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Abstract: Oil spills represent a major threat to ocean ecosystems and their environmental 

status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is 

independent of clouds and weather, can be effectively used for the detection and classification 

of oil spills. Dark formation detection is the first and critical stage in oil-spill detection 

procedures. In this paper, a novel approach for automated dark-spot detection in  

SAR imagery is presented. A new approach from the combination of adaptive Weibull 

Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed 

to differentiate between dark spots and the background. The results have been compared with 

the results of a model combining non-adaptive WMM and pulse coupled neural networks. 

The presented approach overcomes the non-adaptive WMM filter setting parameters by 

developing an adaptive WMM model which is a step ahead towards a full automatic dark spot 

detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which 

contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. 

Our experimental results demonstrate that the proposed approach is very robust and effective 

where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates 

poor accuracies. 

Keywords: segmentation; neural networks; dark spot detection; Synthetic Aperture  

Radar (SAR) 
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1. Introduction 

Remote sensing is a critical element for an effective response to marine oil spills and it is useful in 

several modes of oil spill control and detection, including large area surveillance, site specific monitoring 

and tactical assistance in emergencies [1]. Among all remote sensing techniques, the ability of Synthetic 

Aperture Radar (SAR) imaging to detect features on the ocean’s surface makes this technology a 

powerful tool for monitoring oil spills [2–4]. Since SAR is an active sensor using microwave bands  

(L-Band (1–2 GHz), C-Band (4–8 GHz), X-Band (8–12 GHz)), it has day/night imaging capability and 

the ability to penetrate cloud cover [5–7]. 

On the ocean, the main backscattering process is surface scattering. The elementary scatterers are the 

waves whose wavelength satisfies the Bragg resonance condition, LBragg = λ/(2 sin θi), where LBragg 

is the wavelength of small-scale waves, λ is the radar wavelength and θi is the incidence angle [8]. 

The ocean surface behaves as a mirror without Bragg waves, and most of the incident signal is 

reflected away in the specular direction. Oil spills damp small-scale Bragg waves and reduce the friction 

velocity more than oil-free surface because of their larger surface tension than water [8]; in a SAR image 

they therefore appear as regions with less brightness. 

High frequency bands (X & C band) are mainly used for oil spill detection because the damping effect 

is larger for the Bragg waves of shorter wavelengths. However, the use of L-band for extracting the dark 

features has already been demonstrated using ALOS-PALSAR and UAVSAR sensors [8–10]. 

Another factor influencing the backscattering behavior of the ocean surface is the wind speed.  

The wind speeds under which the dark features of oil spill can be distinguished from surrounding waters 

are approximately 3–14 m/s [11]. Wind speeds of less than ~3 m/s smoothens equally the surfaces with 

and without oil spill; wind speeds higher than ~14 m/s churn the sea and roughen the surface resulting 

in a dumping effect which becomes negligible [8]. 

Oil dispersion also affects the visibility of oil spill in SAR images which is caused by dissolution, 

oxidization, and biodegradation. Thus, with increasing time from the oil discharge and with increasing 

wind speed, oil slicks become undetectable [8]. 

In general, oil spill detection is performed in three steps: dark spot detection (both oil spills and  

look-alikes), feature extraction and classification (necessary for discriminating oil spills from look-alikes 

which are ice, internal waves, natural organics, algae, and rain cells) [6,7,12–15]. The literature describes 

many efforts to develop automated and semi-automated systems for oil spill detection based on this 

procedure [16,17]. This study focuses on accurate dark-spot detection which is the most computationally 

intensive phase of the algorithm and is a critical step prior to feature information extraction and 

classification [18,19]. 

A variety of algorithms for oil spill segmentation have been developed using different methodologies 

such as thresholding [15,20], support vector machines [21], and neural networks [22,23]. The approach 

presented in this paper is a combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer 

Perceptron (MLP) neural networks. The results will be compared with the results of Taravat, et al., which 

is a model from the combination of WMM and pulse coupled neural network (PCNN) techniques to 

differentiate between dark spots and background signals [3]. The reason for comparing the presented results 

with the non-adaptive WMM & PCNN results is to test the capability of the adaptive WMM & MLP 
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model for increasing the accuracy of full automatic dark spot detection by using the non-adaptive  

WMM & PCNN model. 

In pulsed coupled neural networks model the setting of parameters represents the fundamental but 

complex task. Although it has already been proofed that pulsed coupled neural networks is very fast and 

accurate in dark spot detection, it still generates poor accuracies in some cases (not well-defined linear 

dark spots and not well-defined massive dark spots) [3]. 

The presented approach overcomes the non-adaptive WMM filter setting parameters by developing 

an adaptive WMM model. Furthermore a pixel based MLP neural network has been applied to check the 

capability of a pixel based classification in order to increase the accuracy of the model discussed in 

Taravat et al. [3].  

2. Methods 

The first step of dark feature detection is applying a filter [11,20]. Liu et al. used a 3 × 3 Lee filter, 

followed by a 5 × 5 Lee filter and a 7 × 7 Median filter applied to the original image [24]. Topouzelis et al. 

used a combination of the Lee and Local Region filters [22]. The combination applied to his study 

includes application of a 3 × 3 Lee filter to the original image, followed by a 5 × 5 Lee filter and a 7 × 7 

Local Region filter [13]. In all of these kind of filters, it has been assumed that the real and the imaginary 

parts of the received wave follow Gaussian distribution which is in turn lead to Rayleigh distribution [25]. 

Another popular filter is the Weibull Multiplicative Filter which has shown high degree of success in 

modeling sea clutter [3,26]. 

2.1. Adaptive Weibull Multiplicative Filter (WMM) 

In this study WMM (with the assumption that the amplitude or the intensity image has the Weibull 

distribution [3]) is used in order to remove speckle and to enhance the contrast between the dark spot 

and the background [3,26]. The extraction of the texture image from the Weibull-distributed SAR image 

employs the local estimation of the scale and form parameters of the Weibull distribution [3,26]; 

The Weibull-distributed random variable x with form parameter ߛ௫ > 0 and scale parameter ߚ௫ > 0, 

has a probability density function given by: ݂(ݔ) = ௫ߚ௫ߛ ൬ ௫൰ఊೣିଵߚݔ ݌ݔ݁ ൤− ൬ ௫൰ఊೣ൨ (1)ߚݔ

The m-order moment can be expressed as: ܧ[ݔ௠] = ௫௠ߚ݉ Γ(m/ߛ௫)/ ௫ (2)ߛ

For ߛ௫ = 2, the Weibull distribution becomes a Rayleigh distribution, for ߛ௫  = 1, it becomes  

an exponential distribution. It can be shown that ݔ௔ with a > 0 is also Weibull distributed. If ݖ	 =  ௔ (z)ݔ

with form and scale parameters given by, ߛ௭ = ௫ߛ ܽ⁄  and ߚ௭ = (ݖ)݂ :௫௔ follows thatߚ = ௭ߚ௭ߛ ൬ ௭൰ఊ೥ିଵߚݖ ݌ݔ݁ ൤− ൬ ௭൰ఊ೥൨ (3)ߚݖ

Consider b, with a > b > 0 in such a way that: 
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z = ௔ݔ	 = ௔ି௕ݔ௕ݔ	 = [௕ݔ]ܧ௕ݔ ௔ି௕ݔ[௕ݔ]ܧ = (4) ݐݏ

where s is the speckle, with unitary mean and t is the texture of the Weibull-distributed variable z. z is 

the variable for the SAR image. s = [௕ݔ]ܧ/௕ݔ	 t = (5) [௕ݔ]ܧ௔ି௕ݔ

In this form, it is possible to express z as a multiplication of s by t, where s is the speckle and t is the 

texture of the Weibull-distributed variable z. The texture t has Weibull distribution with form and scale 

parameter given, respectively, by: ߛ௧ = ௫ߛ (ܽ − ܾ)ൗ ௧ߚ = (6) [௕ݔ]ܧ௫௔ି௕ߚ

and the speckle has Weibull distribution with form and scale parameter given, respectively, by: ߛ௦ = ௫ߛ ܾൗ ௦ߚ  = (7) [௕ݔ]ܧ/௫௕ߚ

Let ݌ = ܾ/ܽ		, 0≤ p < 1 Then t = [௕ݔ]ܧ௔ି௕ݔ = [௔௣ݔ]ܧ௔(௣ିଵ)ݔ = (8) [௣ݖ]ܧ(ଵି௣)ݖ

using p-order moment equation E[ݖ௣]	: ݐ = /zଵି௣(௭ߛ/p)௭௣Γߚ݌ ௭ (9)ߛ

where t can be considered as the filtered image and the factor 0 ≤ p < 1 (which is set manually in  

non-adaptive WMM) gives the filtering intensity (Figure 1). In adaptive WMM model, the form 
parameter γs can be set as the mean or mode of γz in the whole image. Using ߛ௦ = ௫ߛ ܾൗ  , it can be obtained 

that	ߛ௫ = 	 ௭ߛ ௦ܾ. Throughߛ = ௫ߛ ܽ⁄ 	and p = b/a < 1, p can be calculated adaptively as a function of γz that 

is estimated locally as ߛ௭ ⁄௦ߛ  and the texture becomes: ݐ = ௭ఊ೥ߚ ఊೞ⁄ Γ(1/ߛ௦)zଵି(ఊ೥ ఊೞ⁄ )/ ௦ (10)ߛ

If ߛ௭ ௭ߛ , there is a stark filtering in the image and if	௦ߛ →  ௦ߛ ≫  there is a weak filtering and, if  ߛ௭ >  .௦ the texture equation holds, but it is not Weibull-distributed anymoreߛ

Figure 1. Shows the effect of P parameter in an amplitude SAR C-band ENVISAT image. 

(a) The original image; (b) P = 0.2, window 3 × 3; (c) P = 0.5, window 3 × 3; (d) P = 0.8, 

window 3 × 3.  
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Figure 1. Cont. 

 

2.2. MultiLayer Perceptron (MLP) Neural Networks 

The next step is segmenting the filtered image, in which the pixels are grouped according to the 

similarities by using MLP neural networks. A neuron k can be described by writing the following pair 

of equations [27]: ݑ௞ =෍ݓ௞௜ݔ௜௡
௜ୀଵݕ௞ = ௞ݑ)߮ + ܾ௞) (ݔ + ܽ)௡ =෍ ൫௡௞൯ݔ௞ܽ௡ି௞௡௞ୀ଴  

(11)

where ݔଵ, ………… , ,௞ଵݓ ,are the input signals	௡ݔ …………  ௞ݑ ,are the synaptic weights of neuron k	௞௡ݓ,

is the linear combiner output due to the input signals, ܾ௞ is the bias,	߮(. )	is the activation function, and ݕ௞ is the output signal of the neuron. The logistic function is an example of a sigmoidal function which 

is the most commonly used activation function [1] is defined by the following equation where a > 0 is 

the slope parameter: ߮(ݒ) = 11 + ݁ି௔௩ (12)

The logistic function ranges from 0 to +1; however it is desirable to have the activation function range 

from −1 to +1 (anti-symmetric form). For the corresponding form of a sigmoid function we may use the 

hyperbolic tangent function, defined by:  ܿ(ݒ) = tanh(ݒ) (13)

Allowing an activation function of the sigmoid type to assume negative values as prescribed by the 

above equation has analytic benefits [27]. 

Among neural network architectures, multilayer feedforward networks with MLPs as the learning 

algorithm are extensively used in pixel based oil spill segmentation [21,22]. Typically, MLPs consists 

of the input layer, one or more hidden layers of computation nodes, and an output layer of computation 

nodes. The input signal propagates through the network in a forward direction, on a layer-by-layer basis. 
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Normalization is a preliminary phase of MLP segmentation which ensures that the distance measures 

respond with equal weight for each input [22]. Normalization performs by linear transformation from 

the image interval [0, 255] to the neural networks interval [−1, 1] [22]. 

IDL programming language and the Stuttgart Neural Network Simulator (SNNS) developed at the 

University of Stuttgart, Germany [28], has been used for developing the WMM model and the classification 

algorithm implementation. The WMM filter model be obtained in IDL from website [29].  

3. Results and Discussion 

The model has been tested on a dataset of ENVISAT-ASAR (ASAR Image Mode Medium-resolution 

Image (IMM) and Wide Swath Mode (WSM) products which have a spatial resolution of 150 m) and 

ERS2-SAR (PRecision Image (PRI) product which has a pixel size of 12.5 m × 12.5 m) images. 

The dataset has been categorized into four groups which are massive well-defined, linear  

well-defined, massive not well-defined, linear not well-defined, (See [3]: Table 1) based on different 

types of dark spot and different sea status. 

Table 1. The average values of the accuracies for different types of anomalies. 

DARK Spot Types Min% Max% Mean% StDev 

Well-Defined 95.50 98.00 96.70 0.64 
Linear Well-Defined 95.50 97.80 96.50 0.59 

Massive Well-Defined 96.00 98.00 96.98 0.62 
Not Well-Defined 87.00 94.00 92.55 1.81 

Linear Not Well-Defined 87.00 94.00 92.97 2.00 
Massive Not Well-Defined 87.50 93.10 92.13 1.58 

Linear Dark Spot 87.00 97.80 94.74 2.31 
Massive Dark Spot 87.50 98.00 94.55 2.74 

Radiometric calibration and geometric correction have been applied to the dataset in order to generate 

a backscatter (σ0) image, and to georeference the input images into the UTM projection with the WGS84 

as datum [3]. After calibration process, sub images containing all potential anomalies detected under a 

variety of sea conditions were extracted to make extraction more expedient. The test dataset contains 40 

images with 256 × 256 pixels (around 4 km2), 20 images with 512 × 512 pixels (around 36 km2). 

We applied adaptive WMM filter to all 60 test images. The similarity of adaptive and non-adaptive 

WMM filtered image has been shown in Figure 2. In the example shown in Figure 2, the filtering 

intensity P = 0.7 and a 3 × 3 window has been used for non-adaptive WMM (which was found to be the 

most appropriate combination of parameters for the WMN filter based on the previous studies) [3]. 

Removing the noisy pixels in the images by using adaptive WMM overcomes the non-adaptive WMM 

filter setting parameters while preserving the same accuracy of the non-adaptive model. 

The classification task is based on the MLP approach. In designing the MLP model the number of 

units in the hidden layer and the training/testing phase settings (number of training cycles and the pixel 

selection for training/test the model) represent the fundamental tasks. Adjustment of these parameters 

affects the capability and sensitivity of the model to fit at the dynamic range of the backscattering values 

in the scene. 
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Figure 2. Shows an example of adaptive (b) and non-adaptive (c) WMM filtering of the 

original image (a). 

 

 

Several attempts have been made to properly select the number of units to be considered in the hidden 

layers. For training/test of the neural net 7000 pixels were extracted from different types of dark spots 

and different sea status. The tested windows were chosen to be as different as possible in order to test 

the neural networks ability to generalize different types of dark formations. The training and test sets 

were independent, the former containing 60% and the latter 40% of all pixels. 

Pixel selection for training/test set has been done randomly and repeated six times. The presented 

results of root mean square error (RMSE) errors in Figure 3 are the average of these repetitions for each 

topology. The topology 1-4-2 has been finally chosen for its good performance in terms of classification 

accuracy, RMSE, and training time. A number of about 5000 training cycles was sufficient to get the 

network trained. The input of the net is the filtered image and the output providing classified pixels in 

terms of oil spill or others. However, after training the network for one specific sensor and product, no further 

tuning is necessary. After the segmentation phase, a very simple filtering process is used to eliminate all 

the objects with an area of less than 20 pixels from the processed image [3]. 

One MLP neural network (with the topology 1-4-2) has been used for classifying all images. In the 

next phase, for accuracy assessment, 500 pixels have randomly been selected from each sub-image and 

then labeled (oil spill or others) by visual interpretation. The results have been compared with the results 

of non-adaptive WMM & PCNN model which is the most recent method in literature presented by 

Taravat et al. [3]. 
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In some cases of the Wide Swath products non-adaptive WMM & PCNN generates poor accuracies because 

the strong variation of incidence angle from near to far range affects the dynamic range in the images [3]. 

Figure 3. RMSE errors for different neural network topologies.  

 

Figure 4 shows two sample test images from cases where non-adaptive WMM & PCNN generates 

poor accuracies. The results of adaptive WMM filter and MLP segmentation are presented in the second 

and third row of Figure 4, respectively. The fourth row presents the final results after post processing. 

Figure 4. Results of the proposed approach on two typical examples where non-adaptive 

WMM & PCNN generates poor accuracies. (a) Original SAR images after preprocessing;  

(b) adaptive WMM filtering; (c) MLP results; (d) Final results after post processing.  

 
(a) 
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Figure 4. Cont. 

 
(b) 

 
(c) 

 
(d) 

A not-well-defined massive dark spot and a not-well-defined linear dark spot are displayed in the 

right and left columns, respectively. Not-well-defined dark spots occur either when a fresh oil spill is 

present on a bright background or when the background is heterogeneous, resulting in a large number of 

false alarms after applying the model. 

The accuracy of the entire test dataset increased with 1.1%; moreover, standard deviation shows a 

significant improvement 1.3 (94.65% with a standard deviation of 2.5) in comparison to the same dataset 

segmented by non-adaptive WMM & PCNN (93.53% with a standard deviation of 3.8).  
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In the worst case, an accuracy of 87% was produced which is higher than the worst case accuracy 

presented in Taravat et al. (which is 84.88%). The results of the accuracy assessment applied to the 

different types of anomalies are displayed in Tables 1 and 2. 

The approach generates almost similar accuracies on well-defined dark spots in comparison to the 

accuracies of well-defined dark spots segmented by non-adaptive WMM & PCNN. A significant improvement 

of 2.46% in accuracy (with the improvement of 0.44 in standard deviation and 2.4% in commission 

error) has been detected on the not well-defined dark spot dataset segmented by adaptive WMM & MLP 

in comparison with the same dataset segmented by non-adaptive WMM & PCNN (not well-defined linear 

dark spots accuracy is 90.36% with a standard deviation of 2.36 and commission error of 10.32%. Not 

well-defined massive dark spots accuracy is 89.81% with a standard deviation of 2.22 and commission 

error of 11.70%). 

Table 2. The average values of emission and commission error (In %) achieved by adaptive 

WMM & MLP. 

Dark Spot Types 
Min 
Om 

Max 
Om 

Mean 
Om 

StDev 
Om 

Min 
Cm 

Max 
Cm 

Mean 
Cm 

StDev 
Cm 

Well-Defined 2.00 4.50 3.25 0.64 1.10 3.50 2.30 0.62 
Linear Well-Defined 2.20 4.50 3.48 0.59 1.10 3.50 2.24 0.62 
Massive Well-Defined 2.00 4.00 3.01 0.62 1.40 3.20 2.37 0.64 
Not Well-Defined 6.00 13.0 7.44 1.81 6.20 11.4 8.60 1.36 
Linear Not Well-Defined 6.00 13.0 7.00 2.00 6.20 10.3 8.22 1.04 
Massive Not Well-Defined 6.90 12.5 7.86 1.58 6.50 11.4 8.97 1.58 
Linear Dark Spot 2.20 13.0 5.20 2.31 1.10 10.3 5.23 3.17 
Massive Dark Spot 2.00 12.5 5.44 2.74 1.40 11.4 5.67 3.57 

The worst accuracies are 87.00% with 10.3% commission error and 87.5% with 11.4% commission 

error which are obtained for not well-defined linear dark spots and not well-defined massive dark spots 

that are 2% with 3.3% commission error and 2.62% with 2.8% commission error higher than the worst 

accuracies obtained by non-adaptive WMM & PCNN for not well-defined linear dark spots and not  

well-defined massive dark spots, respectively. 

MLP Neural Networks (as a pixel based classification model) are less sensitive to noise and give good 

performance for spots with weak edges because they utilize the statistical information within or outside 

the training set and this is the reason of the higher accuracies obtained by adaptive WMM & MLP for 

not well-defined linear dark spots and not well-defined massive dark spots in compared to the accuracies 

obtained by non-adaptive WMM & PCNN for not well-defined linear dark spots and not well-defined 

massive dark spots. 

4. Conclusions 

In the present study a detailed research on the ability of using adaptive WMM & MLP as an improved 

method of non-adaptive WMM & PCNN model for dark-spot detection in SAR imagery is demonstrated. 

Adaptive WMM model presented in this study overcomes the non-adaptive WMM filter setting parameters. 

Furthermore a pixel-based classification model (MLP neural network) has been applied to a test dataset 
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including 60 ENVISAT-ASAR and ERS2-SAR images. The same parameters were used for all the  

test images. 

The whole test dataset accuracy is 94.65%, which is higher than the same dataset segmented by  

non-adaptive WMM & PCNN (93.53%). The approach generates almost similar accuracy on well-defined 

dark spots in comparison to the accuracy on well-defined dark spots segmented by non-adaptive WMM 

& PCNN. Results showed that this approach works better in the situations (not well-defined linear dark 

spots and not well-defined massive dark spots) where non-adaptive WMM & PCNN generates poor accuracy. 

Determination of appropriate characteristics for the training data and number of layers and nodes in 

the network topology are the main difficulties experienced in the use of many machine learning models, 

but once the topology and the other parameters are set, it can be used easily and very fast. The proposed 

approach can be applied well to the other spaceborn SAR (i.e., Sentinel-1) with some parameter 

adjustment based on the type of data. 
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