∈ [0,1] 

are weight factors. ni.parent represents the index for the parent node of ni. 

Every two neighbor nodes (ni, nj) in the tree is connected by an edge e(ni, nj), which represents the 

closed-loop prediction trajectory {xi...xj} and control policy to steer the vehicle from xi to xj. 

5.2. Tree Expansion 

The CL-RBT motion planning strategy is built upon the standard closed-loop RRT (CL-RRT) 

originally proposed by [9] and later extended in [17,18]. Similar to the CL-RRT, our CL-RBT algorithm 

can be split into two primary processes: a tree expansion process that explores the environment by 

growing the tree and a path selection and execution loop that selects and executes the optimal portion of 

the tree. Details of the tree expansion process are described in Algorithm 1. 

Unlike the standard RRT that generates candidate control inputs randomly or from a look-up table, 

the tree expansion process of the CL-RBT predicts the feasible trajectory by incorporating a closed-loop 

system model consisting of the trajectory-following controller and the vehicle dynamics model (Figure 1). 
Once the nnear is determined, the planner generates a reference input r̂  (Line 7) using nnear and xsamp; then 

r̂  is sent to the closed-loop system consisting of the controller and the vehicle dynamics model: the 

controller generates the control input û  (Line 8), which is then sent to the vehicle dynamics to predict 
the state output x̂  by forward simulation (Line 9). The predicted trajectory is then checked against 

environmental constraints (e.g., collision avoidance) to ensure feasibility. 

The CL-RBT algorithm extends the CL-RRT tree expansion by incorporating the prediction of the 

state (position) uncertainty in growing the tree, using the EKF estimator and the covariance propagation 
approach (Section 4). First, a node xsamp ∈ Xfree is generated by random sampling in the free space  

(Line 1). After that, the prediction of state estimation uncertainty is incorporated as heuristic information 
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in the nearest-node selection: The nearest node nnear to xsamp by a certain metric is determined from the 

current tree using the following hybrid heuristic information: 

*
1 2 3

ˆ. .
ˆarg min ( | ) ( | )

.
samp samp i i

i root samp i
i i

x J n J
i c n n c x n

n J
λ λ λ
 −
 = + +
 
 

 (17)

where λ1, λ2, λ3 are weighting factors for each item. The above heuristic information consists of three 

components: the exploration heuristic, the optimization heuristic and the uncertainty heuristic. 

Algorithm 1. Closed-loop random belief tree: tree expansion.  

1 Take a sample x in the reference space 

2 
Find the nearest node set Nnear = {nnear(i)}, (i ≥ 1) of xsamp from tree T, using the hybrid heuristic 

consisting of the path cost and uncertainty qualification  

3 for each node nnear in the nearest node set Nnear 

4 k ← 0 

5 ˆ( )x t k+ ←  final state of Nnear 

6 while ˆ( ) ( )freex t k t kχ+ ∈ + and ˆ( )x t k+  has not reached xsamp do 

7 Generate reference input ˆ( )r t k+  from nnear to xsamp 

8 Generate control input ˆ( )u t k+  from feedback control law 

9 Simulate ˆ( 1)x t k+ +  from state propagation model 

10 k ← k + 1 

11 end while 

12 Generate the predicted trajectory ( )x t , 
0 1[ , ]t t t∈  

13 Split the predicted trajectory ( )x t  and add intermediate nodes ni 

14 if ( ) freex t X∈ , 
0 1[ , ]t t t∀ ∈  then 

15 Add xsample and all intermediate nodes to Tt, break 

16 else if all intermediate nodes are feasible 

17 Add intermediate nodes to Tt, break 

18 end if 

19 end for 

20 for each newly added feasible node n do 

21 Update path execution cost estimates for n (Algorithm 2) 

22 
simulate the observations ( )tz  and transfer function along the feasible trajectory between n and 

n.parent  

23 Update the matrix Ψn and posterior covariance Σn and uncertainty cost J(Σ) of n 

24 Update the total cost of n 

25 end for 

The exploration heuristic ˆ( | )samp ic x n  denotes the estimated cost by connecting ni to the sample xsamp, 

which enables the path planning algorithm to focus on adding new nodes to the tree and quickly 

exploring the environment. 
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The optimization heuristic c(ni|nroot) denotes the accumulated cost of the path from the root node nroot 

to the candidate node ni. The purpose of using this optimization heuristic is to bias the tree growth 

towards paths that reduce the overall accumulated cost. 

In order to incorporate the state estimation uncertainty factor into the path planning progress, the  

CL-RBT adds the uncertainty heuristic in the nearest node selection of the tree expansion. This 

uncertainty heuristic enables the motion planner to select the node that leads to the lowest posterior state 

estimation uncertainty if it is connected to xsamp, using the predicted state covariance based on the 

simulated closed-loop state output and observations along the trajectory between candidate nodes and 

xsamp. This is realized by qualifying the posterior uncertainty along the path from ni and xsamp using the 

linear covariance propagation described in Section 7: given the covariance Σi and the associated factored 

matrix Ψi of ni, the observations zi:samp and state output :ˆ i sampx  are predicted first based on the closed-loop 

system model. After that, the matrix set Si:samp, Gi:samp, Ni:samp and the transfer function ςi:samp along the path 

are approximated. Therefore, the posterior covariance ˆ
sampΣ  of xsamp resulting from moving the MAV 

along the path between ni and xsamp can be propagated by: 

:

: :

ˆ0 0ˆ
ˆ

T
sampi

samp i samp i T
ii samp sampi samp

I G

I N G SG
ς

−

−

 ΛΛ    
Ψ = Ψ = =       Π Π       

 

1ˆˆ ˆ
samp samp samp

−Σ = Λ Π  

hence, the resulting uncertainty cost of xsamp can be given by ˆ ˆ. ( )samp samp sampx J tr= Σ . 

The tree expansion process may yield one or more candidate feasible nodes and corresponding 

trajectories. For each candidate node n and trajectory, the planner calculates the path cost (Line 21), 

simulates the observation along the trajectory (Line 22) and, then, further computes the posterior 

covariance at n, as well as the uncertainty qualification of n (Line 23). After updating the total cost, the 

algorithm finally adds the feasible nodes to the current tree T (Line 24). 

5.3. Path Cost Evaluation 

As aforementioned in Algorithm 1, once a feasible node is identified and added to the tree, the CL-RRT 

algorithm evaluates and updates its associated cost (Lines 21–24). In order to address the multiple 

requirements of operating in complex, GPS-denied environments, the CL-RBT adopts multiple cost 

metrics that incorporate various factors into these tasks. In CL-RBT, the cost of each node can be divided 

into two primary categories: the path execution cost and uncertainty cost. 

The path execution cost denotes the cost of moving the MAV along the trajectory from the root node 

nroot to the goal region via the specific node ni, and it can be given as the following form: 

0

( ) [ ( ), ( )]
it

p i t
C n c x t u t dt=   

where [t0, ti] is the time interval of the corresponding path (node sequence) {nroot…ni}, and c[x(t), u(t)] 

is the cost metric of the node trajectory (i.e., Euclidian distance, Dubins distance, etc.). In the CL-RBT, 

the path execution cost consists of two primary components: the accumulated path execution cost and 

the cost-to-go: 

CostToGo( ) ( | )p i i rootC n C n n C= +  
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where C(ni|nroot) represents the accumulated execution cost resulting from following the trajectory from 

nroot to ni. There are two types of cost estimates of the cost-to-go for each node: a lower bound CLB and an 

upper bound CUB. The lower bound cost-to-go can be given as the distance metric between the MAV’s 

state at the node and the goal state: 

( ) ( | )LB i goal iC n C x n=  

The update of the upper bound cost-to-go can be described as follows: each time a new feasible node 

ni is added to the tree, the CL-RBT algorithm attempts to connect ni to the goal by predicting the  

closed-loop trajectory between ni and xgoal. If the trajectory is feasible, the upper bound cost-to-go of ni 

can be given as the cost associated with this trajectory, otherwise the upper bound cost-to-go of ni is set 

to ∞: 

 
( ( ), ( )) : feasible trajectory between , exists

: no feasible trajectory between ,

goal

j

x

j goal

nUB

j goal

c x t u t n x
C

n x


= 
 ∞



 

After that, the CL-RBT propagates the paths back towards the root node to update the upper bound 

cost-to-go of ni’s affected ancestor nodes: the old upper bound cost-to-go of the parent node is compared 

with the cost following the newly generated feasible trajectory. If the latter is smaller, the upper bound 

cost-to-go of the parent node is updated; otherwise, the propagation procedure stops, since there exists 

a sub-path of the parent with a lower cost-to-go. This update procedure repeats until the current root 

node is reached. The details of the cost update procedure are shown in Algorithm 2. 

Algorithm 2. Closed-loop random belief tree: cost update. 

1 . ( | )i LB goal in C c x n←  

2 Compute the accumulated cost of the trajectory between nroot and 
in : ( | )i rootC n n  

3 Generate the trajectory from ni to goal state ( | )goal ix x n , using the closed-loop system model  

4 Check the feasibility of the closed-loop trajectory ( | )goal ix x n

5 if ( | )goal ix x n  is feasible then 

6 TrajctoryToGoal ← True  

7 . ( ( | ))i UB goal in C C x x n←  (the path cost of ( | )goal ix x n ) 

8 k in n←  

9 while 
k rootn n≠  and .parent. . ( .parent | )k UB k UB k kn C n C C n n> +  

10 .parent. . ( .parent | )k UB k UB k kn C n C C n n← +  

11 .parentk kn n←  

12 end while 

13 CostToGo. .i i UBn C n C←  

14 else 

15 TrajctoryToGoal ← False  

16 .i UBn C ← ∞  

16 CostToGo. .i LBn C n C←  

17 end if 

18 CostToGo. ( | ) .i i root in C C n n n C← +  

19 return TrajctoryToGoal  
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Once a feasible trajectory to the goal is identified, the upper bound cost-to-go is used as the estimated 

cost-to-go of ni; otherwise, the lower bound cost-to-go is used. Therefore, the overall path execution cost 

of node ni can be given as:  

CostToGo

: TrajectoryToGoal = True
( ) ( | ) ( | )

: TrajectoryToGoal = False
UB

i i root i root
LB

C
C n C n n C C n n

C


= + = + 


 

(18)

(Note that the cost update procedure also identifies feasible paths that connect the goal to the current 

tree. This enables the CL-RRT to quickly find paths that reach the goal. As the tree grows, more paths 

to the goal can be found). 

The CL-RBT incorporates the qualification of state estimation uncertainty in the cost function of nodes, 

such that the generated paths ensure accurate state estimation. As discussed previously, the state estimation 
uncertainty is evaluated using the uncertainty cost, e.g., the trace of the predicted covariance: (n ) ( )

ii nJ tr= Σ . 

As shown in Algorithm 1, once a feasible node is added to the tree and its path execution cost is updated, 

the CL-RBT predicts its posterior state covariance through the update steps described in Section 4 and 

computes its uncertainty cost (Algorithm 1, Lines 22, 23). Taking the path execution cost and uncertainty 

cost into consideration, in CL-RBT, the following multi-objective cost function is used: 

1 2 CostToGo 3( ) ( | ) ( . )i i root iC n C n n C J n= ζ + ζ + ζ Σ  (19)

where CCostToGo denotes the estimated cost-to-go from ni to the goal state, C(ni|nroot) is accumulated along 

the path from root to ni, and the first two items correspond to the path-execution cost. J(ni.Σ) is the cost 

associated with the uncertainty of node ni, which represents the state uncertainty resulting from following 

path {nroot…ni}. ζ1, ζ2, ζ3 are weight factors for adjusting the relative importance of finding a short 

duration path and reducing state estimation uncertainty.  

Since there is a unique path from the root to each of the nodes in the tree, the cost of a node can be 

used to represent the cost of the associated trajectory. The total cost of the node is used to identify the 

current best trajectory for execution in the selection and execution procedure, which is presented in the 

next section. 

5.4. Path Selection and Execution 

In order to account for the changes in time-varying operating environments, the motion planner 

operates by periodically selecting and executing the best portion of the current trajectory while 

continuously expanding the tree during the execution process. The path selection and execution process 

is presented in Algorithm 3. 

Denote the period for the path selection and execution as Δt. At the beginning of each iteration period, 

the algorithm updates the current actual state of the MAV, as well as the environment information. The 

purpose of this step is to ensure the MAV’s situational awareness (Line 4). After that, the state is first 
propagated to the end of the period, resulting in 0( )x t t+ Δ  (Line 4). Then, the current root of the tree is 

set to the most current node that is followed by the propagated state, and all other children nodes of the 

previous root are removed. This is because the MAV is considered to have passed the previous root, and 

the paths of its children nodes will never be executed. During each of the iterations, the planner identifies 

the best portion of the trajectory in terms of the cost metric. Since each node ni in the tree is associated 

with a single path, the trajectory can be uniquely specified using the sequence consisting of all of the 
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nodes from root to ni:{nroot…ni}. In CL-RBT, the cost function given in Equation (19) is used for 

selecting the current best paths. This multi-objective cost metric enables the motion planner to select 

paths that achieve a balance between finding low-cost paths to the goal and minimizing localization 

uncertainty. At the end of each path selection iteration step, the selected feasible trajectory is sent to the 

controller to be executed, while the tree keeps expanding (Algorithm 1) during the remaining time of 

period Δt. This mechanism guarantees that the path planning algorithm can provide a feasible path for 

execution in real time and account for uncertainty in a dynamic environment. 

Algorithm 3. Closed-loop random belief tree: execution loop. 

1 t ← 0 

2 Initialize tree T from node at initialx  

3 while ( ) goalx t X∉  do 

4 Update the current actual state 
0( )x t and environment information 

5 Predict state ( )x t  to 
0( )x t t+ Δ and simulate observations  

6 while time remaining < Δt do 

7 
expand the tree using Algorithm  

1 

8 end while 

9 
Select the current best feasible path (node sequence) { }0* ... kp n n= according to the 

multiple-objective cost function given as Equation (19) 

10 if no best feasible path exists then 

11 Send brake command to the controller and goto 3 

12 else 

13 Send p * to controller to execute  

14 end if 

15 t t t← + Δ  

16 end while 

The overall diagram of the CL-RBT algorithm is depicted in Figure 2. 

Figure 2. Diagram of the closed-loop random belief tree motion planning framework. MAV, 

micro-aerial vehicle. 
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6. Indoor Flight Simulation Results Based on a Simulated Laser Scanner-Equipped MAV 

In order to validate the effectiveness of the CL-RBT motion planner, we have conducted a number of 

experiments in various simulated scenarios that are derived from real-world environments. The first 

scenario consists of a quadrotor MAV navigating in a 3D wide-open indoor environment, with all 

structures that can be detected by laser rangefinders concentrated along the peripheral walls. The first 

scenario is used to demonstrate the CL-RBT’s ability to generate the path that ensures the MAV’s localization 

confidence. The subsequent scenarios involve more complex extensions, including 3D unstructured 

environments (the second scenario), and the purpose of these scenarios is to validate the effectiveness 

of the CL-RBT algorithm in generating paths that satisfy multiple constraints imposed by dynamic, 

unstructured environments and non-linear MAV dynamics, while achieving a trade-off between 

minimizing path cost and reducing localization uncertainty in GPS-denied environments. 

For all of these experiments, we assume that the dynamics model of the quadrotor is non-linear and that 

the environment is without access to GPS signals. The quadrotor must start from an initial spot and traverse 

through the obstacles to a goal location, relying on a path-following control law and the state estimates 

provided by an EKF estimator. The exteroceptive sensor equipped on the quadrotor is assumed to be a 

simulated laser rangefinder with a maximum sensing range of 2 m and a 240° field-of-view. For each of these 

environments, a 3D model of the environment is first generated using an RGB-D-based environmental 

modeling approach from our previous work [26]. The 3D point-cloud model is then transformed into a 

polyhedron-based model, which is used for path planning. The CL-RBT is implemented in MATLAB® 

and all simulations are performed in real time on an Intel 3.2 GHz platform with a 4 G RAM. The  

CL-RBT algorithm selects and executes the best parts of the paths every Δt seconds. 

6.1. Quadrotor Dynamics Model 

The quadrotor model that is used in the simulation is depicted in Figure 3. For the simulation experiments, 

the x-y-z body-fixed coordinates of the quadrotor is derived using the square configuration, and the 

kinematic and dynamic model of the quadrotor is developed as rigid-body dynamics influenced by the 

gravity and thrust of the rotors, assuming near-hover aerodynamics and neglecting the effects caused by 

the translational velocity. The pure pursuit reference law [27] is applied to steer the reference trajectory, 

and a PD control law is used to control the quadrotor tracking of the reference. This closed-loop system 

model consisting of the dynamics model and the control law is used for both the trajectory prediction of 

the CL-RBT planner and the execution of the resultant trajectory. 

Figure 3. Structure and configuration of the quadrotor MAV. 

 



Sensors 2014, 14 21806 

 

 

The configuration of the quadrotor utilized in this paper is illustrated in Figure 3. Two coordinate 

systems are considered in our scheme: the navigation frame (Earth-fixed frame) (xE, yE, zE) and the  

body-fixed frame (xb, yb, zb). The translational and rotational motions of the quadrotors are achieved 

through the forces and moments caused by varying the angular rates of the four propellers. Assuming 

that the quadrotor structure is rigid and symmetrical and the center of mass coincides with the origin of 

the body-fixed frame, the equations of motion of the quadrotor can be derived using Newton’s law and 

Euler equations [27]. Define φ, θ, ψ as the Euler angles denoting the roll, pitch and yaw attitude, 

respectively, the rotational dynamics can be described as: 

 
2 2 2 2
3 4 1 2 2 4 1 3

2 2 2 2
2 3 1 4 2 4 1 3

2 2 2
1 3 4

( ) ( )

( ) ( )

1
(

yy zz drx r

xx xx xx xx

dryzz xx r

yy yy yy yy

xx yy

zz zz

I I K Jl
b

I I I I

KI I Jl
b

I I I I

I I
d

I I

ϕ θψ ω ω ω ω ϕ θ ω ω ω ω

θ ϕψ ω ω ω ω θ ϕ ω ω ω ω

ψ ϕθ ω ω ω

− 
= + + − − − + + − − 

 
 −= + + − − − − + − −  
 

− 
= + + − 

 

   

   

  2
2 ) drz

zz

K

I
ω ψ− − 

 

(20)

where Ixx, Iyy, Izz are the moments of inertial around the three axis, Jr is the rotor inertia and l denotes the 

length of the moment arm. ω1, ω2, ω3, ω4 are the four propellers’ rotation speeds. b and d denote the 

rotor thrust coefficient and rotor drag coefficient, respectively. Kdrx, Kdry, Kdrz represent the rotational 

drag coefficients of the quadrotor body.  

Define (x, y, z) as the three-dimensional position with respect to the navigation frame; the translational 

dynamics of the quadrotor can be given as: 
4

1

4

1

4

1

1
(cos cos sin sin sin )

1
(sin sin cos sin cos )

1
cos cos

dtx
i

i
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i

i

dtz
i

i
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m m

K
y T y

m m

K
z T z g

m m

ϕ ψ θ ϕ ψ

ψ θ ϕ ϕ ψ

θ ϕ

=

=

=

= + −

= − −

= − −







 

 

 
 

(21)

where Ti denotes the thrust generated by propeller i and Ti = bω2 
1 , m is the total mass of the quadrotor 

and g represents the gravitational acceleration. Kdrx, Kdry, Kdrz are the translational drag coefficients of 

the quadrotor body.  

6.2. Control Scheme Design of the MAV Model 

6.2.1. Cascaded Control Scheme 

Under the assumption of near-hovering velocities, the drag terms caused by the translational and 

rotational motions in Equations (20) and (21) can be neglected, and the system dynamics model can be 
described in the following state-space form ( ( , )f=x x u ): 
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(22)

where 
T

x y z x y zϕ θ ψ ϕ θ ψ =  x       denotes the state vector, and [ ]1 2 3 4

T
u u u u=u  

represents the control input: 

 2 2 2 2
1 2 3 4
2 2 2 2
3 4 1 2
2 2 2 2
2 3 1 4
2 2 2 2
1 3 4 2

( )

( )

( )

( )

b

b

b

d

ω ω ω ω
ω ω ω ω
ω ω ω ω
ω ω ω ω

 + + +
 + − − =
 + − −
 

+ − −  

u

 

(23)

The physical meaning of the control input is related to the forces generated by the four propellers: u1 

represents the total thrust of the propellers, while u2, u3 and u4 are the differences of the propeller pairs. 

As can be seen from Equation (20), the rotational dynamics (φ, θ, ψ) are independent of the translational 

dynamics (x, y, z), leading to decoupled system dynamics. In addition, the altitude dynamics (z) can also 

be decoupled from the planar translational dynamics (x, y) by assuming that the φ, θ angles are very small. 

As a result, the quadrotor dynamics in Equation (21) can be decoupled into independent sub-system 

dynamics, and the cascaded control systems for the attitude, position and altitude can be designed from 

the decoupled dynamics. Under the assumption of small φ, θ angles and near-hovering motions, we can 

derive the following linearized attitude dynamics: 
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(24)

The linearized translational motion dynamics can be given as: 

1

1

1

1
( cos sin )

1
( sin cos )

1

x u
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y u
m

z u g
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θ ψ ϕ ψ
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(25)
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Using the decoupled rotational and translational dynamics in Equations (24) and (25), we can design a 

cascaded control scheme consisting of the inner control loop and outer control loop, of which the control 

laws can be designed separately. As illustrated in Figure 4, the outer control loop is the position and altitude 

controller, which receives the reference path from the CL-RBT planner and generates the reference roll and 

pitch commands (φr, θr) to the inner attitude control loop, while the attitude controller produces the desired 

rotor speed to achieve the reference attitude according to the attitude commands φr, θr, ψr. 

Figure 4. Cascaded control scheme of the quadrotor MAV. CL-RBT, closed-loop random 

belief trees. 
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6.2.2. Controller Design 

Based on the attitude and translational motion dynamics described in Equations (24) and (25), the 

proportional-integral-derivative (PID) control scheme is utilized to design the attitude and position 

controller for the quadrotor MAV. The first step is to consider the inner loop controller, which functions 

as the core of the control scheme. Using the attitude dynamics shown in Equation (24), the attitude 

controller can be designed as follows: 

 , , ,
2

, , ,
3

4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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P r I r D r
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ϕ ϕ ϕ ϕ ϕ ϕ

θ θ θ θ θ θ

ψ ψ ψ ψ ψ ψ

= − + − + −

= − + − + −

= − + − + −





 

 

 
 

(26)

where , , ,, , , , ,P I D P I DK K K K K Kϕ θ ϕ θ ϕ θ ψ ψ ψ  are the control gains of the PID controller and φr, θr and ψr denote the 

reference roll, pitch and yaw, respectively. Note that φr, θr are generated by the outer control loop while 

ψr is directly provided by the CL-RBT planner. 

Under the assumption of near-hovering velocities and small rotational angle motions, the control scheme 

of translational dynamics can be decoupled into the planar (x, y) and altitude controllers that can be designed 

separately. The altitude controller is designed based on PID control with non-linear compensation: 

1

1
( ( ) ( ) ( ))

cos cos
z z z
P r I r D ru K z z K z z dt K z z

θ ϕ
= − + − + −    (27)

where , ,z z z
P I DK K K  are the PID control gains, and zr is the reference altitude of the path provided by the 

CL-RBT planner. The planar position controllers take the following form: 
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where , , , , ,x x x y y y
P I D P I DK K K K K K  are the PID control gains and xr, yr are the reference position provided by 

the CL-RBT planner. As mentioned before, the outer loop controller outputs θr, φr to the inner loop 

controller as the reference pith and roll, which are used in Equation (26) for attitude control. 

In our applications, the frequency of the inner loop (attitude controller) is 250 Hz, while the outer loop 

(translational and altitude controller) runs at 30 Hz. The PID gains of the controllers are tuned through 

extensive numerical simulations in order to achieve a desirable control performance. 

In this paper, we only report simulation results based on the PID control law. The reason for selecting 

the PID scheme is that it can handle complex dynamics model and it is robust to modeling errors. Note 

that more complex and advanced control laws can also be adopted in the CL-RBT framework. In addition, 

other types of MAV dynamics models with associated guidance and control laws can be incorporated to 

form the closed-loop model in CL-RBT.  

6.3. EKF Process Model 

In the simulation experiments, the states of the MAV are estimated using an EKF-based estimator. The 

MAV states to be estimated in the EKF filter include: three-axis position in the global frame  

p = [x, y, z]T, MAV orientation represented using Euler angles [φ, θ, ψ]T (roll, pitch and yaw), three-axis 

velocity in the global frame v = [vx, vy, vz]T, as well as the gyroscope bias bω = [bωx, bωy, bωz]T and 

accelerometer bias bf = [bfx, bfy, bfz]T. The estimated state vector can be denoted specifically as follows: 
T T[ , , , , , , ] [ , , , , , , , , , , , , , , ]f x y z x y z fx fy fzx y z v v v b b b b b bω ω ω ω= ϕ θ ψ = ϕ θ ψx p v b b  (28)

As described previously, the MAV is equipped with a laser rangefinder, which is used by scan-matching 

to provide position and heading measurements (x, y, ψ). The altitude of the MAV is measured by an 

onboard sonar altimeter, and it is assumed that the altitude measurement is not affected by the attitude of 

the MAV. In addition to the laser rangefinder, the MAV is assumed to be equipped with an IMU module, 

which consists of a triaxial gyroscope and triaxial accelerometer. The triaxial gyroscope provides  

three-axis angular rates ωm = [ωmx, ωmy, ωmz]T, while the accelerometer measures the three-axis 

accelerations fm = [fmx, fmy, fmz]T, and the above IMU measurements are all expressed in the MAV’s body 

frame. Using the above definitions, the continuous state-space-based process model (x= g(x, u)) 

describing the IMU dynamics can be given by:  

=p v  (29)

( )n
b m fC f= − −v b g  (30)

1 sin tan cos tan
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 φ φ θ φ θ ω −   
     θ = φ − φ ω −     
     ψ φ θ φ θ ω −    





 (31)
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0ω =b  (32)

0f =b  (33)

where 
n
bC  denotes the transformation matrix from the body frame to the global frame, and g = [0, 0, g]T 

is the local gravity vector in the global frame. Since the x, y position and the heading ψ (yaw) of the 

MAV are estimated separately using the measurements from the laser scan-matching, ψ can be treated 

independent of roll φ and pitch θ, and the MAV motion of the x-, y-axes can be decoupled from z-axis 

motion under the assumption of near-hovering velocity and small φ, θ angles. This assumption yields 

the simplified transformation matrix in Equation (30):  

cos sin 0

sin cos 0

0 0 1

n
bC

ψ − ψ 
 = ψ ψ 
  

  (34)

A similar approach for the simplification of the MAV motion can also be found in [28,29] (Note that 

although this simplified velocity model may cause significantly large estimation error when the MAV 

performs aggressive attitude maneuvers or high-speed flight, it is sufficiently accurate for state 

estimation under the above assumptions in this paper). 

To implement the state estimation on a computer system, the above process model is transformed into 

a discrete-time model. Let Δt be the update period of EKF and assume that Δt is sufficiently small, the 

process model in Equations (29)–(33) can be discretized as follows:  

1 1 1( , )t t t ttf− − −= + Δx x x u  (35)

In order to implement the EKF estimator, the above discrete process model needs to be further linearized 

by calculating the Jacobians 1
/

t
g

−
∂ ∂

x
x  as described in Equation (2). To derive the Jacobians, the calculation 

of partial derivatives of the process model with respect to the state vector is given as follows: 
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where: 
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The process noise w is introduced by the IMU angular rates (ωm) and accelerations (fω), which are 

included as the input u to the process model:  

[ ] T
, , , ,m m ff w w wω = ω =  

T
u  (37)

where wω, wf are the noise associated with the angular rates and accelerations, respectively, and wω, wf 

are both white Gaussian noises with zero mean, i.e., wω~N(0, Qω), wf~N(0, Qf). Similarly, the partial 

derivatives of the process model with respect to the process noise can be calculated by: 

1 1 1 1

T

3 3 3 3 31 3 3 3 3

3 3 22 3 3 3 3 3 3, ,

0 0 0 0

0 0 0 0
t t t t

t

tVg f
V t

tVw w
− − − −

× × × ×

× × × ×

Δ ∂ ∂= = Δ =  Δ∂ ∂  x u x u

 (38)

where: 

22 31

1 sin tan cos tan

, 0 cos sin

0 sin sec cos sec

n
bV C V

ϕ θ ϕ θ 
 = = ϕ − ϕ 
 ϕ θ ϕ θ 

  

Due to the different measurement rates of the IMU, the sonar and the scan-matching module, the state 

and covariance are updated separately at different times, using three groups of measurements. The pitch, 

roll angle (φ, θ) and the gyroscope bias bω are updated first using the measurements from the IMU (more 

specifically, the accelerometer measurements). The altitude z is updated separately using the sonar 

measurement, since it is uncorrelated with the other measurements. In addition, the update of the MAV 

position p, heading ψ, the velocity vx, vy and the accelerometer bias bf are completed when the 

measurements from laser scan-matching are received. By the above discussions, while the performance 

of pitch and roll (φ, θ) estimates depends on the IMU, the estimation of x, y position and the heading ψ 

are primarily affected by the characteristics of the laser rangefinder, as well as the perceived environment 

information. As a result, in order to evaluate how the path planning strategy affects the uncertainty of 

state estimation, we extract the laser-related states [ , , , , , , ]x y fx fyx y v v b bψ= Tx
 from the full state vector. 

By Equation (35), the process update model of x can be given as: 

1 | 1

1 | 1

1 11 1

1 | 1 | 1

| | 1

|

cos sin cos sin

sin cos sin cos
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t t x t

t t y t

x x mx fx fx

y y my fy fyt tt t t

t t mz t z t z

fx t fx t

fy

x x v t

y y v t

v v f b w
t t

v v f b w

t b tw

b b

b

− −

− −

− −− −

− − ω − ω

−

= + Δ

= + Δ

−ψ − ψ ψ − ψ          
= + Δ + Δ          −ψ ψ ψ ψ          

ψ = ψ + Δ ω − + Δ

=

| 1t fy tb −=

 (39)

By the above process model, we have: 

1 1( , , )t t tg w− −=x x u      (40)

where
T

, ,mx my mzf f ω =  u , 
T

, ,fx fy zw w w wω =   , and the Jacobians of the above model can be obtained 

directly from Equations (36) and (38): 
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0 0 cos sin 0 0 0
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0 0 0 0 0 0
t

t t

V t t

t

Δ ψ Δ ψ 
 = −Δ ψ Δ ψ 
 Δ 

  (42)

Denote σ2 
fx , σ2 

fy  and σ2 
ωz as the noise covariance of the accelerometer measurements in the x- and  

y-axis, as well as the gyroscope measurements in the z-axis, respectively. The process noise covariance 

of the process model in Equation (39) can be given by:  
2 2 2( , , )fx fy zQ diag ω= σ σ σ  (43)

Therefore, the matrix St in Equation (11) can be calculated by T
t t tS V QV=   , and tG  (Equation (41)), 

tV  (Equation (42)), St are used in the linear covariance propagation, as described in Equation (11). 

6.4. Sensor Measurement Model and Uncertainty Analysis of Laser Rangefinders 

In many actual applications, a MAV performs localization using an onboard laser rangefinder, which 

obtains measurements through a series of range readings recorded at consecutive angles increments. 

Therefore, the accuracy of the localization is mainly affected by the range to the objects and the topology 

of the environments. In our simulation, we assume that the quadrotor is equipped with a laser rangefinder 

and that the localization is performed by matching the laser scans. In order to incorporate the uncertainty 

of the laser rangefinder for the covariance propagation in the CL-RBT planner, we used an information 

matrix-based method [6] to determine the uncertainty of the laser measurements with respect to the 

topology of the environments. 

For a quadrotor using a laser rangefinder, the information matrix N in Equation (11) denotes the 

information provided by laser scans, which can be calculated by combining the information of each 

range measurement of the environment. Considering an environment geometry shown in Figure 5, a 

laser scan obtained at time t consists of measurements of n scan points in the environment, each of which 

is described by a range reading ri and a measurement angle θi, and the information provided in a laser 

scan (ri, θi) is in the direction perpendicular to the topology, i.e., the direction of the vector normal (the 

vector in green, Figure 5) of the environment surface. Therefore, the information matrix can be obtained 

by projecting the range information onto the vector normal of the surface and summing the projected 

information of each scan point. The information matrix N can be calculated by:  

 

(44)
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with H as the measurement matrix (Equation (45)) and Σ2 
r  as the variance matrix (Equation (46)) 

denoting the variance of each measurement:  

 
1 1 1 1 1 1 1 1 1cos cos( ) sin cos( ) sin( )

cos cos( ) cos cos( ) sin( )n n n n n n i n n

r

r

γ γ θ γ γ θ γ θ

γ γ θ γ γ θ γ θ

− − − 
 =  
 − − − 

H   

 

(45)

1 1 1

2 2 2 2 2 2 2 2 2 2( , , ,... , , ... , , )
i i n n nr r r r r ri r r r rdiag σ σ σ σ σ σ σ σ σΣ = (46)

In our experiments, the readings of each measurement point (ri, θi) are obtained first from the 

simulated laser scan, and then, the line segments of the topology surface are extracted using the 

measurement points, along with the vector normal of each line segments, as well as the angle between 

the body axis and the vector normal. From Equations (44)–(46), the information matrix N can be 

calculated with the summation terms that are given as follows: 
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Figure 5. Uncertainty analysis of a laser range measurement. The blue points denote the 

measurement points in a single laser scan at time t. γ is the angle between the body axis and 

the vector normal of the surface at measurement point (xi, yi), and βi is the angle form the 

vector normal to the measurement direction. d is the distance from the origin to the line 

segment i. 
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The above analysis provides a statistical approach to incorporating the variance of the laser scan data 

into the uncertainty of the pose estimate. Therefore, we can use Equations (44)–(46) to calculate the 

information matrix N, which is used in the linear covariance propagation as described in Equation (11). 

Figure 6a–e show the uncertainty ellipses related to the position estimation uncertainties along a 

predefined path calculated using the information matrix equations proposed in this section, as well as 
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the covariance propagation approaches in Section 4. In the experiments, an 18 × 9 m 3D environment 

model is derived from a cluttered real-world laboratory, and the MAV is assumed to be equipped with a 

simulated laser rangefinder that is able to generate range and bearing measurements of the environment. 

In order to highlight the influences of the environment, the laser sensor model is assumed to have a limited 

sensing capability with a 2-m range and a 240° field-of-view, which is represented by blue sectors in  

the figures (Although this sensor model is unrealistic in terms of maximum range, it serves well to 

illustrate how the environment and sensor measurement affect the localization uncertainty). As the MAV 

navigates along the path and rotates its orientations, the environment topologies that fall within the  

field-of-view will generate a series of noisy measurements of the topologies’ distance and bearing to the 

MAV body (the valid measurements are demonstrated by the cyan sectors in the following figures), 

enabling the MAV to localize itself by a EKF-based approach using these measurements of the 

environment. The 1–σ position uncertainty is demonstrated by red ellipses in the figures, and the size and 

shape of the ellipses indicate the relative scale of the localization uncertainty in both x and y directions. 

Figure 6. Position estimation uncertainties based on a simulated laser sensor along a 

predefined path. Cyan sectors denote the laser data with valid environmental measurements. 

Red ellipses illustrate the 1–σ localization covariance; larger ellipses indicate high uncertainty 

poses. All covariance are in cm. (a) position: (5.0, 2.0, 0.5) m, heading: −45°; (b) position: 

(8.0, 7.5, 0.5) m, heading: −45°; (c) position: (8.0, 7.5, 0.5) m, heading: 0°; (d) position: 

(11.0, 4.0, 1.0) m, heading: −30°; (e) position: (10.0, 2.5, 1.0) m, heading: 0°. 

 
(a) (b) 

 
(c) (d) 
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Figure 6. Cont. 

(e) 

As can be seen from Figure 6, the area where the onboard sensor is expected to detect more 

environmental topologies tends to produce position estimates with low uncertainty (Figure 6a,b), while 

those locations where the sensor only encounters just one obstacle will lead to high localization 

uncertainty (Figure 6d). In extreme cases where the MAV navigates into wide open areas (Figure 6e), 

the localization uncertainty increases sharply, since these areas provide almost no information for 

localization. In addition, the localization uncertainty is also affected by the orientation (yaw) of the MAV 

relative to the environmental topologies: The MAV is at the same x-y-z coordinates in Figure 6b,c, but 

the position uncertainty varies due to the different yaw orientations of the sensor (−45° in Figure 6b and 

0° in Figure 6c); the yaw angle is positive when the rotation is counterclockwise around the z-axis of the 

Earth-fixed frame). The environmental topology of the MAV location in Figure 6b,c can be considered as a 

corridor between two parallel obstacles, and the laser sensor measurements will provide most 

information (large information matrix N) in the direction perpendicular to the local environment, 

according to the model given in Equations (44)–(46). As a result, the uncertainty in the direction of the 

“corridor” (x direction of the environment frame) is much larger when the measurement direction is 

perpendicular to the “corridor” (Figure 6c). 

6.5. Numerical Simulation Results 

6.5.1. Scenario 1: Indoor Environment with Open Space 

The environment of the first scenario is shown in Figure 7a. As can be seen from Figure 7, this 

scenario is a 10 × 10-m open indoor environment with all structures concentrated along the peripheral 

walls, and the center of the environment is an open region that is out of the measurement range of the 

simulated laser rangefinder. The MAV quadrotor must navigate from the initial position at the  

bottom-right corner through the hallway to a goal region, which is diagonally opposite of the initial point. 

Since most of the environment provides rare measurement for localization, it is even more critical for 

the path planning strategy to find paths that maximize information gain and reduce state uncertainty; 

hence, the emphasis of this simulation scenario is to test the path planning algorithm’s ability to generate 

paths that ensure the MAV’s localization performance throughout the path. For comparison purposes, 
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the conventional CL-RRT algorithm without the incorporation of state uncertainty is also tested using 

the same MAV model and environment configurations. 

Figure 7. Indoor environment simulation Scenario 1: (a) A hallway of Tsinghua University’s 

main building; (b) simulated 3D model of the GPS-denied indoor environment. The red and blue 

circles indicate the initial and goal location of the MAV, respectively. 

(a) (b) 

In this scenario, the quadrotor MAV begins at [ ]2.0 2.0 0.0
T

initial =x  m. It is intended to navigate 

towards the goal location at [ ]9.0 9.0 1.0
T

goal =x m, and the weight factors in Equation (19) are set as:  

ζ1 = 1, ζ1 = 1, ζ3 = 100. The cascaded PID control scheme described in Section 6.2 is applied for both 

CL-RBT state propagation and reference path following of the MAV. The planning-execution cycle is 

set to 5 s.  

Figure 8 demonstrates an example trajectory generated by a trial of the simulation scenario. The  

CL-RBT algorithm quickly generates a feasible path that goes through the regions with as much 

measurements as possible to localize and reaches the goal (Figure 8a,b). Since a comparatively small 

amount of samples and nodes are generated during the initial planning, the initially selected paths may 

still reach the open regions with comparatively high localization uncertainty (Figure 8c–e). However, as 

more samples and nodes are added, the CL-RBT continuously refines the path in real time, identifying 

optimal paths that go through measurement-rich regions to ensure localization and reduce the execution 

cost of the goal (Figure 8f–h). 

In contrast, by expanding the path using the conventional CL-RRT and checking obstacle collision 

constraints, the resulting paths will move the MAV straight to the goal (Figure 9). Although the 

conventional CL-RRT may generate shorter paths, ignoring the localization factors will result in high 

localization uncertainty, since these paths may go through the open regions. In this case, following these 

paths would likely cause operation failure, since the state estimate becomes unacceptably uncertain, such 

that the MAV control would have become unstable. 
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Figure 8. Example results of trajectory generated by CL-RBT for a quadrotor MAV navigating 

in simulation Scenario 1. The pink ellipses represent the covariance of the position estimate, 

and large ellipses denote MAV states with high uncertainty. The current state (MAV’s 3D 

positions and headings) is denoted with a red pentacle. The current selected path (specified 

by node sequence, used as the reference to the control system) is marked in black with red 

dots representing the nodes. The predicted closed-loop trajectory corresponding to the 

current selected node sequence is emphasized in red, while the actual output trajectory flown 

by the closed-loop MAV model is marked in pink. The current tree is denoted by green nodes 

and cyan trajectories, but is set as invisible after (b) for clarity. (a) t = 5 s; (b) t = 10 s;  

(c) t = 20 s; (d) t = 25 s; (e) t = 30 s; (f) t = 40 s; (g) t = 50 s; (h) t = 60 s. 

(a) (b)  

(c)  (d)  

(e)  (f)  
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Figure 8. Cont. 

(g)  (h)  

Figure 9. Example results of the trajectory generated by the conventional closed-loop rapidly 

exploring random trees (CL-RRT) for a quadrotor MAV navigating in simulation Scenario 1. 

The red cross in (b) denotes the state where the MAV’s state estimation fails, since the position 

uncertainty has become sufficiently high. (a) t = 5 s; (b) t = 25 s. 

(a)  (b)  

6.5.2. Scenario 2: Cluttered 3D Indoor Environment 

This scenario considers a more complex three-dimensional, GPS-denied indoor environment with a 

number of non-convex obstacles and structures (Figure 10). The environment model is derived from an 

actual cluttered laboratory, which is the same as the model shown in Figure 6. The objective of the 

quadrotor MAV is to navigate from the bottom-left initial point to the goal position located on the other 

side of the laboratory, moving safely between the obstacles. Planning trajectories in this cluttered 

environment is a challenging task for the path planner. The unstructured environment requires the path 

planning algorithm to be able to generate a trajectory that avoids the non-convex obstacles to ensure 

feasibility, while bounding the state estimate uncertainty along the trajectory to allow the MAV to remain 

well-localized. 
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Figure 10. Indoor environment simulation Scenario 2: (a) view of a typical cluttered laboratory; 

(b) simulated 3D model of the unstructured, GPS-denied indoor environment. The red and 

blue dot indicate the initial and goal location of the MAV, respectively. 

(a) (b) 

For this scenario, the quadrotor MAV begins from one side of the environment at 
[ ]3.2 6.4 0.0

T

initial m=x , and it is intended to navigate to the goal point behind a cluttered region of 

obstacles at [ ]10.0 4.0 0.5
T

goal m=x . The same MAV dynamics model, PID control scheme and sensor 

configuration as in Scenario 1 are also applied in this scenario. However, we select weighting factors in 

Equation (19) as ζ1 = 1, ζ1 = 20, ζ3 = 30, since the emphasis of this scenario is on generating feasible 

trajectories that quickly reach the goal while reducing localization uncertainty. The planning cycle in 

this scenario is extended to 7 s. The conventional CL-RRT is also tested using the same scenario and 

MAV system model for comparison purpose. 

An example of the trajectory simulation results from this scenario is depicted in Figure 11. As can be 

seen from Figure 11, the MAV’s initial position is located in an obstacle-rich region. The path planner 

initially has to move the MAV out of this cluttered region. Unlike the first scenario, the CL-RBT algorithm 

does not find any trajectories directly to the goal due to the poor coverage of the CL-RBT tree and the 

cluttered environment in the first few planning cycles (Figure 11a,b). As the CL-RBT tree expands to cover 

more space after some wandering, the CL-RBT algorithm moves the MAV progressively through the narrow 

passages and approaches towards the direction of the goal region Figure 11c). After moving out of the 

narrow passage region, the path planner succeeds in identifying a trajectory to the goal (Figure 11d). As 

can be seen from the figure, the covariance of the position estimate stays bounded along the trajectory 

during the entire planning cycles of CL-RBT. 

In contrast to CL-RBT, the conventional CL-RRT quickly finds a path that goes over the cluttered 

obstacle region and directly reaches the goal (Figure 12a). Although the resulting path is shorter than the 

path generated by CL-RBT, the uncertainty of the position estimate grows rapidly along the  

CL-RRT trajectory (Figure 12b); this is because the environment becomes open as the MAV’s altitude 

increases, providing rare information to the onboard sensor for localization. 
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Figure 11. Example results of the trajectory generated by the CL-RBT for a quadrotor MAV 

navigating in a cluttered environment. The full legend for the symbols can be found in Figure 

8. The current tree is set as invisible after (b) for clarity. (a) t = 7 s; (b) t = 14 s; (c) t = 21 s; 

(d) t = 28 s; (e) t = 35 s; (f) t = 42 s; (g) t = 56 s; (h) t = 70 s. 

(a)  (b)  

(c)  (d)  

(e)  (f)  



Sensors 2014, 14 21821 

 

 

Figure 11. Cont. 

(g)  (h)  

Figure 12. Example results of trajectory generated by the conventional CL-RRT for a 

quadrotor MAV navigating in simulation Scenario 1. The red cross in (b) denotes the position 

where the MAV’s state estimation fails since the position uncertainty have exceeded  

the threshold. (a) t = 7 s; (b) t = 28 s. 

(a)  (b)  

6.5.3. Performance Comparison and Analysis 

In order to illustrate the performance of the CL-RBT algorithm, we compare the performance statistics of 

the CL-RBT algorithm to that of the conventional CL-RRT by running simulation experiments using 

both algorithms on the same scenarios, as described in Sections 6.5.1 and 6.5.2 (note that we did not 

compare the CL-RBT to other conventional sampling-based path planners that operate on static graphs 

or trees, such as PRM, RRT or BRM, since they are not real-time algorithms in essence). For each 

simulation scenario, the experiment is repeated 30 times using each of the two algorithms, and the 

performance statistics is recorded and evaluated in terms of the paths’ cost (total length) and the trace of the 

MAV’s expected covariance at the goal when following the generated paths, both averaged over 30 times. 
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Table 1 shows a comparison of the average path length and covariance statistics of CL-RBT and 

conventional CL-RRT. The CL-RBT outperforms conventional CL-RRT in terms of expected uncertainty at 

the goal in both simulation scenarios. Moreover, since these experiments are performed in simulation, the 

actual trajectories of the MAV are available, and the average mean error between the estimated MAV 

position and the actual position at the goal location are also computed and shown in Table 1 (note that 

the mean errors corresponding to the conventional CL-RRT are computed by assuming that the controller 

is able to execute the prescribed path and navigate the MAV to the goal location regardless of the 

estimation error, while in fact, the MAV controller would have failed halfway). These results indicate that 

the conventional CL-RRT results in large deviations from the true position, while the CL-RBT can 

effectively bound the estimation error in repeated trials. However, the resulting paths generated by CL-RRT 

are generally longer that those of conventional CL-RRT. This is because CL-RBT integrates the prediction 

of position uncertainty into the planning progress, which enabling the MAV to balance minimizing path 

length against reducing localization uncertainty, selecting longer paths to avoid regions that lead to high 

position estimation uncertainty when necessary. 

Table 1. Performance comparisons of CL-RBT and CL-RRT, using 30 simulation runs. 

Algorithms Parameters Scenario 1 Scenario 2 

CL-RBT 
Path length (m) 17.35 16.7 

Final covariance (cm2) 39.88 41.65 
Final mean error (m) 1.07 0.82 

CL-RRT 
Path length (m) 10.74 12.78 

Final covariance (cm2) 5,933 9,523 
Final mean error (m) 54.33 73.52 

As discussed previously, the specification of weighting factors in the cost function for path selection 

Equation (19) is an important factor for implementations of CL-RBT. To evaluate the effect of the 

selection on weighting factors, we have conducted a number of simulations with different values of 

weighting factor ζ3 in Scenario 1. Five different values of ζ3 are evaluated in these simulations:  

ζ3 = {0, 1, 10, 50, 100}. For each of the five values, the simulation is repeated 10 times, and the path 

length and uncertainty cost (trace of the covariance) at the goal are recorded and averaged. Figure 13 

illustrates the resulting paths’ average length and uncertainty cost at the goal as a function of ζ3. As can 

be seen from the figure, the uncertainty cost decreases as the weighting factor ζ3 increases, whereas the 

path becomes comparatively longer. This is because reducing localization uncertainty becomes relatively 

more significant as ζ3 increases, resulting in longer paths that take more measurements from the 

environment. These results demonstrate that the weighting factors of the cost function should be 

carefully selected depending on the specific task requirement and the characteristic of the environment. 
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Figure 13. Comparison of average path length and average uncertainty cost at the goal. Data 

points correspond to different values of the uncertainty cost weighting factor (Equation (19)): 

ζ3 = {0, 1, 10, 50, 100}. 

 

7. Conclusions and Future Work 

This paper presents a real-time path planning approach in belief space (CL-RBT) for MAVs with 

complex dynamic constraints under state estimation uncertainty. The proposed CL-RBT approach is built 

upon the RRT motion planning framework. We made two primary contributions in this paper. First, the 

prediction of state uncertainty is incorporated in the path planning process, which allows the path planning 

strategy to find the path that reduces the state uncertainty and ensures state estimation confidence, using 

an efficient, linear update process of covariance in a factored form. Second, closed-loop prediction is 

used in the motion planning framework to generate dynamically feasible trajectories, enabling the motion 

planner to handle complex dynamic and environment constraints. Simulation results demonstrate that the 

motion planner can be implemented in real time, generating dynamically feasible paths that trade off 

minimizing path cost and reducing state uncertainty accuracy, while easily handling complex vehicle 

dynamics. It can also be concluded that CL-RBT has the potential to increase the autonomy of MAVs 

that operate in complex, GPS-denied environments. 

While the utility and advances of the CL-RBT algorithm have been presented in this paper, there  

still remains significant future work on the proposed framework. Future work will focus on the  

more extensive analysis of the algorithm’s performance, including the computational complexity and 

optimality of the generated paths. Further theoretical work is also necessary in the proof and analysis of 

the algorithm’s completeness and convergence. Moreover, we are also planning to implement the  

CL-RBT on an actual quadrotor MAV platform that is currently under development. It would be possible 

to validate the performance of CL-RBT with realistic onboard sensors (laser rangefinders, RGB-D, 

cameras, etc.) through flight tests in actual indoor environments. 
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