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Abstract: Wireless sensor networks (WSNs) are indispensable building blocks for the

Internet of Things (IoT). With the development of WSNs, privacy issues have drawn more

attention. Existing work on the privacy-preserving range query mainly focuses on privacy

preservation and integrity verification in two-tiered WSNs in the case of compromised master

nodes, but neglects the damage of node collusion. In this paper, we propose a series of

collusion-aware privacy-preserving range query protocols in two-tiered WSNs. To the best

of our knowledge, this paper is the first to consider collusion attacks for a range query in

tiered WSNs while fulfilling the preservation of privacy and integrity. To preserve the privacy

of data and queries, we propose a novel encoding scheme to conceal sensitive information.

To preserve the integrity of the results, we present a verification scheme using the correlation

among data. In addition, two schemes are further presented to improve result accuracy and

reduce communication cost. Finally, theoretical analysis and experimental results confirm

the efficiency, accuracy and privacy of our proposals.
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1. Introduction

As indispensable building blocks for the Internet of Things (IoT), wireless sensor networks (WSNs)

have been widely used in many applications, such as smart home, e-health and environment monitoring.

In these applications, range query is an important type of query in WSNs, which aims at seeking all

data falling into an attribute range specified by users. However, due to the openness and non-supervision

of WSNs, privacy problems have been exposed when data are collected, transmitted or analyzed. For

instance, in the field of e-health, wearable or fixed medical sensors are used to monitor patients’ physical

parameters (e.g., blood pressure) and respond to an emergency rapidly when needed. During the process

of data collection, transmission or analysis, information of patients may be overheard by an adversary,

such that patient privacy is compromised. Therefore, privacy-preserving range query processing is

especially urgent.

Due to resource savings, rapid response and high scalability, a two-tiered architecture [1] is adopted

in the existing work [2–9] on privacy-preserving range queries. Figure 1 shows a typical two-tiered

WSN, which consists of resource-limited sensor nodes in the lower tier and resource-rich master nodes,

also called storage nodes, in the upper tier. Data are gathered by sensor nodes and transmitted to

associated master nodes, and then, master nodes calculate and return results to the sink. Since WSNs are

often deployed in hostile and unpredictable environments, the two-tiered architecture brings in serious

security challenges. On the one hand, master nodes are untrustworthy and curious about data stored in

themselves, so original data should be concealed before being submitted to master nodes. What is worse,

the compromised master node may reply with fake or incomplete results. On the other hand, master

nodes are required to perform queries efficiently and correctly, which is hindered if data are encrypted.

As a result, it is challenging to preserve privacy and at the same time achieve efficient performance and

correct results.

Figure 1. The architecture of two-tiered wireless sensor networks.
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Previous studies [2–9] only focused on privacy preservation and integrity verification when the master

node is compromised, without the consideration of collusion attacks. Besides, these studies preserve

privacy and integrity at the detriment of efficiency and accuracy. To address the problem, we investigate

a secure range query in two-tiered WSNs with the following contributions:

• We first propose a privacy-preserving range query protocol (PRQ) in two-tiered WSNs. In PRQ,

we design a novel encoding scheme to preserve the privacy of data and queries and a verification

scheme to check the result integrity. The encoding scheme represents data and queries by the

special code, while the verification scheme discovers wrong results based on the ordinal relation

of data.

• We then present a series of collusion-aware privacy-preserving range query protocols (CPRQ)

based on PRQ. To the best of our knowledge, this paper is the first to fulfill the need for resistance

to collusion attacks for a range query in tiered WSNs.

• We further present two schemes for improvements. The first scheme reduces communication cost

by compressing the codes of the data. The second scheme improves result accuracy by denoting

the query range as multiple codes.

• Theoretical analysis and experimental results indicate that our proposals can reduce the

communication cost and accomplish more accurate results while preserving privacy and integrity.

The rest of the paper is organized as follows. Section 2 summarizes related work. Models and the

problem statement are described in Section 3. Section 4 introduces preliminary knowledge. Then, the

PRQ protocol and a series of CPRQ protocols are elaborated in Sections 5 and 6, respectively. These

protocols are further improved in Section 7 and analyzed theoretically in Section 8. Section 9 evaluates

our proposals using thorough experiments. We conclude this paper in Section 10.

2. Related Work

In recent years, privacy issues of WSNs have drawn increasing concerns [10]. The work in [11–22]

and the work in [23–27] study the privacy preservation in data aggregation and the top-k query,

respectively. However, our paper focuses on the range query. Privacy-preserving range query in

two-tiered WSNs has been explored in [2–9].

The work in [2] is a milestone in the privacy-preserving range query. It uses the bucketing technique

to divide the data domain into multiple disjoint buckets and represents data and queries by bucket IDs.

If there are no data falling into a certain bucket, an encoding number is created for this bucket. After

receiving a range query, storage nodes return satisfactory encrypted data and all encoding numbers. The

bucketing technique protects privacy, while the encoding number verifies the integrity of the results.

Nevertheless, it enables adversaries to obtain a reasonable estimation of the data and queries according

to the range of the bucket and generates false positives in the results.

The work in [3] investigates the spatial and temporal relation among data. The major idea is similar

to [2]. The difference is that it verifies the integrity by the bitmap instead of the encoding number.

It cannot avoid false positives, and produces more communication. To reduce communication

cost, [4] presents a probabilistic spatial-temporal crosscheck scheme, which fails to detect the

compromised storage node absolutely.
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SafeQ [5,6] adopts the prefix membership verification scheme [28,29] to ensure privacy and constructs

the neighborhood chain to protect integrity. In addition, [6] establishes Merkle hash trees to examine the

results. The disadvantage is that SafeQ needs more computation and communication.

The work in [7] proposes a privacy-preserving range query protocol on the basis of the

order-preserving function, the permutation function and the d-disjunct matrix. The order-preserving

function is used to process the query. The permutation function and the d-disjunct matrix are used to

encrypt data and get the exact frequency of any value. It requires extra space to store matrices and cannot

verify integrity.

Our previous paper [9] also focuses on the problem of the privacy-preserving range query in tiered

WSNs. This paper is an extended version of [9] and is the first to take destructive collusion attacks into

account for range query in tiered WSNs. Although [30] proposes a privacy-preserving location proof

updating the system towards collusion resistance, it only protects location privacy in location-sensitive

applications and is not suitable for privacy preservation of data and queries for the range query in WSNs.

More protocols, theorems, improvements, theoretical analysis and experimental results are added in

this paper.

3. Models and Problem Statement

3.1. Network Model

As illustrated in Figure 1, a two-tiered WSN is composed of three types of nodes: many sensor nodes,

a few master nodes and a single sink. Sensor nodes have limited storage, computation, bandwidth and

energy, while master nodes have strong capabilities and abundant resources as the sink. At the beginning

of the network, system parameters are preloaded into sensor nodes. During the network lifetime, sensor

nodes collect data (e.g., temperature and humidity) from their surroundings with a fixed frequency and

then periodically transmit data to their master nodes. Master nodes store the data of their affiliated

sensor nodes. Once they receive a range query from the sink, master nodes immediately search for

required data and transmit the results to the sink. The network is considered to be separated into some

non-overlapping subnetworks, and each subnetwork comprises a master node and several sensor nodes.

Suppose all sensor nodes are synchronized, so that they keep consistent in epochs.

Compared with the traditional sensor network without master nodes, three major advantages of this

architecture benefit the development of WSNs. First, resources are saved for sensor nodes. Master

nodes store a large number of data and process complicated calculations, which cuts down the cost of

storage and computation for sensor nodes and prolongs the network lifetime. Second, it improves the

speed of the query response. Master nodes handle queries locally and send answers to the sink directly.

Finally, network scalability is enhanced. The network is divided into subnetworks based on master

nodes, and these subnetworks may be heterogeneous and run independently. As described in Section 1,

the two-tiered architecture brings security challenges. More details will be given in the next subsection.
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3.2. Adversary Model

There are two assumptions in our adversary model: (1) the sink is reliable, as assumed in [2–9];

otherwise, the entire network is trustless, since the sink can fabricate results; and (2) the number of

compromised sensor nodes and master nodes is limited; if not, the network is disabled.

An adversary generally tries to eavesdrop on the sensitive data of the network through the wireless

link layer, which violates data privacy. Moreover, once a node is compromised by the adversary, it will

submit the wrong data, which breaches result integrity. Three cases against result integrity are discussed

in the following:

• Compromising a sensor node: If a sensor node is compromised, the adversary can access its data

and manipulate it to send incorrect data to its master node. For a certain range query, it has a

slight and negligible effect on the final result. It is difficult to overcome this problem unless the

hardware progresses.

• Compromising a master node: Storing lots of data, master nodes easily become the target of

attacks. If a master node is compromised, it has a great impact on the network security. On

the one hand, the adversary is enabled to obtain sensitive data stored in this master node. On the

other hand, the master node dominated by the adversary may deliberately inject fake data or delete

partial data, so that the sink receives incorrect results.

• Node collusion: If collusion occurs among sensor nodes, the influence on the network security

is limited, as mentioned in the first case. However, if sensor nodes collude with their master

nodes, all data stored in master nodes may be disclosed, and the damage to the whole network may

be destructive.

It is clear that compromising the master node causes graver threats than the sensor node. Hence, our

paper first pays attention to solving the problem of compromising master nodes in Section 5, and then

enhances network security against collusion attacks in Section 6.

3.3. Problem Statement

A good privacy-preserving range query protocol should fulfill the following requirements.

• Data privacy: Since data are private and sensitive, all data should not be obtained by master nodes.

Furthermore, data should be only known by their owner and the sink.

• Query privacy: The query range implicitly reveals the interest of users. Adversaries have the

capability to infer the user’s preference from the captured query range. Consequently, the query

range should be only known by the sink.

• Result integrity: (1) All data in the results should be authentic, i.e., forged data are not permitted;

and (2) the result should include all data satisfying the query, i.e., an incomplete result is not

acceptable. At the least, the protocol should entitle the sink to detect actions of injecting fake data

and removing legitimate data. Network security is reinforced by result integrity.

• Efficiency: Energy is the bottleneck of network lifetime. The work in [31] shows that

communication consumes more energy than other processing in sensor nodes. Therefore, the less

the communication cost, the higher the efficiency.
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• Accuracy: Only the satisfactory data should exist in the result, and incorrect data should

be excluded.

4. Preliminaries

The Bloom filter [32] is a space-efficient probabilistic data structure, which uses hash functions to

support the membership test of a set. Although the Bloom filter may generate false positives, the benefit

of space savings outweighs this drawback. In addition, hash functions can encode data. We adopt the

Bloom filter to preserve privacy while testing membership in Section 5. In this section, we first briefly

review the standard Bloom filter.

Assume that a Bloom filter consists of two parts: an array of m bits initialized to 0 and k independent

one-way hash functions hi, ..., hk mapping elements in the universe to a random number uniformly over

the range {1, 2, ..., m}. Given a set S = {xi|1 ≤ i ≤ n}, add an element x into S, just by setting

all hj(x)-th (1 ≤ j ≤ k) bits to 1. Thus, the Bloom filter of S is constructed by setting all hj(xi)-th

(1 ≤ i ≤ n, 1 ≤ j ≤ k) bits to 1. To examine if an element y is in S, check whether all of the hj(y)-th

(1 ≤ j ≤ k) bits are set to 1. If not, y is definitely not in S. Otherwise, y may be in S. Either y is really

in S or the k bits have been set to 1 by chance during the insertion of other elements in S, which is called

a false positive. Figure 2 is an example of the Bloom filter. 0110101101011100 is the Bloom filter of

the set S = {11, 12, 13, 14, 15}. Examine if S contains 7, 12 and 16, which are hashed to bits 〈2, 4, 6〉,

〈3, 5, 8〉 and 〈7, 10, 14〉, respectively. It is found that 7 is definitely not in S; 12 and 16 are considered to

be in S, although 16 is actually not in S.

Figure 2. An example of the Bloom filter. (a) Initial Bloom filter; (b) check if 7, 12 and 16

are in the set {11, 12, 13, 14, 15}.
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The probability of false positives is already given in [33]. It should be noticed that the probability

of a false positive in [33] is different from that in this paper, because of the different properties of hash

functions. False positives are allowable, as long as their probability is sufficiently low. In spite of efficient

insertion and testing, the deletion of an element is troublesome. Because setting the related bits to 0 may

result in removing any other elements hashed to those bits, this is called a false negative. False negatives

are not permitted.

5. Privacy-Preserving Range Query

In this section, we propose a privacy-preserving range query protocol (PRQ). The protocol is divided

into four steps: system initialization, privacy preservation, membership test and integrity verification.

At the beginning, system parameters are initialized. Both nodes’ data and users’ queries are encoded to
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hide private information before being sent to master nodes. Then, master nodes search for matching data

upon codes. Finally, result integrity is verified by the sink. More details are elaborated in the following.

Table 1 summarizes the notation used in this paper.

Table 1. Notation.

Symbol Meaning

H hash function pool

hi a hash function in H

t an epoch

T a time slot

M a master node

si a sensor node with the unique identifier i

ki,t a secret key of si at epoch t

dj the j-th data of si

BFd BFcode of data d

[a, b] a query range

BF[a,b] BFcode of range [a, b]

E() an encryption function

QH hash function set for queries

NHi hash function set for data of si

5.1. System Initialization

Without loss of generality, let the data domain be a set of positive integers and H = {h1, h2, ...} be

a set of independent and randomly distributed hash functions, satisfying: for each datum d, there is

hi(d) 6= hj(d) (i 6= j). The sink selects k different hash functions h1, ..., hk from H . At the beginning

of the network, h1, ..., hk and ki,0 are preloaded in each sensor node si, where ki,0 is a seed key and is

only shared between the sensor node si and the sink. si encrypts its data by ki,t, which is the secret key

of si at epoch t. Let ki,t = hash(ki,t−1), and erase ki,t−1 at epoch t.

5.2. Privacy Preservation

As discussed in Section 3, data collected by sensor nodes and queries issued by users are private.

Moreover, master nodes are unreliable and curious about private information. It is necessary to protect

data and queries. In this subsection, a special encoding scheme is devised to preserve privacy by virtue

of the excellent property of the Bloom filter.

We first consider privacy preservation of data. Assume the sensor node si gathers data d1, d2, ..., dθ at

epoch t. For each datum, construct a special code of m bits initialized to 0 by rules: map the datum to

k positions by hash functions h1, ..., hk, and set these positions of the code to 1. The encoding scheme
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is similar to the construction of the Bloom filter of a set with an element, so we call the special code

BFcode. The message that the sensor node si sends to its master node M is:

si → M : i, t, {E(d0‖0), E(d1‖1), ..., E(dθ‖θ), E(dθ+1‖θ+1)}

{BFd0 , BFd1 , ..., BFdθ , BFdθ+1
}

where θ is the number of data, dj(1 ≤ j ≤ θ) is the j-th data gathered by si at epoch t, which is sorted in

ascending order, i.e., d1 ≤ d2 ≤ ... ≤ dθ, d0 and dθ+1 are system parameters for result verification, dj‖j

is a combination of dj and j, also useful for checking results, E() denotes an encryption function using

the secret key ki,t, and BFdj represents the BFcode of dj . Without the right key, master nodes cannot

decrypt correct data. Without the right hash functions, BFdj is meaningless for master nodes.

Next, we discuss how to protect query privacy. Let 〈T, [a, b]〉 be a range query, where T is the time

slot and [a, b] is the range of data in which the user is interested. Construct the range’s BFcode of m

bits by rules: hash each positive integer in [a, b] to k positions by hash functions h1, ..., hk, and set these

positions of the code to 1. In other words, the BFcode of the range is the union of the BFcodes of all

positive integers in [a, b]. The message that the sink issues to the master node M is:

sink → M : 〈T,BF[a,b]〉

where BF[a,b] represents the BFcode of the query range [a, b]. Without the right hash functions, the

master node infers nothing about the query range.

5.3. Membership Test

BFcodes not only preserve the privacy of data and queries, but also enable master nodes to find

required data without revealing any private information. Master nodes test the membership according to

Theorem 1 (proven in Appendix A).

Theorem 1. Given a range [a, b] and data d, BFd and BF[a,b] are respectively referred to the BFcode

of d and the BFcode of [a, b] using k hash functions h1, ..., hk. If BFd ∩ BF[a,b] 6= BFd, there must be

d 6∈ [a, b].

However, the negative of Theorem 1 is not always true. That is, if BFd ∩ BF[a,b] = BFd,

there may be d 6∈ [a, b], i.e., false positive. For instance, in Figure 2, the range is [11, 15]. There is

BF16

⋂

BF[11,15] = BF16, but 16 6∈ [11, 15]. As already mentioned in Section 4, a few false positives

are allowable. The probability pp that data are considered to be in the query range after membership

test is:

pp =

k
∏

i=1

(

1−
(

k
∏

j=1

(1−
j

m− i+ 1
)
)|b−a+1|

)

where m is the length of a BFcode. The derivation is detailed in Appendix B.

Receiving a query 〈T,BF[a,b]〉, master nodes begin to determine two bounds, denoted as α and β, for

each sensor node si with reference to Equations (1) and (2). Obviously, dα denotes the lower bound of

data satisfying Equation (1), and dβ denotes the upper bound of data satisfying Equation (2). It should
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be noticed that false positives may be generated during the membership test process, which is further

improved in Section 7.

BFdα ∩ BF[a,b] = BFdα

∀λ (λ < α), BFdλ ∩ BF[a,b] 6= BFdλ

(1)

BFdβ ∩ BF[a,b] = BFdβ

∀λ (λ > β), BFdλ ∩BF[a,b] 6= BFdλ

(2)

The message that the master node M sends to the sink depends on 〈α, β〉 as follows:

• If α < β, that means the sensor node si has multiple data in [a, b]. The message that M sends to

the sink is:

M → sink : i, {E(dα−1‖α− 1), E(dα‖α), ..., E(dβ‖β), E(dβ+1‖β + 1)}

{BFdα−1
, BFdα, ..., BFdβ , BFdβ+1

}

where {dα, ..., dβ} is the result set, while {dα−1, dβ+1} is the verification set.

• If α = β, that means the sensor node si has only one datum in [a, b]. The message that M sends to

the sink is:

M → sink : i, {E(dα−1‖α− 1), E(dα‖α), E(dα+1‖α + 1)}

{BFdα−1
, BFdα, BFdα+1

}

where {dα} (dα = dβ) is the result set, while {dα−1, dα+1} is the verification set.

• If α > β (actually α = θ + 1), that means all data of the sensor node si are outside of [a, b]. The

message that M sends to the sink is:

M → sink : i, {E(dα‖α), E(dβ‖β)}, {BFdα, BFdβ}

where {dα, dβ} is the verification set.

5.4. Integrity Verification

If each master node submits its local result honestly, the sink will obtain a correct final result.

However, in a malicious environment, master nodes are attractive to adversaries. The compromised

master node may submit the wrong local result to the sink. As a result, it is indispensable for the sink to

verify the local results.

For the sensor node si, let {E(dα−1‖α−1), ..., E(dβ+1‖β+1)}{BFdα−1
, ..., BFdβ+1

} be the message

that the master node M sends to the sink. Thus, RS = {dα, ..., dβ} is the local result calculated based

on the membership test, and V S = {dα−1, dβ+1} is the verification set. Given a range query 〈T,BF[a,b]〉,

result integrity is verified under various circumstances:

• If the encrypted part in the message cannot be decrypted using the right key, or the BFcode in

the message is not equal to the correct one, the sink can know that the corresponding data are

unauthentic; because only the authentic data are able to be decrypted by the right key and the

BFcode should be equal to the correct one.
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• If a datum d is in RS and its BFcodes, denoted as BFd, satisfy BFd

⋂

BF[a,b] 6= BFd, the sink

can detect this error. Because for any data d in RS, there must be BFd

⋂

BF[a,b] = BFd.

• If all orders of dα−1, dα, ..., dβ, dβ+1 cannot keep continuity, the sink can discover this error.

Because these orders increase continuously.

• If the master node returns nothing for the sensor node si, the sink can find that this master

node is compromised. Because the master node is required to submit {E(dα‖α), E(dβ‖β)},

{BFdα , BFdβ}, even if there is no data in [a, b], besides, α = (θ + 1) and β = θ. If these

two equalities do not hold simultaneously, the sink can know that the local result is incomplete.

Following the above rules, result integrity is verified and the compromised master node is detected.

5.5. Computational Complexity

We next present the computational complexity of PRQ. We report the time complexity of operations

in each sensor node for data privacy preservation and the time complexity of operations in each master

node for membership testing.

For any datum, the sensor node generates an encrypted part and a BFcode. It takes O(k) time to

encode each datum to a BFcode, where k is the number of hash functions. Additionally, it generates an

encrypted part with O(1) time by the encryption function. Assume the sensor node collects θ data. The

overall time complexity of operations in each sensor node for data privacy preservation is O(θ · k).

For any encrypted data, the master node tests membership with O(m) time by comparing the BFcode

of the data with the BFcode of the query, where m is the number of bits in a BFcode. Assume the

master node receives N BFcodes. The overall time complexity of operations in each master node for

membership testing is O(N ·m).

6. Collusion-Aware Privacy-Preserving Range Query

Imagine a scenario where a sensor node colludes with its master node. The master node obtains hash

functions stored in the sensor node and then uses these functions to infer the original data and queries

from their corresponding BFcodes through enumeration methods. Therefore, collusion attacks between

sensor nodes and master nodes will destroy network security and should be prevented effectively.

PRQ offers the preservation of privacy and integrity, but it is incapable of resisting collusion attacks.

On the basis of PRQ, we propose a series of collusion-aware privacy-preserving range query protocols

(CPRQ), which overcome the shortcoming of PRQ.

6.1. Confusion-Based Collusion-Aware Privacy-Preserving Range Query

In PRQ, the same hash functions h1, ..., hk are shared with each sensor node and used to encode

both data and queries. Once adversaries compromise any sensor node and the corresponding master

node, private information will leak. Hence, different sensor nodes should use different hash functions to

encode data, such that the impact of node collusion is limited.

Here, we design a confusion-based collusion-aware privacy-preserving range query protocol

(c-CPRQ). c-CPRQ consists of the same steps as PRQ: system initialization, privacy preservation,
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membership testing and integrity verification. The differences between c-CPRQ and PRQ are in system

initialization, privacy preservation and membership testing.

In system initialization, c-CPRQ defines the same data domain, hash function set H and key ki,t as

PRQ. The query hash set (QH), a subset of H , is only secretly kept in the sink for encoding users’

queries and |QH| = k. The node hash set (NHi) denotes the set of secret hash functions for encoding

data of the sensor node si and |NHi| = k. NHi, also a subset of H , is specified by the sink as follows:

The sink selects l (0 < l < k) hash functions from QH and k − l hash functions from QH . NHi

is preloaded in si. For example, assume H = {h1, h2, ..., h10}, k = 4 and l = 3. First, the sink

determines QH = {h2, h5, h6, h9}, and then, QH = {h1, h3, h4, h7, h8, h10}. The sink may select

NH1 = {h2, h5, h6, h1} for the sensor node s1 and NH2 = {h5, h6, h9, h3} for the sensor node s2.

In privacy preservation, instead of using the identical hash functions for encoding, we use NHi and

QH to construct the BFcodes of data of the sensor node si and the BFcodes of queries, respectively.

Different sensor nodes employ different hash functions, which results in two consequences: (1) the same

data collected by different sensor nodes may be encoded to different BFcodes; (2) the same BFcode

constructed by different sensor nodes may be derived from different data. Since the sensor node knows

nothing except its own hash functions, its master node cannot infer the original data and the query range

based on their BFcodes, even if it colludes with the sensor node. c-CPRQ protects privacy under node

collusion conditions.

If c-CPRQ adopts the same membership test of PRQ, false negatives will be produced. That is because

Theorem 1 used in the membership test of PRQ assumes that NHi = QH for each sensor node si. In fact,

NHi 6= QH in c-CPRQ. To eliminate false negatives, we present a relaxed membership test according

to Theorem 2 (proven in Appendix C).

Theorem 2. Given a range [a, b] and data d, BFd is referred to the BFcode of d using the hash function

set NH , and BF[a,b] is referred to the BFcode of [a, b] using the hash function set QH . Let η represent

the number of 1-bits in BFd ∩BF[a,b] and IH = NH ∩QH . If η < |IH|, there must be d 6∈ [a, b].

The probability pc that data are regarded as the members of the query range after membership

testing is:

pc =

|NH|
∑

k=|IH|

(

(

|NH|

k

)

∗

k
∏

i=1

(

1−
(

|QH|
∏

j=1

(1−
j

m− i+ 1
)
)|b−a+1|

)

)

where m is the length of a BFcode. The derivation is similar to pp.

The master node processes the query 〈T,BF[a,b]〉 depending on Theorem 2. For each sensor node si,

the master node tries to find two bounds α and β according to Equations (3) and (4), where ηi represents

the number of 1-bits in BFdi ∩BF[a,b] and IH = NHi ∩QH . After determining α and β, the result that

the master node sends to the sink is constructed following the same rules in PRQ.

ηα ≥ |IH|

∀λ (λ < α), ηλ < |IH|
(3)

ηβ ≥ |IH|

∀λ (λ > β), ηλ < |IH|
(4)
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The sink knows any NHi. After receiving the local results from master nodes, the sink starts to verify

result integrity according to the integrity verification of PRQ.

False negatives are avoided in c-CPRQ based on Theorem 2. However, since |NHi ∩QH| < |NHi|,

more data not in [a, b] are transmitted by master nodes, thus causing the growth of false positives. This

problem is settled in the next subsection.

6.2. l-Uncertainty Collusion-Aware Privacy-Preserving Range Query

To overcome the shortcoming of c-CPRQ, we put forward an l-uncertainty collusion-aware

privacy-preserving range query protocol (u-CPRQ). The differences between u-CPRQ and c-CPRQ are

in the system initialization and membership testing.

In system initialization, the sink chooses the query hash set (QH) from H and determines the node

hash set (NHi) for each sensor node si by randomly selecting at least l (0 < l ≤ |QH|) hash functions

from QH , where l is a system parameter. NHi is preloaded in si. |NHi| may be assigned to an

arbitrary value in {l, l+1, .., |QH|−1, |QH|}. Moreover, the hash functions in NHi may be an arbitrary

combination of |NHi| hash functions in QH . Thus, |NHi| and NHi are both uncertain. For example,

assume H = {h1, h2, ..., h10}, k = 4 and l = 2. First, the sink determines |QH| = {h2, h5, h6, h9}.

Then, the sink may select NH1 = {h2, h5} for the sensor node s1 and NH2 = {h5, h6, h9} for the

sensor node s2.

In privacy preservation, NHi is used to encode data of the sensor node si, while QH is used to

construct the BFcodes of queries.

Unlike c-CPRQ, u-CPRQ uses the same membership test of PRQ. Additionally, the probability that

data belong to the query range after membership testing is:

pu =

|NH|
∏

i=1

(

1−
(

|QH|
∏

j=1

(1−
j

m− i+ 1
)
)|b−a+1|

)

where m is the length of a BFcode. The derivation is similar to pp.

After finding two bounds 〈α, β〉, master nodes return local results to the sink. Finally, the sink checks

result integrity. It is noted that |NHi| ≤ |QH|, so there is pu < pc, i.e., false positives decrease.

6.3. Computational Complexity

We here discuss the computational complexity of c-CPRQ and u-CPRQ. We also report the time

complexity of operations in each sensor node for data privacy preservation and the time complexity

of operations in each master node for membership testing. Let θ denote the average number of data

collected by the sensor node, N denote the average number of data received by the master node, k

denote the number of hash functions and m denote the number of bits in a BFcode.

Similar to PRQ, in c-CPRQ, the sensor node needs to generate an encrypted parts and a BFcodes for

each datum. The overall time complexity of operations in each sensor node for data privacy preservation

is O(θ·k). The master node tests membership with O(m) time. The overall time complexity of operations

in each master node for membership testing is O(N ·m).
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u-CPRQ is different from c-CPRQ in system initialization and membership testing. The sensor node

encodes each datum with O(l) time instead of O(k) time, where l(0 < l ≤ k) is the system parameter

and denotes the number of hash functions for data encoding. The overall time complexity of operations

in each sensor node for data privacy preservation is O(θ · l). The master node uses the membership test of

PRQ. Therefore, the overall time complexity of operations in each master node for membership testing

is O(N ·m).

7. Schemes for Improvements

Given a certain query range, false positives decrease, but the cost of communication and storage grows

as the size of a BFcode increases. In this section, two schemes are proposed to reduce communication

cost and false positives. To simplify the description, we take PRQ as an example, but the series of CPRQ

protocols can be improved by these schemes.

7.1. Data Compression for Lower Communication Cost

In PRQ, it is difficult to balance efficiency and accuracy. For one thing, fewer false positives require

a larger size of a BFcode and higher communication cost for sensor nodes. For another, the size of

messages sent by sensor nodes is expected to be as short as possible in order to lessen communication

overhead and prolong the network lifetime.

It can be observed that the BFcode is filled with a few 1-bits and an enormous amount of 0-bits,

so that data compression [34] is appropriate to find the tradeoff between efficiency and accuracy. Two

efficient lossless compression schemes are provided as follows.

• Absolute 1-position compression: The BFcode can be represented by a set of positions of 1-bits,

rather than the 0-1 string. For example, the BFcode 00001000000000011000000000000010 with

four hash functions is represented by 〈5, 16, 17, 31〉, where 5, 16, 17 and 31 are the positions of

1-bits in the BFcode. Thus, instead of 32 bits, (⌊log2 5⌋+1)+(⌊log2 16⌋+1)+(⌊log2 17⌋+1)+

(⌊log2 31⌋+1) = 18 bits are enough to represent the original BFcode, and the compression ratio is

32/18 ≈ 1.78. Equations (5) and (6) respectively show the maximum and minimum number of bits

required by absolute 1-position compression, where k denotes the number of hash functions, P j

denotes the position of the j-th 1-bit in the BFcode and m denotes the length of an uncompressed

BFcode. Bmax bits are needed when all k 1-bits fall into the last k positions of the BFcode, and

Bmin bits are needed when all k positions are hashed to the first k positions of the BFcode.

Bmax = max{

k
∑

j=1

(⌊log2 P
j⌋ + 1)} =

m
∑

i=m−k+1

(⌊log2 i⌋+ 1) (5)

Bmin = min{
k
∑

j=1

(⌊log2 P
j⌋+ 1)} =

k
∑

i=1

(⌊log2 i⌋ + 1) (6)

• Differential 1-position compression: The BFcode can be represented by differences between

two adjacent positions of 1-bits. For instance, the same BFcode mentioned in absolute

1-position compression is encoded to 〈5, 11, 1, 14〉, where 5 is the position of the first 1-bit,
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while 11, 1 and 14 are the position differences between the second 1-bit and the first 1-bit, the

third 1-bit and the second 1-bit and the forth 1-bit and the third 1-bit, respectively. It needs

(⌊log2 5⌋+1)+ (⌊log2 11⌋+1)+ (⌊log2 1⌋+1)+ (⌊log2 14⌋+1) = 12 bits, and the compression

ratio 32/12 ≈ 2.67, which is larger than that of absolute 1-position compression. The maximum

number of bits required by differential 1-position compression is illustrated in Equation (7), where

P 0 = 0. B
′

max bits are needed when all k 1-bits are distributed uniformly in the BFcode. The

minimum number of bits is the same as that in absolute 1-position compression.

B
′

max=max{
k
∑

j=1

(

⌊log2(P
j−P

j−1)⌋+1
)

}=k×(⌊log2(
m

k
)⌋+1) (7)

The two compression algorithms compress a BFcode with O(m) time by scanning an uncompressed

BFcode of m bits. Each sensor node compresses θ data with O(θ · m) time. After data compression,

the size of messages is shortened and communication cost is cut down dramatically for sensor nodes.

Besides, these two compression schemes are lossless. Thus, master nodes can decompress accurate

BFcodes.

7.2. Multiple BFcodes for Fewer False Positives

Assume the query is denoted by 〈T, [a, b]〉. In PRQ, [a, b] is converted to a single BFcode BF[a,b],

which is the union of the BFcodes of data in [a, b]. If [a, b] contains more data, more positions of BF[a,b]

will be set to 1. The positions, to which data not in [a, b] are hashed, are likely to be set to 1 by the

BFcodes of data in [a, b]. As a result, this leads to undesirable false positives.

To reduce false positives, PRQ is improved by constructing multiple BFcodes for the query range

[a, b]. The basic idea is: divide all data in [a, b] into w disjoint groups G1, ..., Gw (Gi ∩ Gj = ∅, i 6= j)

and then construct a BFcode, denoted as BF i
[a,b], for each group Gi. Therefore, [a, b] is transformed to

w BFcodes. If the original BFcode is of m bits, using w BFcodes to represent [a, b] is equivalent to

assigning w×m bits for the original single BFcode. The message that the sink sends to the master node

M is changed to:

sink → M : T, {BF 1
[a,b], BF 2

[a,b], ..., BFw
[a,b]}

The data of sensor nodes are still encoded to a BFcode in the way mentioned in Section 5. When

a query 〈T, {BF 1
[a,b], BF 2

[a,b], ..., BFw
[a,b]}〉 arrives, master nodes begin to search for the bounds α and β

according to Equations (8) and (9).

∃k (1 ≤ k ≤ w), BFdα ∩ BF k
[a,b] = BFdα

∀λ (λ < α), ∀j (1 ≤ j ≤ w), BFdλ ∩ BF j
[a,b] 6= BFdλ

(8)

∃k (1 ≤ k ≤ w), BFdβ ∩ BF k
[a,b] = BFdβ

∀λ (λ > β), ∀j (1 ≤ j ≤ w), BFdλ ∩ BF j
[a,b] 6= BFdλ

(9)

Assume m is the number of bits in a BFcode. Using the multiple BFcodes scheme, each master

node needs O(m · w) time to test the membership of each datum, while false positives are reduced.

The partition of w groups affects the performance of eliminating false positive. Here, we give

two schemes. The first scheme separates [a, b] uniformly into w consecutive sub-ranges, which is
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called consecutive multiple BFcodes (CMB). The second one inserts data into a certain group with

a probability 1/w, which is called random multiple BFcodes (RMB). The two schemes are evaluated in

Section 9.

8. Theoretical Analysis

Section 3 describes the requirements for a good privacy-preserving range query protocol. Result

accuracy is affected by the probability of false positives, which is discussed in Sections 5 and 6. In this

section, we analyze efficiency and privacy.

8.1. Efficiency Analysis

In WSNs, communication cost is the main factor to influence the efficiency of a protocol.

As in [2–9], we analyze the proposed protocol in terms of communication cost, which is defined as the

communication consumption in bits during query processing. It is generated during data submission from

sensor nodes to master nodes and result submission from master nodes to the sink, i.e., communication

cost of sensor nodes and communication cost of master nodes. The lower the communication cost, the

higher the efficiency.

Assume N denotes the number of sensor nodes, le denotes the average length of an encrypted part,

m denotes the size of a BFcode, θ denotes the average number of data collected by a sensor node and p

denotes the probability that data are considered to be in the query range.

8.1.1. Communication Cost of Sensor Nodes

In any protocol, sensor nodes transmit encrypted data and associated BFcodes to the nearest master

nodes, so the communication cost of sensor nodes is:

N ∗ (le +m) ∗ (θ + 2) (10)

8.1.2. Communication Cost of Master Nodes

The rules of membership testing influence the accuracy of 〈α, β〉, and thus, the accuracy of 〈α, β〉

affects the communication cost of master nodes. Three cases should be considered: (1) if α > β, the

expectation of communication cost is N × 2 × (le + m) × (1 − p)θ; (2) if α = β, the expectation

of communication cost is N × 2 × (le + m) × (1 − p)θ−1 × p; and (3) if α < β, the expectation of

communication cost is N × (le +m)×
∑θ

i=1

(

(1− p)i−1 × p2 ×
∑θ

j=i+1

(

(1− p)θ−j × (j − i+ 3)
)

)

.

Therefore, the total communication cost of master nodes is:

N × (le +m)×

(

2(1− p)θ−1 +
θ
∑

i=1

(

(1− p)i−1 × p2 ×
θ
∑

j=i+1

(

(1− p)θ−j × (j − i+ 3)
)

)

)

(11)

Since the accuracies of 〈α, β〉 are different in different protocols, p is protocol-specific.



Sensors 2014, 14 23920

8.2. Privacy Analysis

First, we analyze privacy under non-collusion conditions and then discuss privacy under node

collusion conditions later.

8.2.1. Privacy under Non-Collusion Conditions

• Data privacy: In any protocol, original data are stored in the encrypted format and will be disclosed

if master nodes have the right key. If the master node knows the length lk of each key, the

probability that it guesses the correct data is:

2−lk (12)

If lk is large enough, the probability is negligible. Furthermore, keys change constantly at different

epochs, such that past keys are invalid at the current epoch.

There is another way to obtain original data. If the master node is aware of the hash functions

NH for data d and the associated BFd, it can derive
(

m′

|NH|

)

BFcodes from BFd, where m′ is

the number of 1-bits in BFd. Each BFcode may be mapped from |NH|! data. Therefore, the

probability that the master node guesses the correct data is:

(

(

m′

|NH|

)

× |NH|!
)−1

(13)

• Query privacy: In any protocol, given a query 〈T, [a, b]〉, the sink transforms [a, b] to BF[a,b].

Because BF[a,b] is the union of many BFcodes and each BFcode cannot be distinguished from

others, BF[a,b] is meaningless for the master node. Let QH be the hash functions for [a, b]. If the

master node knows QH , it can derive
(

m′

|QH|

)

BFcodes from BF[a,b], where m′ is the number of

1-bits in BF[a,b]. Each BFcode may be hashed from |QH|! data. Thus, the probability that the

master node guesses the correct query range is:

(

(

m′

|QH|

)

× |QH|!

2

)−1

(14)

If QH is unavailable, the probability can be neglected.

8.2.2. Privacy under Collusion Conditions

If master nodes collude with sensor nodes, they can obtain the hash functions and deduce original

data and the query range by enumeration methods. The key point is to keep adversaries from the hash

functions. As mentioned in Section 6, PRQ cannot resist node collusion. We analyze the series of

CPRQ protocols.

Assume H is the hash function pool; NH and QH are the hash functions for data and queries,

respectively. Since different sensor nodes have different NH , each sensor node cannot infer the real

data of others according to the BFcodes. However, H can be deduced by compromising enough sensor

nodes; thus, QH or NH may be further guessed by choosing |QH| or |NH| hash functions from H . On

the premise of knowing H , the probability that QH is deduced and the probability that NH is deduced
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are
(

|H|
|QH|

)−1
and

(

|H|
|NH|

)−1
, respectively. Now, we discuss how many sensor nodes are needed to figure

out H . This is an instance of the coupon collector’s problem [35].

Let x be the number of collusive sensor nodes and Nx
H be the number of different hash functions

obtained by these x sensor nodes. Assume Nx
H − Nx−1

H = 1, i.e., N1
H = |NH|, N2

H = |NH| + 1, ... ,

Nx
H = |NH|+ x− 1. Equation (15) indicates the probability that x nodes collude to gain |NH|+ x− 1

different hash functions after x− 1 nodes get |NH|+ x− 2 different ones.

p♭x =







1 if x = 1
(

|NH|
1

)

×

(

|H|−(|NH|+x−2)
)

×
∏|NH|−2

v=0
(|NH|+x−2−v)

∏|NH|−1

u=0
(|H|−u)

if 1<x≤|H|−|NH|+1,
(15)

where |NH| is protocol specific.

To get H , the expected number of collusive sensor nodes, denoted as E(X), is:

E(X) =

|H|−|NH|+1
∑

x=1

1

p♭x
. (16)

Since limited sensor nodes and master nodes could be compromised by adversaries, if E(X) is too

large, collusion attacks will fail.

9. Evaluation

As mentioned in Section 2, node collusion is not taken into account in previous related work.

Therefore, we first analyze the parameters of improvements and then evaluate PRQ by comparing with

Encoding [2], ST-crosscheck [3] and SafeQ [6] under non-collusion conditions and, finally, contrast the

series of CPRQ protocols with PRQ considering collusion attacks. Performance is thoroughly evaluated

on the same two-tiered model in terms of efficiency, accuracy and privacy.

All protocols are implemented on OMNet++4.1, a widely-used simulator for WSNs. The network is

set to 400 m × 400 m. Sensor nodes are uniformly deployed in the network, and the number of sensor

nodes changes from 200 to 600. Assume that the network is separated into four identical cells and a

master node is at the center of each cell. The transmission radius of each sensor node is 50 m. The

real dataset, LUCE (Lausanne Urban Canopy Experiment) [36], is used in the experiments. LUCE is

a measurement campaign, which took place on the EPFLcampus from July 2006, to May 2007, and

aimed at better understanding micrometeorology and atmospheric transport in the urban environment. It

contains 97 sensor nodes, but we need more sensor nodes. Therefore, we use data collected in LUCE.

We adopt the revised Bernstein hash [37], which holds the property that for any hash function hi and hj

(i 6= j), there is hi(d) 6= hj(d). Unless there is a particular specification, our protocols encode data and

queries to a BFcode of 128 bits by using four hash functions, while the data domain is partitioned into

10 buckets for Encoding and ST-crosscheck.

9.1. Parameters of Improvements

To simplify the description, we also take PRQ as an example, but these schemes are able to improve

the series of CPRQ protocols.
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9.1.1. Data Compression

Data compression is theoretically confirmed to be efficient enough to shorten the size of messages sent

by sensor nodes in Section 7. The two proposed data compression schemes and the non-compression

scheme are compared in Figure 3 by compressing BFcodes of integers in [0, 1000]. The size of an

uncompressed BFcode is 128 bits, and 4 revised Bernstein hash functions [37] are used to encode data.

Absolute 1-position compression compresses a BFcode to about 18 bits, while differential 1-position

compression compresses that to about 24 bits. We define the compression ratio as the ratio of the number

of bits of an uncompressed BFcode to the number of bits of a compressed BFcode. The larger the

compression ratio, the shorter the message and the less the communication cost. The compression ratio of

absolute 1-position compression and differential 1-position compression are about 7 and 5, respectively.

It is obvious that differential 1-position compression can make messages shorter and save more on the

communication cost. Our protocols adopt differential 1-position compression.

Figure 3. Comparison of data compression.
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9.1.2. Multiple BFcodes

Given a query range [a, b], result accuracy is affected by false positives. The probability of false

positives is defined as the ratio of the number of unsatisfactory data in the result to the number of data in

the result. The fewer the false positives, the better the accuracy.

Figure 4 demonstrates the impact of multiple BFcodes on false positives. In this experiment, the

size of a BFcode is 128 bits. The data domain is [0, 1000]. We randomly choose 10 ranges in the

data domain for each proportion of a query range and take the average probability of false positives.

w (w = 1, 2, 3) denotes the number of BFcodes for queries. Consecutive multiple BFcodes (CMB) and

random multiple BFcodes (RMB) are the proposed partition schemes of a query range.

Given w, the probability of false positives first increases and then declines. Sensor nodes generate the

same data for different proportions of the query range [a, b]. When the proportion is small, few data are

included in [a, b], such that few bits of BF[a,b] are set to 1 and lots of unsatisfactory data are filtered out

correctly. When the proportion increases to a certain extent, the probability of false positives peaks. The

reason is that more bits of BF[a,b] are set to 1, failing to filter unsatisfactory data out. As the proportion

continues growing, more bits of BF[a,b] are set to 1, but the probability of false positives decreases,

because more and more data really belong to [a, b].
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Figure 4. Impact of multiple BFcodes on false positives.
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Given the partition scheme, the probability of false positives with w = 2, 3 is smaller than that with

w = 1, because the scheme using w BFcodes potentially assigns w×m bits for the BFcode of [a, b]. For

a certain w, RMB produces fewer false positives than CMB. This may be explained by the reason that

adjacent data are likely to be hashed to similar positions, and RMB divides [a, b] randomly to eliminate

the position correlation. It is found that the probability of false positives with w = 2 is similar to that

with w = 3. In the meanwhile, the computational cost of master nodes increases as w grows. After

comprehensive consideration, our protocols use the scheme with RMB and w = 2.

9.2. Performance Evaluation under Non-Collusion Conditions

9.2.1. Efficiency

In WSNs, communication is the dominant factor of energy consumption. The lower the

communication cost, the better the efficiency. Figure 5 displays the impact of network size on

communication cost without collusion attacks (the submission period is 30 s). As the size of the network

grows, more data are transmitted from sensor nodes to master nodes, and more data stored in master

nodes satisfy the query range. Therefore, communication cost increases. Besides, the communication

cost of sensor nodes goes far beyond that of master nodes, because master nodes only submit satisfactory

data. It is evident that the communication cost of sensor nodes in PRQ is much less than that of

other protocols. In ST-crosscheck, each bucket of sensor nodes attaches the bucket information of all

neighbors, and its communication cost of sensor nodes is related to the product of the number of their

neighbors and the square of the bucket number. In Encoding, the more the empty buckets, the more the

attached codes. SafeQ constructs a prefix family for data as the attached code. Given the data d, their

prefix family needs (⌊log2 d⌋+ 1)2 bits. However, PRQ just appends a compressed BFcode to the data.

Figure 6 demonstrates the impact of submission period on communication cost without node collusion

(the network size is 400). The submission period is defined as the interval time between two successive

submissions. It is observed that the submission period has no effect on the communication cost of the

sensor node in ST-crosscheck, because it is only related to the number of neighbors and the number of

buckets. Due to the reduction of empty buckets, the communication cost of sensor nodes in Encoding

decreases as the submission period increases, which is opposite to what occurs in PRQ and SafeQ.
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When the submission period is below 40 s, the communication cost of sensor nodes in PRQ is less than

the others. When the submission period continues growing, the communication cost of sensor nodes in

PRQ increases slowly. Each datum d in SafeQ needs to attach (⌊log2 d⌋ + 1) prefix-membership codes,

whereas only one compressed BFcode is appended in our PRQ.

Figure 5. Impact of network size on communication cost without collusion attacks.

(a) Sensor nodes; (b) master nodes.
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Figure 6. Impact of submission period on communication cost without collusion attacks.

(a) Sensor nodes; (b) master nodes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10  20  30  40  50  60  70

C
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
b
y
te

s)

Submission period (seconds)

PRQ
Encoding
ST-Crosscheck
SafeQ

(a)

 0

 500

 1000

 1500

 2000

 2500

 10  20  30  40  50  60  70

C
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
b
y
te

s)

Submission period (seconds)

PRQ
Encoding
ST-Crosscheck
SafeQ

(b)

Under non-collusion conditions, PRQ saves more communication cost and energy consumption

than others.

9.2.2. Accuracy

Incomplete results can be detected in PRQ, Encoding, ST-crosscheck and SafeQ, but false positives

are difficult to eliminate. The probability of false positives is defined the same as in Section 9.1.2. The

lower probability of false positives, the higher the accuracy.

Figure 7 reveals how the probability of false positives is influenced by network size and submission

period. The result of SafeQ is accurate, and there are no false positives. Encoding and ST-crosscheck

are built on the bucketing technique, which has a great effect on accuracy. The more the buckets, the

fewer the false positives, but the weaker the privacy. On account of multiple BFcodes, PRQ achieves

accurate results, as SafeQ does. Besides, the network size and submission period have no impact on the

probability of false positives.



Sensors 2014, 14 23925

Figure 7. False positives without collusion attacks. (a) Impact of network size; (b) impact

of submission period.
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9.2.3. Privacy

Data privacy will be disclosed if master nodes acquire either the correct key or the correct hash

functions NH for data encoding, as mentioned in Section 8.2.1. The privacy of data is shown in

Figure 8a,b. The probability that master nodes can decrypt data correctly is extremely tiny if the length

of a key is large than 8 bits. The probability that master nodes can guess actual data upon their BFcodes

and right hash functions NH is less than 0.01 when |NH| ≥ 4. Figure 8c displays the privacy intensity

of queries. For a certain range [a, b], it is obvious that the probability that [a, b] is deduced from the

BF[a,b] can be neglected, even though the set of hash functions QH for query encoding is reachable.

Figure 8. Privacy without collusion attacks. (a) Impact of key; (b) Impact of NH;

(c) Impact of QH .
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9.3. Performance Evaluation under Collusion Conditions

In the following experiments, in PRQ, c-CPRQ and u-CPRQ, the number k of hash functions for

query encoding is set to 4. Since the parameter l in c-CPRQ satisfies 0 < l < k and l in u-CPRQ

satisfies 0 < l ≤ k, we set l = 3.

9.3.1. Efficiency

Node collusion may be destructive. The series of CPRQ protocols not only preserves privacy and

integrity, but also resists collusion attacks, while PRQ is disabled under collusion conditions.
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Figure 9. Impact of network size on communication cost with collusion attacks. (a) Sensor

nodes; (b) master nodes.
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Figure 10. Impact of submission period on communication cost with collusion attacks.

(a) Sensor nodes; (b) master nodes.
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Figures 9 and 10 demonstrate the communication cost of the series of CPRQ protocols compared with

PRQ. It is observed that the communication cost of sensor nodes in u-CPRQ is less than those in c-CPRQ

and PRQ. Sensor nodes transmit all encrypted data and corresponding BFcodes to master nodes. Since

the size of the encrypted part for each protocol is identical, the size of a compressed BFcode determines

the communication cost of sensor nodes. Because the number of hash functions for data in u-CPRQ

is less than those in c-CPRQ and PRQ, the size of a compressed BFcode in u-CPRQ is smaller than

those of others. Besides, this shows that the communication cost of master nodes in PRQ is less than

that in c-CPRQ, but is greater than that in u-CPRQ. Since c-CPRQ adopts a relaxed membership test, it

produces more false positives than PRQ. The size of a compressed BFcode in u-CPRQ is smaller than

that of PRQ, such that the communication cost of master nodes in u-CPRQ is less than that in PRQ.

9.3.2. Accuracy

Given a range query, the definition of the probability of false positives is the same as that in

Section 9.1.2. Figure 11 indicates the probability of false positives. It can be seen that the probability of

false positives in both u-CPRQ and PRQ is 0%, while that in c-CPRQ increases with the growth of the

network size and submission period. The reason is that the relaxed membership test in c-CPRQ brings
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in false positives, and there are no false positives generated in PRQ and u-CPRQ based on the precise

bounds. However, u-CPRQ and c-CPRQ can resist collusion attacks, while PRQ cannot. c-CPRQ is also

acceptable for users if the probability of false positives in c-CPRQ is small enough.

Figure 11. False positives with collusion attacks. (a) Impact of network size; (b) impact of

submission period.
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9.3.3. Privacy

If there are sufficient collusive sensor nodes, H will be inferred based on NH . The expectation of the

number of sensor nodes needed to infer H is provided in Figure 12. When |H| is large enough, it becomes

a bell curve, whose axis of symmetry is the line |NH| = |H|/2. Thus, |NH| should be selected from the

left side of the axis of symmetry in order to control the size of the compressed BFcode. To guarantee

the availability of WSNs, the number of collusive sensor nodes should be limited. For example, the size

of the network is 1000, and at most, 10% of sensor nodes will be compromised. Given |H| = 20, if

|NH| = 4, at least 179 sensor nodes are needed, while if |NH| = 10, at least 2397 sensor nodes are

needed. Due to the limited attack ability, it is impossible for adversaries to compromise so many sensor

nodes. Therefore, the series of CPRQ can prevent collusion attacks.

Figure 12. Expectation of the number of sensor nodes needed for a successful collusion.

(a) |H|∈{2, 3, 4, 5, 6, 7, 8, 9, 10}; (b)|H|∈{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.
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From the above, c-CPRQ and u-CPRQ are robust to collusion attacks, while preserving privacy and

integrity. Especially u-CPRQ outperforms PRQ in terms of efficiency, accuracy and privacy. If the

probability of false positives is very small, c-CPRQ is also a good choice for users.

10. Conclusions

Privacy issues restrict the widespread adoption of WSNs and even threaten the security of the IoT.

In this paper, we propose a privacy-preserving range query protocol, PRQ, and then present a series

of collusion-aware privacy-preserving range query protocols: c-CPRQ and u-CPRQ. To the best of

our knowledge, this paper is the first to take collusion attacks into account for a privacy-preserving

range query in tiered WSNs. In our protocols, data and queries are represented by BFcodes to hide the

original information, while result integrity is verified through ordinal relation among data. In the series

of CPRQ protocols, sensor nodes use diverse hash functions to prevent node collusion. The performance

of our proposals is evaluated by comparing with Encoding, ST-crosscheck and SafeQ. Theoretical

analysis and simulation results demonstrate the high performance of our protocols in terms of efficiency,

accuracy and privacy. In the future, we will focus on the privacy preservation of more complex queries,

such as top-k and kNN, in two-tiered WSNs. For these two queries, the final result relies on global

comparison information. It is challenging to compare data without information leakage and to achieve

accurate results.
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Appendix

A. Proof of Theorem 1

Proof. We prove the theorem using reduction to absurdity. Assume ∃d′ ∈ [a, b] satisfying BFd′ ∩

BF[a,b] 6= BFd′ . Because BF[a,b] = ∪d∈[a,b]BFd, we have:

BFd′ ∩ BF[a,b]

= BFd′ ∩ (∪d∈[a,b]BFd)

= ∪d∈[a,b](BFd′ ∩ BFd)

= (BFd′ ∩BFd′) ∪ (∪d∈[a,b]∧d6=d′(BFd′ ∩ BFd))

= BFd′ ∪ (∪d∈[a,b]∧d6=d′(BFd′ ∩BFd))

= BFd′

which contradicts the assumption. Thus, d′ 6∈ [a, b]. Therefore, if BFd ∩ BF[a,b] 6= BFd, there must be

d 6∈ [a, b].

B. Derivation of pp

Given a large enough m, we can construct k hash functions h1, ..., hk, holding the property that ∀d,

hi(d) 6= hj(d) (1 ≤ i 6= j ≤ k), which is different from hash functions in [33].

The probability that the i-th 1-bit of BFd is 0 in BF[a.b] is
(

∏k
j=1(1−

j
m−i+1

)
)|b−a+1|

. In other words,

the probability that the i-th 1-bit of BFd is 1 in BF[a.b] is 1−
(

∏k
j=1(1−

j
m−i+1

)
)|b−a+1|

. The probability

that all 1-bits of BFd are 1 in BF[a.b] is
∏k

i=1

(

1−
(

∏k
j=1(1−

j
m−i+1

)
)|b−a+1|

)

.

C. Proof of Theorem 2

Proof. We prove the theorem using reduction to absurdity.

Assume ∃d′ ∈ [a, b] satisfying η < |IH|. According to the construction of BF[a,b],

BF[a,b] = ∪d∈[a,b]BFd. That means the positions to which d′ is mapped are set to 1 in BF[a,b]. Let

BFH♯

X denote the BFcode of X using hash function set H♯. Then, we have:

BFd′ ∩ BF[a,b]

= (BF IH
d′ ∪ BF

NH\IH
d′ ) ∩ (BF IH

[a,b] ∪BF
QH\IH
[a,b] )

= (BF IH
d′ ∩ BF IH

[a,b]) ∪ (BF
NH\IH
d′ ∩BF IH

[a,b])

∪(BF IH
d′ ∩ BF

QH\IH
[a,b] ) ∪ (BF

NH\IH
d′ ∩BF

QH\IH
[a,b] )

= BF IH
d′ ∪ (BF

NH\IH
d′ ∩ BF IH

[a,b])

∪(BF IH
d′ ∩ BF

QH\IH
[a,b] ) ∪ (BF

NH\IH
d′ ∩BF

QH\IH
[a,b] )

Let n1, n2, n3 and n4 denote the number of 1-bits in |BF IH
d′ |, |BF

NH\IH
d′ ∩ BF IH

[a,b]|,

|BF IH
d′ ∩ BF

QH\IH
[a,b] | and |BF

NH\IH
d′ ∩ BF

QH\IH
[a,b] |, respectively. For any hash functions hi and hj

(i 6= j), there is hi(d
′) 6= hj(d

′). Hence, we have that: n1 = |IH|, 0 ≤ n2 ≤ min{|IH|, |NH\IH|},
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0 ≤ n3 ≤ min{|IH|, |QH\IH|} and 0 ≤ n4 ≤ min{|NH\IH|, |QH\IH|}. That is, ηd ≥ |IH|,

which contradicts the assumption. Therefore, d′ 6∈ [a, b], i.e., if η < |IH|, there must be d 6∈ [a, b].
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