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Abstract: Many wind energy projects report poor performance as low as 60% of the 

predicted performance. The reason for this is poor resource assessment and the use of new 

untested technologies and systems in remote locations. Predictions about the potential of an 

area for wind energy projects (through simulated models) may vary from the actual potential 

of the area. Hence, introducing accurate site assessment techniques will lead to accurate 

predictions of energy production from a particular area. We solve this problem by installing 

a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers 

installed in that area. After comparative analysis of the acquired data, the anemometers 

transmit their readings through a WSN to the sink node for analysis. The sink node uses an 

iterative algorithm which sequentially detects any faulty anemometer and passes the details 

of the fault to the central system or main station. We apply the proposed technique in 

simulation as well as in practical implementation and study its accuracy by comparing the 

simulation results with experimental results to analyze the variation in the results obtained 

from both simulation model and implemented model. Simulation results show that the 

algorithm indicates faulty anemometers with high accuracy and low false alarm rate when 

as many as 25% of the anemometers become faulty. Experimental analysis shows that 

anemometers incorporating this solution are better assessed and performance level of 

implemented projects is increased above 86% of the simulated models. 

OPEN ACCESS



Sensors 2014, 14 22141 

 

 

Keywords: wind speed monitoring; error detection; wireless sensor networks; site 

assessment; cup anemometers 

 

1. Introduction 

Over the past few years energy production through wind has increased dramatically because of  

the wind’s potential economic, environmental and security benefits. Wind energy resources provide 

cheaper and economical electricity as compared to other energy resources. In the US wind farms  

are generating electricity at a rate less than 5 cents per kilowatt [1]. Due to the fast increase in wind 

technology deployment, developing projects require much better and accurate monitoring along with 

supervising techniques. Very accurate wind speed measurements are very important to the wind energy 

community. According to [1], many installed projects report poor performance due to poor resource 

assessment and poor fault prediction techniques. Errors in wind speed measurement are one of the major 

reasons for causing uncertainties in power generation performance of wind turbines. Accurate 

monitoring of parameters (like wind speed, direction, overspeeding, number of rotations, torque, 

turbulence intensity and temperature) is therefore a major contribution to the wind energy community. 

Wind measuring devices like anemometers are used for evaluating a potential site for wind energy 

projects. Regular maintenance and accurate monitoring of anemometers, installed for site assessment, is 

one of the main challenges for wind energy deployment companies because of the high costs required 

for it. Errors occurring in the readings taken by these devices are usually checked manually by sending 

labor to the area where these devices are installed. No proper monitoring techniques for these devices 

are present in order to get accurate measurements by these devices which in turn results in inaccurate 

assessment of the site. This badly affects the projects that are to be implemented in that area as the 

projects when implemented perform far less than expected. In our analysis and experimentation, a WSN 

will play a vital role in monitoring and supervising wind resources in remote areas and reporting the data 

back to the central control station. A number of different locations can be monitored through one station. 

This network will minimize the cost of cables and the labor that will be needed to manually check the 

sites and other costly accessories. 

Cup anemometers are accepted by international standards for power performance measurements  

and are used widely in wind energy applications [2]. Deployments in remote areas require regular 

engagement and more oversight than conventional wind energy projects [3]. According to National 

Renewable Energy Laboratory (NREL) in the US, many wind energy projects report results as low as 

60% of the predicted performance [1]. The reason for this is poor resource assessment and the use of 

new untested technologies and systems in remote locations. Hence, better assessment and fault detection 

techniques are required to achieve the desired performance level. For a balanced and economical system, 

it is important to reduce operational costs of the project. Condition-based maintenance systems will help 

in achieving accurate and improved performance in energy projects to be implemented and will decrease 

the operational costs. All wind turbines installed worldwide by the end of 2008 are generating  

260 Terawatt hour (TWh) per annum, corresponding to more than 15% of the global energy  

consumption [4]. It is clear that in the mid- to long-term, wind energy investments will rather be 
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strengthened due to their low risk character and additional economic benefits. The contributions of this 

paper are as follows: 

• We are the first to introduce a WSN for accurate monitoring and fault detection in wind 

measuring devices. We have used our own developed sensor nodes instead of traditional sensor 

nodes such as MICAZ, TelosB, or IRIS, which does not suit our experiments due to limited radio 

range and sensing capabilities. 

• This paper proposes a technique for accurate site assessment. Proper assessment of a site will 

lead to accurate estimations of the energy production from future wind energy projects to  

be implemented. 

To the best of our knowledge, no work has been done yet on implementing a WSN for site assessment 

purposes. The remainder of the paper is organized as follows: Section 2 explains the related work in 

detail. Section 3 explains the design description and Section 4 explains the proposed algorithm. Section 5 

demonstrates the simulation and experimental results. Finally we conclude the paper in Section 6. 

2. Related Work 

Some significant work that has been done on monitoring fault issues in anemometers is  

summarized below. 

2.1. Fault Detection Techniques in Sensors and in Wind Measuring Devices 

Good quality work has been done on detecting faults in sensors. In [5], failed nodes were traced at 

the base station, assuming that all sensor measurements will be directed to the base station through a 

routing tree. In this work, the base station has a global view of the network topology and it can identify 

failed nodes through route update messages. In recent works for fault detection [6–8], sensors are 

required to access a binary decision procedure by comparing their readings with a predetermined 

threshold. This binary decision is called a 0/1 decision predicate with 0 indicating a normal status and 1 

indicating a faulty status. 

Some research work has also been done in identifying faults in wind measuring devices.  

A technique for data analysis was discussed in [9] to identify faults in a wind turbine installed in a wind 

farm. The data analysis for this purpose was done through automated Supervisory Control and Data 

Acquisition (SCADA). In [10], an algorithm for fault detection in wind turbines was discussed. 

Condition monitoring techniques were introduced in order to detect faults in different components of the 

turbine. Sensors were also used for environmental monitoring applications. Also, for environmental 

conditions monitoring, a WSN deployment was carried out to monitor environmental conditions [11]. 

This technique relied on installing a low cost station in the alpines in Switzerland which was a better 

technique for environmental monitoring as compared to high cost stations installed for this purpose.  

In [12], an anemometer-based method for remote area wind energy harvesting was presented. The 

motion of the anemometer shaft was utilized to turn an alternator which in turn would be useful for 

harvesting energy. 

In the past a lot of work has been done for developing wind measuring devices that will accurately 

measure wind speed. In 1990, a one dimensional, ionic flow anemometer was developed in Japan using 
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a high voltage pulse [13]. The air molecules were ionized and the flow time detected for the ionized 

molecules was used for wind speed calculation. But by using this technique only single direction 

measurements could be made and the right direction was obtained by trial and error method. Another 

one dimensional, fixed electric field measurement technique was applied in 1995 [14]. Air molecules 

were ionized using high voltage between polar plates in a fixed distance. In 2009, a mobile optical 

coordinate measuring technology was used to acquire offshore wind turbine data and behaviors [15]. 

2.2. Site Assessment Techniques 

Site assessment for wind energy projects can also be done with the use of wind maps. In 2011,  

a Geographic Information System (GIS)-based wind farm site assessment technique was used. Using 

this method, large geographic areas could be assessed and the evaluation outcome could be displayed in 

suitable maps [16]. Wind atlases are also used for site assessment. In [17], a wind resource atlas was 

prepared where wind observations were recorded from meteorological stations around that area. These 

recorded observations were used to define the statistical details of the wind resource in that particular 

area. However, as these maps short fall of giving accurate results, these are useful only for initial 

selection of sites. Although improvements have been made to obtain accurate results by these maps, it 

is still improbable that these maps will end the importance and need for on-site measurements for site 

selection. However, this technique can still help in speeding up the process for proper site selection. 

Apart from wind maps, Laser Imaging Detection and Ranging (LIDAR) and Sonic Detection and 

Ranging (SODAR) are also used for site assessment. SODAR and LIDAR are basically remote sensing 

(RS) devices that use sound and light, respectively. These technologies are ground-based and are capable 

of working for quite long distances which make them easy to use for analyzing and evaluating a site. In 

September 2013, wind speed data was collected at Buena Vista Wind Farms in California using a LIDAR 

instrument (Zephir 300) [18]. However, the LIDAR required more power than expected and measured 

high wind speeds at night. The reason for this was that the LIDAR was not placed on truly flat land. 

Hence, these ground based RS devices show variable and unpredictable measurements, especially in 

hilly terrains. Improvement of these devices is very important in order to increase the confidence in using 

these ground based techniques [19]. Up till now, wind site assessment process has counted on cup 

anemometers and approved it as a standard for this purpose [2]. 

3. Design Description 

Before explaining the design details, we first give background information about the cup 

anemometers that will be used. Then we explain the comparison of anemometer with a potential RS 

technology, SODAR. After that we give the details of proposed design. 

3.1. Background 

An anemometer is a device that is used for measuring wind speed in any particular area. Typically, 

anemometers are deployed in an area for assessing the potential of a site for future wind energy projects. 

By using anemometers, we can analyze the following parameters: 
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3.1.1. Wind Speed and Direction Analysis 

For cup anemometer, we consider a three dimensional wind speed vector [20]. The 3 dimensional 

wind speed vector is given as: 

),,( zyxV =


 (1)

where: 

x = Longitudinal Component 

y = Traversal Component 

z = Vertical Component 

Hence: 
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In most cases, the vertical component is excluded which makes the equation as: 
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The difference between these two wind speed values in Equations (2) and (3) is based on turbulence 

intensity (Ti). For 15% turbulence, the difference is 0.5% and for 30% turbulence the difference  

is 1% [20]. The difference increases with high turbulence. In our analysis, we use the three dimensional 

wind speed vector. 

We will focus on the three dimensional component of wind for accuracy. So, according to [21],  

the instantaneous wind speed is decomposed into its components. We assume that mean wind speed  

is horizontal: 
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where Vf represents the fluctuations in wind speed. We assume that these fluctuations are small as 

compared to mean wind speed. The direction, θ for the three dimensional wind speed will become: 
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3.1.2. Effect of Turbulence 

Turbulence intensity is dependent on mean wind speed and standard deviation. Lower the wind speed, 

higher will be the turbulence intensity: 

iT
V

σ=  (6)

where, σ is the standard deviation of the wind speed and V  is the normalized wind speed. 

For continuous gusts [22], we analyze the three dimensional turbulence: 
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where ξ is the spatial frequency, Φ is the power spectral density and ℓ is the length scale. 

3.1.3. Number of Rotations Analysis 

The rotation rate for the anemometer [22] plays an important role in detecting faults in the nodes: 

),,( 22 zyxNF rrN +=
•

 (10)

At steady state and constant rotation rate: 

0)0,,( =VNF  (11)

We obtain: 

)(VNN rr =  (12)

The relation between wind speed U and number of rotations, Nr will become: 

rNV ∝  (13)

We observe that for a specific wind speed: 

recrrx NN ,=  (14)

where: 

Nrx = Number of rotations for node x 

Nr,rec = Recorded standard value for number of rotations at the given wind speed 

3.1.4. Maximum Overspeeding Level 

Overspeeding is another major reason for fault in anemometers.The maximum overspeeding  

level [20] for cup anemometer is dependent on the drag ratio and turbulence intensity: 
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where h is the drag ratio: 

DH

DL

C

C
h =  



Sensors 2014, 14 22146 

 

 

iT
V

V =Δ

0

 

The equation becomes: 
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By using second order Taylor series expansion around Ti = 0, we get the simple relation: 
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The maximum overspeeding ratio, F0 = 1.15 at a speed ratio of 0.3, the normal speed ratio of cup 

anemometers [20]. 

Also, it is clear from above Equation (17) that: 
2

, is TO α∞  (18)

which clearly shows the relation between wind speed and turbulence intensity. 

3.2. Comparison of Anemometer with Other Technologies 

Before explaining our experimental analysis, we discuss the comparison of SODAR, an RS 

technology used for site assessment with cup anemometers. Ground-based RS techniques are also  

used for site evaluation nowadays. These devices can be validated by comparing the winds estimated by 

these devices with those recorded at the same heights by cup anemometers. Mathematical analysis was 

done to get Figure 1. We used our own data for anemometer while already present data for SODAR [19]. 

The slope is plotted using equation (19). Results show that these ground based RS devices underperform 

as compared to cup anemometers. In hilly terrains or areas where hindrance is sufficiently great, these 

devices generally record lower wind speeds [19] and are therefore suitable for use in flat terrains. The 

variation in the wind speed calculations performed by a node (cup anemometer) and a SODAR is shown 

by the regression slope in Figure 1. From the graph, it can be seen that at lower wind speeds the variation 

is more. However, at higher wind speeds, there appears to be a decrease in the regression slope. The 

range of wind speeds is according to the Beaufort scale commonly used for weather forecast by 

meteorological stations. 

Also in Figure 1: 
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and: 
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Figure 1. Comparison of site assessment technologies. 

 

3.3. Design Details 

The design focuses on a number of anemometers deployed in a remote location which we want to 

assess as a potential site for deployment of wind energy project and where manual monitoring of the 

anemometers and fault detection becomes hard to achieve and costly. Each anemometer is equipped with 

a 3DR radio which operates at 433 MHz and has a range of one mile. Anemometers are therefore placed 

one mile apart from each other. However a large scale deployment can be done where anemometers at 

same heights can be placed in same clusters and can be equipped with radios that cover larger distances 

so that larger sites can be easily covered. For site assessment, cup anemometers are deployed in a remote 

location and monitoring of these anemometers is performed using a WSN. The anemometer is equipped 

with a 3DR as a transceiver, a memory card as a storage unit, an Arduino Uno Microcontroller [23] as a 

processing unit and a photo coupler as a sensing unit. The node deployment is deterministic based on 

same heights criteria. Nodes at same height communicate with each other for data sharing. In Figure 2, 

nodes placed at same height are represented by same pattern circles. Base station is deployed in the center 

of the assessment site while the radio range for each transceiver is 1·km. The number of nodes will increase 

if a vast field is to be assessed. Vast fields will require more nodes to be deployed. 

Figure 2. A general overview of node placement. 

 

4. Proposed Algorithm 

In this section, we will explain our proposed algorithm for detecting the faulty nodes in the network. 
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The algorithm is divided into three parts: Algorithm 1 is for developing a monitoring system to monitor 

the performance of the nodes, Algorithm 2 works for detecting the faulty node and Algorithm 3 is for 

detecting the error due to which the fault occurred. For this purpose the task has been divided into  

five parts: 

• Data acquisition by the nodes 

• Preprocessing of the data between nodes located at same heights 

• Data analysis and transmission to the sink node 

• Faulty node detection at the sink node 

• Data transmission to the main station via GSM 

The nodes located at same height are referred to as neighbors. The nodes gather data such as wind 

speed, direction, number of rotations, turbulence intensity and temperature. In the second step, the node 

encapsulates the data with its node ID and forwards the data to its neighboring node. A node regularly 

shares data three times in every twenty four hours i.e., nodes share data with each other once in every 

eight hours. However a node (cluster head) randomly decides when to share data during those eight 

hours. All other nodes in the cluster collect data at that time and then comparisons are made.  

A random variable is used in the algorithm to choose any random time during those eight hours for data 

sharing. The neighboring nodes share this data with each other and comparisons are made. The 

comparison technique is explained in Algorithm 1. If the difference between the data compared is less 

than a threshold percentage of 2% then the node’s status is considered to be ok else the error is considered 

to be significant and the node transmits these results to the sink node for further analysis. Same heights 

criterion discussed above (Section 3.3) for getting same measurements is quite favorable in conditions 

like cold fronts where cold air moves rapidly to replace warmer air. In such situations, where vertical 

motion of air takes place, all the nodes in the same network will experience same changes in readings. 

Due to this the probability of false detections will be low because the algorithm relies on comparison of 

the readings taken by all the nodes at same height in the network. 

The algorithm is divided into three parts. 

• Monitoring 

• Faulty Node Detection 

• Fault Detection 

Readings from faulty sensor nodes are geographically independent. But readings from sensor nodes 

in close proximity are correlated [8]. We assume that faults in the nodes do not occur regularly rather  

it is an event that occurs rarely. Our monitoring system is less complicated so that the nodes have to do 

little processing and hence save energy which will further increase the network lifetime. As the site 

assessment is usually expected to last for at least a year so a prolonged network lifetime would be in 

favor of the assessment process. In the opposite case, replacing energy drained sensors every now  

and then might increase the cost of the assessment project. Once a faulty node reading is detected,  

the results are sent to the sink node to accurately detect the error in the readings. Once a faulty node is 

detected, professionals can be sent to either fix the device. If the device cannot be fixed then it can either 

be replaced or removed from the network. We are directly working on the data collected to detect the 

errors in the anemometers being installed on site because the data collection process by these nodes for 
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site assessment is carried out for months. Using this data collected, we can also find out about the node 

that is not giving accurate readings and can further work on correcting that node. The reason for this is 

that we will need that node to collect data in the coming months. 

Algorithm 1 

/* Monitoring System 

/* This algorithm predicts faults and sends findings to sink node 

Input: V: Wind speed 

Input: θ: Angle of wind incident upon the cup rotor 

Input: Nr: Number of rotations 

Input: Ti: Turbulence Intensity 

Input: Os: Overspeeding 

Input: τ: Torque 

Input: t: Temperature 

Output: monitored fault sent to sink node 

/* A uniform random variable x is used to share data between two nodes at random intervals 

/* At some random time: 

1 Node id ← Data (V, θ, Nr, Ti, Os, τ, t) 

2                            Send to Node 2 

/* CP = comparison results of node x and (x+1) data 

3                               At Node 2: 

4                          if (CP < Threshold) 

5                           Node status = OK 

6                                      end 

7    else 

8                            if (CP > Threshold) 

9                      Send results to sink node 

10                                    end 

For accurate analysis at the sink node we consider an a × a squared field where N nodes are uniformly 

deployed. A sink node is that node in a WSN where data from all other nodes is collected. Sink node 

will process the data and will send it to the main station. Each node ni records measurements at regular 

intervals. Let mi denote the reading of the sensor node ni and mi = {V, θ, Nr, Ti, Os, τ, t}. Now let N (ni) 

denote a bounded closed set in the region that contains the node ni and additional k sensors n1, n2, …, nk. 

Let m1, m2, …, mk, denote the measurements taken by the nodes n1, n2, …, nk respectively. At the sink 

node comparison will be done between the reading of the node ni and the center of m1, m2, …, mk. The 

difference is:  

mii medmd −=  (21)

where medm denotes the median of the measurements taken. It should be clear that di will contain not a 

single value, but rather multiple values as a result of the comparison of all the parameters discussed 

above. Similarly, we find the difference for all the sensor nodes in N(ni) using Equation (22) to yield  
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D = {d1, d2, …, di …, dk}. Let μ̂  and σ̂  denote the sample mean and sample standard deviation of the 

set D, i.e.,: 
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Standardize the dataset D to eliminate the errors and to obtain {s1, s2, …, sn}, where: 
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Now decision will be made based on this data. 

If |si| ≥ Thershold, treat ni as faulty node and assign si to Fd where Fd is the set of sensors that are 

claimed as faulty by the above procedure. 

Algorithm 2 

/* This algorithm explains faulty node detection technique to be used at sink node. 

Input: Data (V, θ, Nr, Ti, Os, τ, t) from nodes 

Output: Faulty node detected 

1 For each node ni, construct N (ni) 

2 Compute di for node ni using N(ni) and Equation (21) 

3 Compute si for node ni 

4 If si ≥ Thershold, treat ni as a faulty node 

Algorithm 3 

/* Fault Detection 

Input: Faulty node data 

Output: Cause of fault 

1                for (Vr = Vr,rec) 

2                if (Nrx > Nr,rec) 

3          Fault = under speeding 

/* Check temperature and turbulence effects 

4        if (temperature < threshold value) 

5               Fault = Low temperature 

6    else 

7               Fault = Turbulence effect 

8    else 

9                  if (Nrx < Nr,rec) 

10               Fault = Over speeding 

11           Send results to main station 

12                           end 
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5. Simulation and Experimental Work 

In this section, we first focus on analyzing the fault detection algorithm by simulating it using Aeolus 

SimWindFarm Model [24] and then implement our algorithm on our experimental setup. We then 

compare the simulated model with the actual experimental model to check the variation in results of 

simulated and implemented model and check the fault detection accuracy of the WSN. Our goal is to 

achieve less variation in results of experimentation and simulation results. 

5.1. Simulation and Results 

Our evaluation and results for now are based on simulation. Simulations using Matlab® have been 

performed for obtaining the results. As mentioned before, the wind simulation and modelling is done 

using the Aeolus SimWindFarm toolbox [24] which is a deterministic toolbox. We implemented our 

algorithm on this wind farm model. Using this model we have built a network to evaluate their 

performance. Each simulation run follows some scenario. Each scenario is based on wind speed  

ranges. Wind speed ranges are given in Figure 1. All the parameters (as discussed in Section 3.1)  

are analyzed at these different wind speeds. The accurate analysis of these parameters will show the 

accuracy level of the anemometers. Ten runs are performed at each wind speed range. For example,  

ten runs are performed for light breeze; ten runs are performed for moderate breeze and so on.  

The parameters used for simulation are given in Table 1. 

Table 1. Simulation parameters and their values. 

Parameter Value 

Field size 10 km × 10 km 
Number of nodes deployed 50 
Topology Star topology with sink node and base station at the center 
Radio range 1.6 km 
Packet size 40 Bytes (Data = 32 Bytes + Control 8 Bytes) 
Simulation time 400 s 

The faulty nodes are detected by the WSN to reduce the fault level in the results. To evaluate the 

performance of Fd, we calculate the detection accuracy a(Fd) and the false alarm rate, e(Fd): 

F

FF
Fa d

d

∩
=)( , 

FN

FF
Fe d

d −
−

=)(  (25) 

If a(Fd) is high and e(Fd) is low, Algorithm 2 has good performance. Note that when the probability 

of faulty node, p < 0.25 and density of the network i.e., the number of nodes is ≥30, then according to 

Figure 3, the accuracy is above 86% and in Figure 4, the false alarm rate is around 1%–2%. Increasing 

the number of nodes can take the accuracy level up to 89%. Although an accuracy level of 86% is 

achieved but it is surely not enough. The more higher the accuracy level, the more accurate assessment 

can be done about a site. 100% accuracy will mean that the prediction done about the energy production 

estimate of a particular site was 100% correct. Lower this percentage, lower will be the energy 

production than the estimated one. From Figure 3 it is clear that increasing the number of nodes can 
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increase the probability of accurate assessment of a site hence taking the percentage to a much higher 

level. When the number of nodes increases, the accuracy level also increases. As it is a low level 

experimentation so we expect that a more accurate assessment can be done in future by using more nodes 

in the experimentation. 

Figure 3. Probability of faulty node vs. accuracy. 

 

Figure 4. Probability of fault vs. false alarm rate. 

 

The results can also be improved by recording data more than three times a day. As a node’s 

measurement is compared with the average of the recorded values so a much better average can be 

achieved by recording data more than once in a particular slot. For future work, it might be interesting 

to check the probability of getting accurate readings with increasing the number of measurements taken 

in a slot. 

5.2. Experimentation 

After evaluating the network using simulations, we implemented it using hardware. The anemometers 

were deployed in an outdoor environment along with a WSN. Each anemometer is equipped with our 

own designed sensor node which comprises of a photo coupler working as a sensing unit and a 3DR 

radio as transceiver. This WSN constantly monitors the performance of the nodes installed and sends the 

results to the main station via Global System for Mobile Communication (GSM). The anemometers that 

will share data with each other are carefully placed at the same height because anemometers at different 

heights will produce different readings. Our experimental analysis is a low level implementation and is 

therefore based on deployment of three anemometers carefully placed at the same height. We did not 
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implement all features. To test the effectiveness of the scheme, large scale experimentation is required, 

involving a lot of nodes. During testing, we implemented a network with three nodes to analyze the 

performance through WSN. Simulation performed with fewer nodes was compared with the 

experimental results to compare the performance difference accurately. Data from this implemented setup 

is usually observed for one year. From this recorded data the annual frequency distribution of wind speed 

is calculated. However, we performed on site measurements for three months starting from 3 February 

2014 to 15 May 2014 and worked on the results obtained. We exercised all scenarios with different wind 

speeds to evaluate the accuracy of the model. For wind energy related applications, the range in which 

the wind speed can be measured with a very high accuracy is 4–16 m/s. Below 4 m/s threshold, the wind 

power is almost negligible and is not worthy of consideration for the wind turbines while above 16 m/s, 

the power becomes almost constant and therefore can be eliminated from consideration. We consider 

that three nodes implementation play an important role in analyzing a potential area for wind farms, 

however implementation with more nodes are highly desired. 

Equation (6) shows that low wind speeds usually generate higher turbulence because of the inverse 

relation between mean wind speed and turbulence intensity. Hence low wind speed will lead to  

high turbulence in the anemometers and data collected by the anemometer might have variations.  

A threshold value of 2% is therefore set to detect significant errors and ignore the negligible errors in 

the analysis of the received data. It should be noted here that if the threshold value is set below 2% then 

even the minor errors will be detected as major errors and the node will be declared as faulty (false 

positive detection) which will increase the false detection rate. If the threshold value is greater than 2% 

then major errors might be missed and missed detections will occur. 

A node shares data packets at regular intervals with other nodes located at the same height. The 

following parameters are shared between the nodes: 

• Wind speed, V 

• Direction, θ 

• Number of rotations, Nr 

• Turbulence intensity, Ti 

• Overspeeding, Os 

• Torque, τ 

• Temperature, t 

The data shared is eventually sent to the sink node for further analysis. These parameters play an 

important role in detecting and correcting faults in the system. The proposed algorithm analyzes these 

parameters to evaluate the performance of the nodes. 

A WSN is deployed to monitor the accuracy level of the anemometers and make sure that the readings 

taken by the anemometers are accurate. This will help in evaluating the site properly. We assume that 

each anemometer can compute its position through either GPS or some other techniques as mentioned 

in [25–27]. We use EARS routing scheme [28], a scheme which relies on radio information to route data 

through the network to the sink node. Cup anemometers are robust, easy to operate and are resistant to 

turbulence. We refer to the anemometer as a node in the remainder of the paper. 

Figures 5 and 6 show the three cup anemometer used for experiment. As discussed above, each 

anemometer is equipped with our own designed sensor node. Figure 5 shows the photo coupler attached 



Sensors 2014, 14 22154 

 

 

to the anemometer for sensing purpose. The relation between mean wind speed and turbulence intensity 

according to IEC standards [29] is shown in Figure 7. It should be observed from Figure 7 that at low 

wind speeds, turbulence intensity is high while at higher wind speeds this intensity decreases. 

Figure 5. Experimental setup. 

 

Figure 6. Experimental setup. 

 

Figure 7. Mean wind speed vs. turbulence intensity. 

 

5.3. Comparison of Simulation and Experimental Results 

Figures 8 and 9 show the results of both simulation and experimental model. In Figure 8, overspeeding 

is evaluated with changing turbulence intensity while in Figure 9 torque is analyzed with changing wind 
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speed. Both figures clearly show that actual model under performs as compared to the simulated model. 

Here performance refers to the level of accuracy of readings taken by the nodes. The readings refer to 

measurements of the parameters (discussed in Section 3.1) by the nodes. Figures 8 and 9 also show that 

simulation results lead to an over prediction of over speeding and torque in anemometers. Figures 8 and 9 

also show that the simulation and experimental results show a maximum difference of 10%. The 

difference in results is basically due to the fact that in actual implementation different other factors (like 

radio range issues and environmental effects) are also involved which affects the performance of the 

model i.e., the conditions are not ideal while in simulation, such issues are ignored and the conditions 

are ideal. The best way to deal with this issue is to consider improving the actual implemented model so 

that the results can be more accurate instead of working on improving the simulator. By implementing 

a WSN, the faults in the implemented model are detected and corrected which increases the accuracy of 

the implemented model. As the number of nodes in our implementation was three so the model 

performed properly and no faulty node was detected. 

Figure 8. Turbulence intensity vs. overspeeding. 

 

As mentioned earlier in the paper, the performance level of implemented projects is 60% of the 

simulated ones. We compared our simulation and experimental results and came to the conclusion that 

the accuracy level of implemented projects can be increased upto 86% by accurate assessment and fault 

detection through a network of sensor nodes. We prove the 86% accuracy level by comparing the 

simulation results with the experimental results. 

Figure 9. Mean wind speed vs. torque. 
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6. Conclusions and Future Work 

In this paper, we have proposed a technique aimed at accurate monitoring of anemometers and 

detection of their faults by the use of a WSN. Our simulation and experimental results show that  

the difference in accuracy of the simulated and actual model is around 10%–15%, which is low as 

compared to other implementations nowadays that show as low as 60% of the predicted performance 

i.e., the difference is 40% between them. To the best of our knowledge this is the first paper towards 

accurate monitoring and fault detection in anemometers for site assessment for improved performance 

in implemented models. 

The possible future work is to implement the proposed technique using more nodes in real hardware 

for the analysis of a complex network. If the experimental setup is done for a large number of nodes then 

work can be done on finding the probability of faulty nodes in the network. As this application is less 

explored, further research in this area can help the wind energy community achieve improved power 

performance and lower cost of wind technology and allow more widespread applications. 
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