
Sensors 2014, 14, 22372-22393; doi:10.3390/s141222372

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Cloud-Based Car Parking Middleware for IoT-Based Smart

Cities: Design and Implementation

Zhanlin Ji 1, Ivan Ganchev 1,*, Máirtín O’Droma 1,†, Li Zhao 2,† and Xueji Zhang 3,†

1 Telecommunications Research Centre, University of Limerick, Limerick, Ireland;

E-Mails: Zhanlin.Ji@ul.ie (Z.J.); Mairtin.ODroma@ul.ie (M.O.)
2 Research Institute of Information Technology, Tsinghua University, Beijing 100080, China;

E-Mail: Zhaoli@tsinghua.edu.cn
3 Research Center for Bioengineering and Sensing Technology, University of Science and

Technology Beijing, Beijing 100080, China; E-Mail: Zhangxueji@ustb.edu.cn

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: Ivan.Ganchev@ul.ie;

Tel.: +353-061-202-610.

External Editor: Antonio Puliafito

Received: 3 October 2014; in revised form: 12 November 2014 / Accepted: 19 November 2014 /

Published: 25 November 2014

Abstract: This paper presents the generic concept of using cloud-based intelligent car

parking services in smart cities as an important application of the Internet of Things (IoT)

paradigm. This type of services will become an integral part of a generic IoT operational

platform for smart cities due to its pure business-oriented features. A high-level view of the

proposed middleware is outlined and the corresponding operational platform is illustrated.

To demonstrate the provision of car parking services, based on the proposed middleware, a

cloud-based intelligent car parking system for use within a university campus is described

along with details of its design, implementation, and operation. A number of software

solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed

NoSQL, a rule engine, and mobile applications, are proposed to provide ‘best’ car parking

service experience to mobile users, following the Always Best Connected and best Served

(ABC&S) paradigm.

OPEN ACCESS

Sensors 2014, 14 22373

Keywords: Internet of Things (IoT); smart cities; Always Best Connected and best Served

(ABC&S); Intelligent Transport Systems (ITS); car parking; middleware; Hadoop

1. Introduction

In September 2009, the European Union (EU) endorsed an Internet of Things (IoT) Strategic

Research Roadmap, proposed by the Cluster of European Research Projects (CERP), named

CERP-IoT [1], with the purpose of promoting, sharing and propagandizing the research projects and

related research outcomes in the IoT area, especially the application of sensor technology in IoT, such

as Intelligent Transport Systems (ITS) [2], family-domain smart eHealth/mHealth, wearable sensing

and computing, green buildings, smart homes, smart cities, etc. The report formally proposes a new

communication dimension of information and communication technology (ICT)—Maintained at any

time, in anyplace, by anything and anyone, providing any service within any network. In fact, this is an

extension and further development (bringing it to a new level) of the “anytime-anywhere-anyhow”

communication paradigm [3,4], Figure 1. In the public tender announcement (for a 7 billion euro

annual financial support) of the EU Seventh Framework Programme (FP7), multiple projects related to

IoT in nearly 20 areas were supported.

Figure 1. A high-level view of the Internet of Things.

Internet
of Things

(IoT)

Anytime

Anywhere

Anyhow

B
est C

o
nn

ected

B
est S

erved

The IoT platforms could be categorized into four types: eGovernment-related, production/

enterprise-based, company-based, and pure business-oriented platforms. Figure 2 illustrates these four

types of the IoT platforms, which are described in more detail below.

The eGovernment IoT is the supporting foundation that should facilitate the city’s/region’s/state’s

economic development and management. It is usually funded through a government’s public

welfare scheme, which gradually promotes the development of eGovernment towards the IoT. The

Sensors 2014, 14 22374

eGovernment IoT platform needs information relevance to prevent the ‘information island’ effect and

to ensure network- and information security.

The enterprise-based and company-based IoT platforms can improve competitiveness and service

assurance of market-oriented enterprises and companies. These require independently funded IoT

projects for more efficient production management, warehousing, distribution, transportation, logistics,

marketing, and supply chain management.

Figure 2. The IoT platform types.

IoT Platforms

Traffic control Fire brigade
Environment

protection
Municipal

administration
Social security,

Customs
Tax collection

eGovernment-related

Business office system

Industrial production system

Management and sales system

Enterprise-based

Company office system

Company sales system

Company management system

Company-based

Urban emergency plan,
data collection, mining,

and monitoring

Security, traffic, environmental
protection, water conservation, etc.

Taxation, logistics, education, sanitation,
customs, etc.

 Education,
Sanitation

Business-oriented

Gas,

heatIng, and

water supply

Medical treatment,

eHealth/mHealth

Product

safety, tracing

and logistics

Others

Early fire detection,

prevention and

fighting

Commerce,

tourism,

banking

Smart

electricity

Vehicles patrolling, traffic

monitoring and control,

intelligent car parking

The pure business-oriented IoT platforms may become an important facilitator as optimization and

integration of information market resources require involving all end-users, network providers, and service

providers to build a modern industry established on valuable IoT business models and platforms.

The CERP-IoT report [1] predicted that the automotive industry will be using ‘smart things’ to

monitor everything. Especially when using wireless technology for vehicle-to-infrastructure (V2I)

communication, the real-time locating systems (RTLS) can enable tracking and tracing services, which

will significantly advance the ITS applications. The intelligent car parking systems, such as the one

described in this paper, constitute an important part of the ITS with a primary purpose to find, allocate,

reserve, and provide the ‘best’ available car parking lot to each individual user who is driving a car in a

particular area. Valuable add-on functionality could be the provision of navigation instructions to the

driver for reaching the lot. These systems may serve as a foundation and a common business model for

a generic IoT operational platform due to their properties of providing pure business-oriented services.

Researchers in [5] show that more than 66% of drivers do not mind paying for car parking facilities

during their working hours. This directly adds value to the car parking business, which is a stimulus for

the development of intelligent car parking services for smart cities.

The existing car parking systems are not very efficient as they do not provide the ‘best’ service, e.g.,

finding the nearest available car parking lot. At the sensor layer, most of researchers today focus on

detecting the car-parking-lot occupancy. In [6], a car-parking-lot detection method is proposed based

on an automatic threshold algorithm; as the image processing algorithms are expensive, a hardware

Sensors 2014, 14 22375

solution is suggested. In [7], sensors are used for intelligent autonomous parking. In [8], laser scanners

are used to retrieve the car-parking-lot position.

At the communication layer, an InfoStation-based multi-agent system facilitating a car parking

locator service is proposed in [9]; users are provided with a personalized service based on their

location and mobile device’s capabilities. In [10], a wireless sensor network solution is proposed for

car parking management along with a routing protocol for improving the transport reliability.

At the application layer, research efforts are usually focused on one particular aspect. For instance,

with respect to car routing, a route planning for ITS is proposed in [11] for reducing the number of

accidents involving vehicles with dangerous cargo. As regards reducing the driver’s waiting time, a

corresponding access control system is proposed in [12]. With regard to the driver’s behavior, an

agent-based behavior algorithm is proposed in [13] for seeking the optimal car parking lot. As regards

the cloud aspect, a cloud-based computing model for ITS is proposed in [14]. All these examples,

however, lack an end-to-end solution for intelligent car parking services in the ‘big data’ age.

As the low-powered processing chips, smart mobile devices, cloud computing, future networks

(NGN) [15] and communication environments, such as the Ubiquitous Consumer Wireless World

(UCWW) [3,4] develop rapidly, there is a significant opportunity for the development of intelligent car

parking systems, which can serve the users in an Always Best Connected and best Served (ABC&S)

manner [16]. This paper describes such a system, which is established on a cloud-based infrastructure and

follows the ‘anytime-anywhere-anyhow’ communication paradigm [3,4].

2. IoT Intelligent Car Parking System

ITS and other systems, such as electrical energy systems, water-, heating- and gas supply

systems, city fire protection and security systems, eHealth/mHealth systems, etc., provide intelligent

IoT services to make the city smarter [17]. ITS locates in the business layer of IoT, communicates with

the cloud-based information centre of the smart city, and delivers ‘best’ transport-related services to

users, such as traffic monitoring & control, route planning, car parking service, etc. Figure 3 depicts a

high-level view of a centralized IoT platform, which could serve as a generic architectural foundation

for a ‘smart city’ establishment, operation, administration, and management. This top-level generic

architectural design can unify the development of business applications as an efficient and economical

process. For instance, if an ITS service provider wants to deploy a car parking service within a smart

city’s shared cloud infrastructure, it will only need to focus on the operating model to realize the

smartness of the car parking.

Here we propose an intelligent car parking system for integration into a smart-city IoT architecture,

which consists of three layers—A sensor layer, a communication layer, and an application layer (Figure 4).

At the application layer, an information centre provides cloud-based services [18], i.e., Platform as a

service (PaaS), Software as a service (SaaS), and Infrastructure as a service (IaaS); i.e., for

allocating computing/storage resources for different car parking services. An IoT management centre

administrates the smart city via an IoT integrated services portal. At the bottom, a number of business

services explore a common interface to the communication layer. These include car parking locator,

supervision, and information services, GIS/GPS services, vehicle license plate patrolling, car tracking

services, etc.

Sensors 2014, 14 22376

Figure 3. A high-level view of an IoT-based Smart City.

Cloud application, computing and data
centre (PaaS, SaaS, IaaS)

Mobile unified service
platform

INTERNET

Web E-mail FTPProxy

Core switch

Management centre

IoT
Information Centre

Private network

IPS

IPS

IPS

Urban application
platform

eGovernment platform

Low-altitude aircraft
 supervision centre

Water, central
heating, gas supply

Electrical energy
services (smart

grid, smart
metering, etc.)

Fire protection,
security services

Medical services
(eHealth/
mHealth/

telemedicine)

ITS
(traffic monitoring

& control, car
parking, etc.)

Business 1 Business 2 Business 3 Business 4 Business 5 Business 6

Commerce,
tourism services

Taxes and fees
payment

Business N

Core switch

Emergency plan command

...

Integrated Services
Portals

Figure 4. An IoT intelligent car parking system for a Smart City.

RFID

3G/4G/ZigBee/WiFi/WiMax/VANET/V2X/WSN Communication Layer

Sensor Layer

 IoT integrated services portal

Car parking
locator service

Car parking
supervision service

Vehicle tracking
service

GIS and GPS
services

Vehicle license
plate patrolling

Business 1

Cloud application, computing and
data centre (PaaS, SaaS, IaaS)

IoT management centre

Car parking
information service

Business 2 Business 3 Business 6Business 4 Business 5

Application LayerCar parking information centre

Laser Infrared Radar Ultrasonic CCTVAcoustic

At the communication layer, various wireless technologies provide connection between the application-

and the sensor layer, based on the ABC&S communication paradigm. A 3-tier InfoStation-based

network architecture [10] could be integrated in this layer to enable ‘anytime-anywhere-anyhow’

communication functionality in smart cities.

Different sensing technologies could be utilized at the sensor layer for embedded parking solutions,

such as the Radio Frequency Identification (RFID) for car parking access control; laser, passive

infrared, microwave radar, ultrasonic, passive acoustic array sensors, or Closed-Circuit Television

(CCTV) with video image processing for detecting the status of the car parking lots; license plates with

installed 3G/4G communication module for cars’ tracking and tracing; etc.

Sensors 2014, 14 22377

To enable the car parking system to work as an operational platform in a smart city, different car

parking areas must be distinguished in providing ‘best’ car parking lots by executing different business

roles and applications. Based on their properties, the car parking areas could be divided into four main

categories (Figure 5): A transportation hub area; a residential/community area; a ground/street area;

and a shopping mall/hotel/restaurant area. The relevant management and control entities, including a

highway centre, emergency centre, traffic control centre, and police can get access to the information

managed by the car parking information centre with high authority. The sensors deployed in the car

parking area periodically send updated information as regards occupancy of the car parking lots to the

car parking meters, which push this data to the information centre.

Figure 5. The intelligent car parking services’ operational platform.

Electricity
（电）

Gas
（气）

Water
（水）

Emergency
Centre

Police
Station

Traffic Control
Centre

Management and Control Entities

Transportation hub
car parking area

Car Parking Information
Centre Shopping mall/hotel/restaurant

car parking area

Highway
Centre

Street car parking areaResidential/community car parking area User mobile devices

IP

IP
TD-SCDMA

Users can interact with the system by installing the corresponding car parking application on their

mobile devices. Facilitated by a personal assistant agent, each user can set up a personal profile which

will be used by the application for finding, allocating, reserving, and paying for the ‘best’ parking lot

in each particular scenario. Stored in the memory-based No-SQL database [19], the user profile will be

dynamically updated to reflect changes in the user’s context and behavior, which are analyzed by the

system. With efficient car parking lot allocation algorithms/rules, the system is always able to provide

the mobile user with the ‘best’ available car parking lot following the ABC&S paradigm.

3. Sample Car Parking System for University Campus

Every big university has a number of different car parking areas, e.g., for visitors, students, staff

members, etc. University car parking belongs to the category of a residential/community car parking.

Sensors 2014, 14 22378

Every working day, students and staff members spend usually a lot of time just to find an available car

parking lot. This is not only a time-consuming and energy-wasteful process but it may also cause car

traffic jams. With the intelligent cloud-based car parking service proposed here, an efficient utilization

of available car parking facilities could be achieved within a ‘smart university’ environment.

One way to achieve this is to have each car parking lot equipped with a sensor which is able to

sense the presence of a car in it. An information station (InfoStation), operating in the car parking area,

periodically collects and aggregates the car presence information from all sensors deployed in the area,

e.g., by means of Wi-Fi, ZigBee, or other short-range wireless technology. In the case of paid car

parks, optional parking meters could operate between the InfoStation and the sensors. When the

occupation status of a car parking lot is changed, information about this is pushed by the InfoStation to

the car parking Information Centre (InfoCentre) in the cloud via the university Intranet (Figure 6).

Further in this paper, we are focusing only on the software implementation of this system.

Figure 6. An infoStation-based university car parking system.

Parking Meter

Parking Lot Sensor

Car Parking InfoCentre
(cloud)

Short-range
wireless

communications

InfoStation

GPS satellites

University
Intranet

3.1. Design

From the high-level view of the IoT-based smart city and the layered intelligent car parking system

(Figures 3 and 4), the car parking service’s application layer, e.g., within a university campus, could be

deployed with three tiers, as shown in Figure 7. In the cloud tier, web applications serialize data into

the Hadoop [20] centre; in the web servers tier, applications—developed as Bundles—dynamically

register themselves on the Open Service Gateway initiative (OSGi) framework [21]; and in the mobile

apps tier, mobile devices access the web applications and provide ‘best’ car parking services to their users.

Sensors 2014, 14 22379

Figure 7. A high-level view of a cloud-based car parking system’s application layer.

Mobile Apps Tier

Cloud Layer

OSGi Web
Servers Tier

Load
Balancer

Hadoop Cluster

Cloud Tier (Hadoop Centre)

IP

Hadoop Client
Contacts Name Node for data or Job Tracker to submit jobs

Name Node
Maintains mapping of file
blocks to data node slaves

Job Tracker
Schedules jobs across

task tracker slaves

Data Node
Stores and serves blocks of

data

Task Tracker
Runs tasks (work units)

within a job

Parking

Meter

InfoStation

Parking
Meter

InfoStation

3.1.1. Cloud Tier

The cloud provides data storage and computing resources for the car parking service. It stores the

‘big data’ of available car parking lots, car parking area, cars’ location, users’ location and profiles,

etc. The most recent data is usually stored in the Hadoop’s Hbase [22] database to support real-time

queries, whereas the history data is serialized to Hive [23] (a warehousing in Hadoop). For computing,

a number of Map/Reduce algorithms [24] are used, such as a recommendation algorithm for suggesting

the ‘best’ car parking lots to users, a recommendation algorithm based on friends’ car parking

suggestions, a profile-updating algorithm based on users’ parking history, etc. To build an efficient and

scalable system, a rule engine Drools [25] is used to make decisions, based on facts, quickly and reliably.

3.1.2. OSGi Web Servers Tier

This tier acts as a bridge between the mobile apps tier and the cloud tier. Considering the great

number of web applications/services running in this tier, the deployment of a new/updated application

should be possible without stopping/restarting the corresponding web container/server. The OSGi

provides an environment to modularize web applications into bundles, which can dynamically register

themselves in the bundle’s execution context. To provide high-performance and on-demand car

parking services for users, a key-value based NoSQL database—Redis [26]—is used in this tier to

provide scalable and distributed job queues. To optimize web resources’ utilization, a load balancer

distributes the user’s requests across the cluster of web servers. A distributed system collects the web

servers’ log data and sends it to the cloud.

3.1.3. Mobile Applications Tier

The Allied Business Intelligence (ABI) Research [27] reported that the Android operating

system [28] played a dominant role in the smartphone market in 2013 (with 81% share). Thus the first

version of the car parking mobile application is developed for Android mobile devices. When a user

approaches the University campus, an automatic request is sent by the application (on behalf of the

Sensors 2014, 14 22380

user) to an OSGi car parking web server asking for a car parking lot. The server finds the ‘best’

available car parking lot for this particular user, based on his/her preferences specified in the user

profile, and (optionally) reserves it. Driving directions are then sent to the user along with a detailed

map, e.g., by utilizing the Google Map app with an Android API.

Figure 8 depicts the system’s main components. The cloud tier includes a real-time stream

computing part for user behavior real-time updating, parking fees charging, etc.; and a non-real-time

modeling part for data mining and warehouse management. The distributed log data collection part

acts as a high-speed data pipe in the system. The OSGi web servers tier in the centre acts as a bridge

between the other two tiers. Different car parking services could be provided; these are described by

their service descriptions (SD) [17,29].

Figure 8. The main components of the cloud-based car parking system.

Non-real-time modeling

OSGi Web Server

OSGi Web Servers Tier

SD Retrieval

Real-time Stream Computing

History

WareHouse

RT User
Attributes

User
Behavior

Distributed Log Data Real-time Collection

Client App

Mobile Apps Tier

Cloud TierCloud Tier

SD Ranking

SD management

SD

3.2. Implementation

3.2.1. Cloud Tier

Hadoop is an open-source framework for distributed processing of ‘big data’ on a number of

computers using Map/Reduce programming models. It is a highly reliable and scalable for parallel

processing of ‘big data’ sets. In the car parking service, some functions are offline and depend on the

Map/Reduce algorithms, e.g., profile updating algorithms, etc., whereas others are real-time navigation

functions. The distributed dataset allows efficient data processing, whereby recommendations for the

‘best’ available car parking lots could be delivered to different users from different servers. To meet

this requirement, a cloud middleware is developed with three clusters—Kafka (kafka.apache.org) [30],

Storm (storm-project.net) [31], and Hadoop Distributed File System (HDFS, hadoop.apache.org) [32]—as

depicted in Figure 9. Kafka is a high-throughput distributed messaging platform, used as a

load-balancing cluster for parallel data loading into Hadoop. The Message Queues produce topics via

multiple Brokers; topics are then consumed by the Storm Spouts. The Storm Supervisors maintain the

topology, i.e., when a Spout receives topics from Kafka, the Bolts start processing the data

(i.e., filtering, clustering, mining, etc.) in real time. Then the useful dataset is serialized to HBase in the

Sensors 2014, 14 22381

Hadoop cluster. With the column-based HBase database, web applications can access the database with

put, scan, add, get operations in real time. Pig, Sqoop, Hive (hive.apache.org) [23], Cloudera Impala

(ccp.cloudera.com) [33], and Flume (flume.apache.org) [34] are utilized for data mining purposes.

With these cloud solutions, the information about car parking lots—along with other supplementary

user information—is collected in real time, and the service is accessible via cloud APIs, i.e., Hive, Pig,

Impala, etc.

Figure 9. The cloud solutions for the car parking service.

Cloud Middleware

Cloud APIsStorm

Supervisor

Spout
Bolt

Bolt

Bolt

Supervisor

Spout
Bolt

Bolt

Bolt

Supervisor

Spout
Bolt

Bolt

Bolt

Kafka

......

Broker

......

Broker

......

Broker

Message
Queue

Car Parking Lots/
User Information

Car Parking Lots/
User Information

Car Parking Lots/
User Information

Hadoop

Data

HFile

Flume

Hive

Impala

HBase

Web
APPs

Web APP

Web APP

Web APP

Pig

Sqoop
Web APP

Figure 10 shows the sequence diagram of the web applications posting datasets to the cloud. In the

Kafka module, firstly a ProducerConfig is initialized with the following parameters: A broker list for

determining the leader of each topic, a serializer for encoding the message for transmission, and a

partitioner for defining the topic of the message. Finally, a kafka.javaapi.producer is generated, which

finds the lead broker for a particular topic and partition, fetches the corresponding messages and

metadata, and sends them to Storm. This publish-subscribe messaging mechanism used provides

scalable solution for loading data into the cloud. In the Storm module, firstly a Storm supervisor

is started on all nodes of the cluster, and the designed topology is submitted by Storm’s

backtype.storm.StormSubmitter. Then the DataSpout and Bolts are created and initialized. When a new

message arrives (e.g., from an InfoStation or a user), the backtype.storm.task.OutputCollector in the

DataSpout forwards the message to Bolts, and after some real-time computing, the data is saved to

HBase with Data Access Objects (DAO), i.e., the CarParkingDataDao, UserDataDao, etc.

Figure 11 shows the UML diagram of the Drools main recommendation classes, used in the

rule engine part. The RecommendImpl class implements the interface recommend and gets the

recommended car parking SDs via a sort interface. With this interface design pattern, when a new rule

is applied to the system, the system does not need to be recompiled thus ensuring loose-coupling.

Defined by the Drools rule language, the rulesLoader class is used to load the “.drl” file and to

describe multiple rules, queries, and functions. The Algorithms_Drools class defines the application

context, creates car parking user (client) data, and provides getService functions to the user.

Sensors 2014, 14 22382

Figure 10. The sequence diagram of the web applications posting datasets to the cloud.

Web Apps Kafka

Request Car
Parking Lot

Producer

producterThread.start()

Send(data)

Consumer
consumerThread.start()

topics

Storm

Create and Submit
Topology to Cluster

new

put

DataSpout

Init Spout
Output

Collector

consume

Bolts

new

forward

HBase

execute

Supervisor start New ProducerConfig

Prepare

Figure 11. The UML diagram of drools-based recommendation classes.

recommend

RecommendImpl

+rulesLoader: RulesLoader

+getService()

+setService(..): void

+execute(): void

+getRulesLoader()

Algorithms_Drools

-ctxName: String = "config.xml"

-ctx: ApplicationContext

<<create>>+Client()

+getService(String): Object

-initContext()sort

3.2.2. OSGi Web Servers Tier

Due to the great number of OSGi-based web applications running in this tier, the web application

bundles should be able to dynamically register/remove themselves to/from the container. The

implementation steps of the car-parking OSGi bundles are listed below:

(a) Define the car park QueryService bundle’s interface and add it to the export-package

in the MANIFEST.MF.

(b) Implement the QueryService interface and return the car-parking-lot description.

(The corresponding operations include the creation of a ServiceRegistration object in

the OSGI’s activator, registration of the QueryService in the start function, and

removal of the QueryService from the stop function.)

(c) Implement the car park QueryService HTTP response bundle. The web’s

Servlet objects are registered as HttpService in the Activator, and an

org.osgi.framework.BundleContext is linked to the Java Servlet for providing the

car-parking-lot query function (Figure 12).

Sensors 2014, 14 22383

For web logs collection, the Hadoop-based Flume is used for moving large amounts of log data to

the cloud. To improve the web server’s performance, a number of solutions are provided, including a

Nginx load balancer [35] used to accelerate the users’ responses, a consistent hashing algorithm

operating in the distributed Redis memory database, and session managers synchronizing the sessions

of different web applications (Figure 13). The Zookeeper is used to maintain the status of the session

managers to ensure data synchronization. The hashing algorithm is designed, based on the Java’s

ConcurrentHashMap function, for distribution of reading/writing operations on the Redis cluster.

Figure 12. The car-parking-lot query function with OSGi bundles.

CarParkQuery
Servlet

CarParkQuery
Servlet

HttpServlet
Request

HttpServlet
Request

HttpServlet
Response

HttpServlet
Response

Query
Service.class

Query
Service.class

Bundle
Context
Bundle
Context

Query
Service
Query
Service

request.getParameter("query_carpark")

response.setContentType("text/html")

QueryService.class.getName()

context.getServiceReference(QueryService.class.getName())

context.getService(serviceRef)

queryService.queryCarPark(queryCarPark)

Figure 13. The load balancer, session manager and distributed redis in the OSGi web

servers tier.

Nginx Load

Balancer

Web Application

Web Application

Web Application

Hashing

Algorithm

Redis1

Redis2

Redis3

Client

Session Manager

Session Manager

Session Manager

Redis4

3.2.3. Mobile Apps Tier

The developed Android car parking mobile app is a single-view application, mainly including three

Java classes: (i) an Android Activity, named MainActivity, which provides the user interface; (ii) a

plain old Java object (POJO), named step, which defines the route proprieties with get and set

methods; and (iii) a controller manager, named RouteUtils, which obtains data from the web tier.

Sensors 2014, 14 22384

When the RouteUtils object is active, it communities with the Google Map APIs and sends out the car

parking service request to the OSGi web server. After obtaining the car parking information from the

cloud tier, a Step object is returned and the Google Map navigation is started. Figure 14a illustrates the

class diagram of the Android car parking app. Figure 14b depicts the sequence diagram of the

MainActivity function.

Figure 14. (a) The class diagram of the android car parking mobile App; (b) The sequence

diagram of the car parking main activity.

MainActivity

+GooglemapURL: URL
+LAT: DIR_LAT
+LOT: DIR_LOT
+Parks: double
+mMap: GoogleMap
+list: List<T1->Step> = new ArrayList<Step>()

+onCreate(savedInstanceState: Bundle)
+getRoute(url: String): void

BuildConfig

+DEBUG: boolean = true

Manifest

RouteUtils

+downloadUrl(strUrl: String): String
+excute(url: String): String
+getStepList(data: String): List<T1->Step>
+getDistanceFromXtoY(x, y): double

Step

-distence: String
-startLocation: LatLng
-endLocation: LatLng

+setDistence(distence: String)
+setDuration(duration: String)
+getInstructions(): String
+setInstructions(instructions: String)
+setStartLocation(startLocation: LatLng)
+setEndLocation(endLocation: LatLng)

(a)

MainActivity CarPark Web GoogleMap

Android init()
New Adapter()

Request the Car Park service

OSGi Bundle installed

Cloud

Google Map Services

Car Park Space Response

OSGi Bundle installed

Request

Navigator

Parked

Finished Finished

Updated

setOnMyLocationChangeListener()

(b)

Sensors 2014, 14 22385

3.3. Results

The system development follows the personal software process (PSP) methodology [36].

Test-driven and feature-driven development methods are used for the PSP. Figure 15 shows the

deployment of the car parking system, which includes the following components: A Varnish

cache [37], acting as a reverse proxy server for accelerating the HTTP responses; a web server, based

on a number of Nginx servers for load balancing; a service consumer and producer, acting as a

distributed service framework for service governance (sync-over-async and request-response

messaging functions, load-balancing/failover/clustering capabilities with remote procedure call (RPC)

mechanism, etc.); a Zookeeper [38] service register, used for car parking services registration and

service events publishing/subscription; a Redis cluster, consisting of a number of Redis servers

providing distributed operations for other tiers; and a Sphinx index [39], providing a full-text search

functionality for users/web applications.

Figure 15. A high-level view of the car parking system deployment.

192.168.1.20

Nginx A

192.168.1.21

192.168.1.22

Nginx B

Nginx C

192.168.1.23

Nginx D

Nginx Servers

Master

192.168.1.11

192.168.1.10

Slave

Varnish Cache

Varnish

Varnish

Keepalived

Lo
ad

 B
ala

n
cer

192.168.1.30

Tomcat 1

192.168.1.31

Tomcat 2

192.168.1.32

Tomcat 3

Web Servers Service Governance

Service
Provider

ZooKeeper

192.168.1.5

Redis Server 1

Redis Cluster

192.168.1.160

Sphinx Index

Index Server Hadoop

Requests

192.168.1.6

Redis Server 2

192.168.1.7

Redis Server 3

192.168.1.8

Redis Server 4

Locator
service

Information
service

GPS
service

vehicle
tracking
service

supervision
service

Car
parking
service

3.3.1. Cloud Tier

In the cloud tier, four servers (Master, Slave1, Slave2, and Slave3) with installed Hadoop 1.2 are

used. Each server was installed on an Intel XEON PC with E3-1220L CPU and 8 GB RAM. The

message size was set to 200 bytes. The Master serves as the Name node for the Hadoop, and the others

are Data nodes. Three Kafka servers run on each slave node and one Storm supervisor runs on each

server. The Storm nimbus and user interface are initialized in Slave1. The defined topology is

submitted in Slave1 by a Storm jar command. The car parking lots and users are described by a

Google’s protocol buffer. For demonstration purposes, 2000 car parking lots and 2000 users are

Sensors 2014, 14 22386

randomly generated and stored in the HBase database. The cloud-tier applications, including the car

parking lots management, Map/Reduce algorithms scheduling, personal profiles maintenance, etc., are

hosted on the InfoCentre. For security reasons, the cloud-tier applications can’t be accessed by the end

users; they can only be accessed by the car-parking service administrator or particular applications in

the web servers tier. Figure 16 shows a fragment of the car parking usage history.

Figure 16. A sample car-parking usage history GUI in the cloud tier.

Five tests were conducted with different number of Kafka producers (clients). Each producer sends

a number of messages to the cloud in an asynchronous manner. The snappy was utilized as a

compression algorithm. The batch size was set to 2000 messages and the Kafka partitions number to 9.

The system throughput, i.e., the average number of processed messages per second, achieved in each

test is depicted in Figure 17. The results show that the optimal number of producers is 3, as going

beyond this number does not result in a significant increase in the system throughput. For this optimal

case, the achieved throughput is about 400,000 messages per second, which is sufficient for an

all-Ireland national car parking system.

Figure 17. The number of processed messages per second for different number of kafka

producers (clients) in the cloud tier.

Sensors 2014, 14 22387

3.3.2. OSGi Web Servers Tier

In this tier, three web servers (cf. Figure 15) are set up to run with CentOS 6.5 and Equinox OSGi

container [40]. One of the servers is configured with a Nginx load balancer. Bundles are deployed on

these three web servers. Figure 18 shows the RemoteCarParkQuery, CarPark, and CarParkQueryWeb

bundles in the OSGi environment. The dependent bundles, i.e., OSGi service, Servlet, Logging, Jetty,

etc., are also active in the environment. When a queryCarPark request is received, a bundle forwards

the request to the cloud tier. When the response arrives, it is formatted with JavaScript Object Notation

(JSON) and is sent back to the Android client application.

Figure 18. The car parking query service’s OSGi bundle output.

The Redis cluster is deployed on four computers with IP addresses 192.168.1.5~8, (cf. Figure 15).

Five Redis servers run on each computer on ports 5001~5005, respectively. Each of these ports is

dedicated to one particular type of car parking service, i.e., locator service, information service, GPS

service, vehicle tracking service, and supervision service. When a request is delivered to the Redis

cluster, it will be dispatched to a Redis server by means of a consistent hashing algorithm. To

demonstrate the distributed properties, at the OSGi web servers tier, about 1200 connections are

utilized to send out mobile?java&{service} reading requests from the web applications to the system.

From these, 16% are for service 1, 16.5% for service 2, 20% for service 3, 16.5% for service 4, and

31% for service 5 (Figure 19a). The total number of queries per second (QPS), initiated to the system,

Sensors 2014, 14 22388

is around 2700, whereby 29% go to computer 1, 30% to computer 2, 21% to computer 3, and 20% to

computer 4. Figure 19b shows the QPS for each group of services.

Figure 19. The performance visualization of the distributed Redis framework: (a) Number

of connections; (b) queries per second, QPS.

(a) (b)

3.3.3. Mobile Apps Tier

In this tier, when a user in a car enters the university campus through one of its gates, the car

parking mobile app, installed on the user mobile device, will send an automatic HTTP request through

the gate’s wireless access point toward a web server, and a JSON response will be returned, containing

information about the ‘best’ available car parking lot. For a GPS-enabled mobile device, a RouteUtils

generates travel directions (steps) to be followed by the driver, and displays them on the Google Map

as shown in Figure 20a. For a non-GPS-enabled mobile device, a Short Message Service (SMS)

application displays the car parking lot information to the user, as shown in Figure 20b.

Sensors 2014, 14 22389

Figure 20. The Car Parking Android Mobile App for navigation: (a) for GPS-enabled

mobile devices; (b) for non-GPS-enabled mobile devices.

(a)

(b)

To evaluate the mobile app’s performance, clients are made to submit 1.5 million requests (in total)

to mobile?java&{carparking}&{JSON} for a period of 1800 s (i.e., the average number of concurrent

requests per second is 833). The total network throughput is 7200 MB (from 16:00 to 16:30). Figure 21

illustrates the number of requests as a function of time and the system’s average response time.

Sensors 2014, 14 22390

Figure 21. (a) The number of requests as a function of time; (b) The system’s average

response time.

(a) (b)

The results confirm the ability of the developed car parking system to serve a great number of

clients, by keeping the average response time at the millisecond level. The minor fluctuations in the

system’s response time are mainly due to the packet delays caused by the network.

4. Conclusions

An IoT cloud-based intelligent car parking system has been described in this paper. Considered as

an important component of an Intelligent Transport System (ITS) for smart cities, the car parking

system is built with three layers: Sensor-, communication-, and application layer. The system

middleware and corresponding operational platform have been described. In the implementation part, a

sample car parking service for a University campus has been considered along with the supporting

cloud applications, OSGi-based web applications, and Android mobile applications. The service

provides the user (the driver) with information about the ‘best’ available car parking lot, which is

communicated back to the user’s mobile app, following the Always Best Connected and best Served

(ABC&S) paradigm.

Acknowledgments

This publication has been supported by the Government of Ireland Post-Doctoral Fellowship

(GOIPD/2013/243) and the Telecommunications Research Centre (TRC), University of

Limerick, Ireland.

Author Contributions

All authors contributed extensively to the work presented in this paper. Zhanlin Ji and

Ivan Ganchev designed the system and assembled input data, as well as wrote the manuscript. Li Zhao

wrote the code, ran the algorithms, and analyzed output data. Máirtín O’Droma and Xueji Zhang

administered the testbed and provided valuable insights to this manuscript.

Sensors 2014, 14 22391

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Vermesan, O.; Friess, P.; Guillemin, P.; Gusmeroli, S.; Sundmaeker, H.; Bassi, A.; Jubert, I.S.;

Mazura, M.; Harrison, M.; Eisenhauer, M. Internet of things strategic research roadmap.

Int. Things-Global Technol. Soc. Trends 2011, 1, 9–52.

2. Rudin-Brown, C.M. ‘Intelligent’ in-vehicle intelligent transport systems: Limiting behavioural

adaptation through adaptive design. IET Intell. Transp. Syst. 2010, 4, 252–261.

3. O’Droma, M.; Ganchev, I. The creation of a ubiquitous consumer wireless world through strategic

ITU-T standardization. IEEE Commun. Mag. 2010, 48, 158–165.

4. O’Droma, M.; Ganchev, I. Toward a ubiquitous consumer wireless world. IEEE Wirel. Commun.

2007, 14, 52–63.

5. Bilodeau, V.P. Intelligent Parking Technology Adoption. Ph.D. Thesis, University of Southern

Queensland: Queensland, Australia, 2010.

6. Choeychuen, K. Automatic parking lot mapping for available parking space detection. In

Proceedings of the 5th International Conference on Knowledge and Smart Technology (KST),

Chonburi, Thailand, 31 January–1 February 2013; pp. 117–121.

7. Li, T.S.; Ying-Chieh, Y.; Jyun-Da, W.; Ming-Ying, H.; Chih-Yang, C. Multifunctional intelligent

autonomous parking controllers for carlike mobile robots. IEEE Trans. Ind. Electron. 2010, 57,

1687–1700.

8. Keat, C.T.M.; Pradalier, C.; Laugier, C. Vehicle detection and car park mapping using laser

scanner. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2054–2060.

9. Ganchev, I.; O’Droma, M.; Meere, D. Intelligent car parking locator service. Int. J. ITK 2008, 2,

166–173.

10. Benson, J.P.; O’Donovan, T.; O’Sullivan, P.; Roedig, U.; Sreenan, C.; Barton, J.; Murphy, A.;

O’Flynn, B. Car-park management using wireless sensor networks. In Proceedings of 31st

IEEE Conference on the Local Computer Networks, Tampa, FL, USA, 14–16 November 2006;

pp. 588–595.

11. Di Lecce, V.; Amato, A. Route planning and user interface for an advanced intelligent transport

system. IET Intell. Transp. Syst. 2011, 5, 149–158.

12. Caicedo, F.; Vargas, J. Access control systems and reductions of driver’s wait time at the

entrance of a car park. In Proceedings of the 7th IEEE Conference on Industrial Electronics and

Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1639–1644.

13. Boussier, J.M.; Estraillier, P.; Sarramia, D.; Augeraud, M. Using agent-based of driver behavior in

the context of car park optimization. In Proceedings of the 3rd International IEEE Conference on

Intelligent Systems, London, UK, 4–6 September 2006; pp. 395–400.

Sensors 2014, 14 22392

14. Bitam, S.; Mellouk, A. Its-cloud: Cloud computing for intelligent transportation system.

In Proceedings of the IEEE Global Communications Conference, Anaheim, CA, USA, 3–7

December 2012; pp. 2054–2059.

15. ITU-T Study Group 13 on Future Networks including Cloud Computing, Mobile and Next-Generation

Networks. Available online: http://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx (accessed

on 23 November 2014).

16. Ji, Z.; Ganchev, I.; O’Droma, M. An iWBC consumer application for ‘always best connected and

best served’: Design and implementation. IEEE Trans. Consum. Electron. 2011, 57, 462–470.

17. Domingo, A.; Bellalta, B.; Palacin, M.; Oliver, M.; Almirall, E. Public open sensor data:

Revolutionizing smart cities. IEEE Technol. Soc. Mag. 2013, 32, 50–56.

18. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.;

Rabkin, A.; Stoica, I. A view of cloud computing. Commun. ACM 2010, 53, 50–58.

19. Deka, G.C. A Survey of Cloud Database Systems. IT Prof. 2014, 16, 50–57.

20. White, T. Hadoop: The Definitive Guide. O’Reilly Media Inc.: Sebastopol, CA, USA, 2012.

21. Hall, R.; Pauls, K.; McCulloch, S.; Savage, D. OSGi in Action: Creating Modular Applications in

Java; Manning Publications: Greenwich, CT, USA, 2011.

22. George, L. Hbase: The Definitive Guide. O’Reilly Media Inc.: Sebastopol, CA, USA, 2011.

23. Thusoo, A.; Sarma, J.S.; Jain, N.; Shao, Z.; Chakka, P.; Zhang, N.; Antony, S.; Liu, H.; Murthy, R.

HIVE-A petabyte scale data warehouse using hadoop. Available online: http://infolab.stanford.

edu/~ragho/hive-icde2010.pdf (accessed on 24 November 2014).

24. Dean, J.; Ghemawat, S. Mapreduce: A flexible data processing tool. Commun. ACM 2010, 53,

72–77.

25. Michal, B. Drools JBoss Rules 5.0 Developer’s Guide; Packt Publishing Ltd.: Birmingham,

UK, 2009.

26. Carlson, J.L. Redis in Action; Manning Publications: Greenwich, CT, USA, 2013.

27. ABI Research, Smartphone OS Results: Android Dominates High Growth Developing Markets

Technology Market Intelligence, Smartphones and Handsets Market Research, 2014. Available

online: https://www.abiresearch.com/analyst-insider/archive/69/ (accessed on 24 November 2014).

28. Meier, R. Professional Android 4 Application Development; John Wiley & Sons: New York, NY,

USA, 2012.

29. Zhanlin, J.; Ganchev, I.; O’Droma, M. Performance Evaluation of ‘WBC over DVB-H’ System.

IEEE Trans. Consum. Electron. 2009, 55, 754–762.

30. Kreps, J.; Narkhede, N.; Rao, J. In Kafka: A distributed messaging system for log processing. In

Proceedings of the Sixth International Workshop on Networking Meets Databases Workshop,

Athens, Greece, 12–16 June 2011; pp. x.1–x.7.

31. Marz, N. Storm—Distributed and fault-tolerant realtime computation. Available online:

http://cloud.berkeley.edu/data/storm-berkeley.pdf (accessed on 24 November 2014).

32. Borthakur, D. The Hadoop Distributed File System: Architecture and Design; The Apache

Software Foundation: Forest Hill, MD, USA, 2007.

33. Chauhan, A. Learning Cloudera Impala; Packt Publishing Ltd.: Birmingham, UK, 2013.

34. Hoffman, S.; D’Souza, S. Apache Flume: Distributed Log Collection for Hadoop; Packt

Publishing Ltd.: Birmingham, UK, 2013.

Sensors 2014, 14 22393

35. Reese, W. Nginx: The high-performance web server and reverse proxy. Linux J. 2008, 9, 1–4.

36. Humphrey, W.S. Personal Software Process (PSP); Wiley Online Library: Hoboken, NJ, USA, 2002.

37. Graziano, P. Speed up your web site with Varnish. Linux J. 2013, 6, 1–5.

38. Hunt, P.; Konar, M.; Junqueira, F.P.; Reed, B. Zookeeper: Wait-free coordination for

internet-scale systems. In Proceedings of the USENIX Annual Technical Conference, Boston,

MA, USA, 23–25 June 2010; pp. x.1–x.14.

39. Aksyonoff, A. Introduction to Search with Sphinx: From Installation to Relevance Tuning;

O’Reilly Media Inc.: Sebastopol, CA, USA, 2011.

40. McAffer, J.; VanderLei, P.; Archer, S. OSGi and Equinox: Creating Highly Modular Java

systems; Addison-Wesley Professional: Boston, MA, USA, 2010.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

