
Sensors 2014, 14, 24188-24211; doi:10.3390/s141224188
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Malicious Pattern Detection Engine for Embedded Security
Systems in the Internet of Things
Doohwan Oh, Deokho Kim and Won Woo Ro *

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu,
Seoul 120-749, Korea; E-Mails: ohdooh@yonsei.ac.kr (D.O.); nautes87@yonsei.ac.kr (D.K.)

* Author to whom correspondence should be addressed; E-Mail: wro@yonsei.ac.kr;
Tel.: +82-2-2123-7452; Fax: +82-2-313-2879.

External Editors: Luciano Lavagno and Mihai T. Lazarescu

Received: 21 September 2014; in reviesd form: 23 November 2014 / Accepted: 4 December 2014 /
Published: 16 December 2014

Abstract: With the emergence of the Internet of Things (IoT), a large number of physical
objects in daily life have been aggressively connected to the Internet. As the number of
objects connected to networks increases, the security systems face a critical challenge due
to the global connectivity and accessibility of the IoT. However, it is difficult to adapt
traditional security systems to the objects in the IoT, because of their limited computing
power and memory size. In light of this, we present a lightweight security system that uses
a novel malicious pattern-matching engine. We limit the memory usage of the proposed
system in order to make it work on resource-constrained devices. To mitigate performance
degradation due to limitations of computation power and memory, we propose two novel
techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently
reduce the number of matching operations on resource-constrained systems. Experiments
and performance analyses show that our proposed system achieves a maximum speedup of
2.14 with an IoT object and provides scalable performance for a large number of patterns.

Keywords: intrusion detection system; Internet of Things, pattern detection; Wu–Manber

Sensors 2014, 14 24189

1. Introduction

The Internet of Things (IoT) is an emerging paradigm shift in the use of the web from communicating
with end-user devices to connecting physical objects by themselves [1–3]. In this paradigm, many
objects of daily use around us will be embedded with smart sensors and computational resources and
will be connected to networks in one form or another. Wireless sensor network technologies and modern
embedded computing systems will be developed to meet this new emerging paradigm.

A wireless sensor network (WSN) is a network of sensor nodes that detect and record environmental
data and send them to a sink node. The sink node further processes received data and communicates with
outer nodes. The sensor nodes are resource-constrained devices with limited storage and processing
capabilities. The Internet Protocol (IP) is a heavyweight protocol that is considered inadequate for
the sensor nodes. Therefore, a conventional WSN is a non-IP network, where each sensor node only
communicates with neighboring nodes or the sink node. However, with the emergence of IoT, the
use of IP in resource-constrained WSNs has been requested. In light of this demand, IP version
6 (IPv6) over low-power personal area networks (6LoWPANs) has been standardized [4]. With
the advance of 6LoWPAN, it becomes possible to use IP in a resource-constrained sensor node of
WSNs. As a result, each sensor node can be accessed anywhere at anytime by authorized devices
using 6LoWPAN.

As an ever-increasing number of emerging WSNs use IP, the number of smart objects connected
to the Internet increases. More than 10 billion smart objects will be operated and connected through
the Internet together with using various applications, such as e-health, gas and electricity meters, etc.
The networking company, Cisco, has announced that more than 50 billion devices are expected to be
connected to the Internet, producing terabytes of data per second, by 2020 [5]. As devices connected to
the Internet become increasingly pervasive, security becomes an increasingly critical issue [6]. Indeed,
the IoT devices seamlessly gather personal data using embedded sensors. Although only authorized users
can access these devices, there is always a certain level of threat that the security system can become
vulnerable to illegal activities and attacks, as in desktop computers and server systems. Therefore, an
effective security system is needed to protect smart objects against such attacks.

An intrusion detection system (IDS) monitors networks for malicious attacks on inbound and
outbound packets by using a misuse detection scheme [7,8]. This scheme uses a pattern-matching
algorithm to check predefined pattern sets consisting of intrusion signatures [9]. Each of these signatures
is defined in the context of payloads that have previously been revealed as malicious attacks. The IDS
inspects the context of the payloads by checking them against the predefined signature set. Therefore, the
pattern-matching engine is one of the most important features in network security applications designed
to search for malicious patterns. However, it is difficult to operate a conventional pattern-matching
engine on smart objects, because most of them are resource constrained in terms of power, processing
and memory space [10–12].

In this paper, we propose a new malicious pattern-detecting system that has low computational
complexity and requires a small amount of memory in order to protect IoT objects against breaches
of security. The proposed system is developed based on a traditional pattern-detection algorithm that is
widely used for computer security applications. We have found out that some of the target data can be

Sensors 2014, 14 24190

skipped without inspecting operations more closely than they are in the traditional security algorithm.
The amount of data that can be skipped is precomputed in our proposed system as auxiliary shift
values. Furthermore, we limit the memory usage of the traditional algorithm to render it suitable for
resource-constrained smart objects. In order to prevent performance degradation due to this limitation,
our proposed algorithm reduces the required number of additional matching operations through early
decision on character matching operations.

We make the following three contributions in this paper to improve the performance of malicious
pattern-matching systems operating on smart objects:

• With the auxiliary shift value, a large amount of data that are not matched on any patterns can
be skipped.
• Within patterns that have identical prefix values, the information obtained by character matching

can be used to determine the early termination of the matching operation.
• Our proposed algorithm reduces memory usage for malicious pattern-detecting processes and,

therefore, enables the incorporation of resource-constrained smart objects into the security system.

To test the performance of the proposed algorithm, we performed experiments using a smart object
embedded with an image sensor and a computing resource. Our algorithm attained a performance gain of
10% over the traditional algorithm by applying auxiliary shifting. Moreover, the early decision scheme
provided an additional speed-up of 1.87. Finally, the proposed algorithm provided a maximum speed-up
of 2.14 compared with the traditional algorithm.

The rest of the paper is organized as follows. In Section 2, the details of the traditional
pattern-matching algorithm and its inefficiency are presented and related research in the area is surveyed.
In Section 3, we detail our proposed algorithm. Analyses of computational complexity for the proposed
algorithm are presented in Section 4. Experimental results and analyses are presented in Section 5. This
paper is concluded in Section 6.

2. Background Knowledge and Related Work

2.1. Security in the Internet of Things

In the IoT paradigm, physical devices can be connected to the Internet and allowed to utilize a massive
amount of data information. Each device can send and receive necessary data and can make its own
decision based on the information. For example, in healthcare applications, the IoT technology can
help to cope with emergency situations with rapid responses [3]. Patients will wear medical sensors to
monitor their physiological statistics, such as body temperature, blood pressure and breathing activity.
The data collected from the sensors will be integrated into the global healthcare applications. These
applications continuously gather and look over the data in order to monitor the patients. If any kind of
unusual conditions are detected, the system alerts the relevant medical center, as well as the patient.

Security is one of the most important features to be taken into account in designing the IoT, because
of the connectivity and sensitivity of the data collected [6,10,13]. Although the IoT networks can only
be accessed by authorized users, several kinds of attacks can be mounted against networks. These
attacks are aimed at disrupting network communication or collecting private data. For instance, the

Sensors 2014, 14 24191

denial-of-service (DoS) attacks that occur in the network layer rapidly disrupt communication. The
attacker repeatedly sends packets to the target device and, thus, exhausts its computational resources.
An eavesdropping attack is another serious security threat. A malicious node actively steals messages
transmitted through the networks and then joins the network as a legitimate node by using the stolen
messages. Furthermore, the node carries out attacks against Internet hosts. An application layer attack
causes errors in the operating system of a device and is able to bypass authorized access controls.

Intrusion detection systems for the IoT networks are required to detect malicious activities in the
networks. However, smart objects connected to the IoT networks have lower computing power than
the general computing systems, even though they are more powerful than the traditional sensor node
previously used in WSNs [14]. It is difficult to adapt the previously developed security systems for
desktop computers to the smart objects due to the hardware restrictions on computing power, memory
size and battery life.

2.2. Traditional Malicious Pattern Detection

Most intrusion detection systems detect malicious attacks by using pattern-matching algorithms with
predefined malicious attack patterns, as shown in Figure 1. A multiple string-matching algorithm has
been proposed to find all patterns of a finite pattern set P = {p1, p2, . . . , pn}, in a text T = {t0t1 . . . tl−1}
of length l. The patterns and text are sequences of characters from an alphabet Σ. The pattern set
is defined according to empirically-determined malicious patterns (malicious signatures). The text is
constituted by inbound and outbound packets from networks or system files inside target devices.

Figure 1. Architecture of intrusion detection system.

The Wu–Manber (WM) algorithm [15] is one of the fastest multiple pattern-matching algorithms
and is widely used as a malicious pattern-detection engine. It is composed of two stages. The first is
a preprocessing stage to construct three required tables, the shift, hash, and prefix tables. The second
stage is a pattern-matching stage to perform matching operations using these tables. The second stage
accounts for most of the execution time.

The shift table provides the magnitude of the shift distance for each block. Therefore, the table has
ΣB entries to present all possible combinations of characters in the block, where Σ is the number of
characters used in the pattern set and B is the size of the block. Each entry of the shift table indicates
the maximum distance to the next possible matching block.

Sensors 2014, 14 24192

The maximum shift distances of the entries can be calculated by a heuristic method using the
following two cases:

Case 1: When the block is not related to a pattern’s substring consisting of the first m characters of the
pattern, the entry has a maximum value of m−B+ 1 (m ≥ B), where m is the minimum pattern length.

Case 2: When the block is related to a substring of the patterns, the entry has the smallest value of
m− q, where q is the position with which the block is related in a pattern for B ≤ q ≤ m.

The hash table contains all entries of the shift table with zero shift value. Each entry in the hash table
points to the starting address of patterns that have an identical suffix value. The prefix table stores prefix
values of the patterns and provides the prefix values before initiating the character matching operation.

Figure 2. Wu–Manber multiple pattern-matching algorithm.

wumanbermaincer ta in

cn

3

an

3

nb

2

nc

2

be

1

ce

1

er

0

de

1

cnber

anber

ander

ancert

HASH[cn]

...

HASH[er]

…

cnber

P

P+1

P+2

P+3

anber

ander

others

4

ancert

PREFIX[cn]

PREFIX[an]

PREFIX[an]

PREFIX[an]

pointer patterns (X) PREFIX table HASH table

SHIFT table

Input text (T)

nd

2

dnber …P+4 PREFIX[dn]

dnber

dn

3

The matching operation is represented through the example shown in Figure 2, and the original
Wu–Manber algorithm is described as follows:

Step 1: Compute the hash value h from the current block and check the shift value of the index h in the
shift table. If this shift value is zero, go to the next step. Otherwise, the block moves to the right by as
many characters as the shift value. Repeat Step 1.

Step 2: Compute the hash value p from the prefix characters of the current block. Match p with the prefix
of a pattern listed in the h index in the HASH table. If matched, go to the next step. Otherwise, traverse
to the next pattern in the list until all patterns have been checked and then return to Step 1 after shifting
the block by one character.

Step 3: The remaining characters of the pattern, the prefix for which has been matched with p, are
compared with the characters of the input text. The character matching operation continues until a
mismatch occurs. When a mismatch is found, return to Step 2. When all characters in the pattern match
those of the input text, the pattern is found. Return to Step 2.

Sensors 2014, 14 24193

In the figure, h and p are represented as nb and um, respectively (assuming that the size of the block
and that of the prefix is two characters). Since the index nb in the shift table has the shift value two,
the procedure goes to Step 1 after moving the scan window by two characters. Following this, h and p
become er and an, respectively, and the shift value of the index er is zero. Thus, the procedure advances
to Step 2. The five prefixes of the patterns listed in the er index in the hash table are subsequently
evaluated using an, whereas anber, ander and ancert should perform character matching operations on
the input text according to Step 3. Because all characters in anber match with the input text, the pattern
is found. The block hence moves forward by one character.

Observation 1: The algorithm always moves to the right by a single character after completing
Step 2. However, there is the possibility of shifting more than one character using a bad-character shift.
The current block cannot be matched to the suffix value of any other pattern following the completion
of Step 2, because the algorithm has satisfactorily examined the block in Steps 2 and 3. Therefore, the
current block can be considered a non-suffix value.

Observation 2: The algorithm is inefficient in that all prefix values in Step 2 and all patterns in
Step 3 need to be looked up. Since patterns have been sorted based on their suffix values in the original
algorithm, the prefix values need to be compared for all patterns listed in the er index in the hash table.
Moreover, all patterns with the prefix an need to be compared to the input data stream in Step 3.

Observation 3: The block size can be expanded to reduce the number of patterns per HASH table entry.
However, this approach drastically increases the size of the hash table in proportion to a power of Σ.
That is, the hash table requires more than 4 GB of memory when B = 4 and Σ = 256. Furthermore, the
prefix table has an analogous problem to that faced by the hash table in this context.

2.3. Related Work

The Boyer-Moore algorithm is a well-known single-string matching algorithm [16], and numerous
single-string matching algorithms have been developed based on it [17–19]. The algorithm compares
characters in the text from the rightmost character in a pattern. When a mismatch occurs, the algorithm
determines the maximum distance to shift the scan window [16]. The algorithm has O(mn) execution
time in the worst case, where m is the length of the pattern and n is the length of the text string [20].

A multiple pattern-matching algorithm based on the Boyer-l-Moore algorithm, the WM algorithm
expands it by using an effective bad-character shift method [15]. The algorithm uses the concept of a
scan window, which is a block consisting of B characters, where the value of B is commonly two or
three [15]. The algorithm hashes the characters in the scan window and uses the hash table to solve
collisions. The algorithm is highly efficient and has been embedded in the agrep command, which is
available on the UNIX operating system [21].

Commentz and Walter [22] integrated the Aho–Corasick multiple pattern-matching approach [23]
into the Boyer–Moore algorithm. Lecroq [24] introduced a fast single-string matching algorithm
based on the Wu–Manber algorithm. Oh and Ro proposed pattern rearrangement methods for the

Sensors 2014, 14 24194

Wu–Manber algorithm and accelerated the matching procedure by exploiting parallelism on multicore
processors [25,26]. Hong et al. [27] proposed an improved Wu–Manber algorithm using the quick search
algorithm [19]. They employed the head table to determine whether the characters in the scan window
are a prefix of the patterns. Dai [20] also suggested an algorithm based on the Wu–Manber algorithm and
the quick search algorithm, which considers an additional character next to the scan window and applies
the quick search algorithm. Dai also analyzed all cases due to the additional character to maximize shift
distance. Lin et al. [28] proposed a hybrid approach based on the Aho-Corasick algorithm and the WM
algorithm. They also developed a backward hashing (BH) algorithm by modifying the WM algorithm to
lengthen the average skip distance of the shift table.

Zhou et al. [29] proposed a variant of the Wu–Manber algorithm to cope with large-scale pattern
sets. They used multi-phase hash and dynamic-cut heuristics to reduce memory usage and to choose
an optimal size of the scan window. They efficiently improved the performance and reduced the
required memory size for a large scale of patterns. However, the Wu–Manber algorithm still performed
better than their method in their experiments when the number of patterns was fewer than 30,000 [20].
Liu et al. [30] also emphasized performance degradation with large-scale patterns and proposed their
decomposition according to length. Although their method improved the performance by partitioning
large-scale patterns, the matching operations of the algorithm are identical to the original Wu–Manber
algorithm and, hence, inherit its inefficiency.

Zhang et al. [31] suggested an address-filtering method based on the Wu–Manber algorithm. The
algorithm attempts to reduce the number of unnecessary matching operations by scanning a linked list
within the prefix table [15]. However, their proposed approach sorts the prefix table according to address
values, and there still exist inefficient address comparison operations on the patterns, each of which has
a different suffix. Moreover, the algorithm cannot reduce the number of matching operations when the
prefix table has a large number of patterns with an identical prefix within a suffix value.

3. Reducing Unnecessary Matching Operations on Embedded Systems

In this section, we introduce an advanced algorithm to skip and eliminate unnecessary matching
operations in order to mitigate performance degradation caused by limitations on memory usage in the
context of IoT. We first introduce the additional shifting method following prefix matching operations,
followed by a technique to reduce matching operations and efficient ways to reduce the required number
of comparisons.

3.1. Auxiliary Shift Value

As stated in Step 2 of the WM algorithm, the scan window always moves to the right by one character
after all patterns listed in the h index in the hash table have been evaluated. However, we can move the
window to the right by more than one character, and this can benefit processing speed. As mentioned
in Observation 1, there is no possibility of finding patterns with the current block as their suffix value
following Step 2. Therefore, we can recalculate a shift value corresponding to the current block by
excluding these patterns. This shift value must be equal to or greater than one. This means that the scan
window can move by more than one character following Step 2.

Sensors 2014, 14 24195

Definition 1. The auxiliary shift value (AS, for short) is the minimum among the shift distances of an
entry calculated from P , excluding patterns having the relevant entry as their suffix.

The preprocessing steps of the shift table, including AS, are as follows: SHIFT[h] indicates the shift
value of the h index and ASHIFT[h] marks an AS for the h index.

(1) The shift table has ΣB entries presenting all possible combination of characters in the block. All
entries have one integer value initialized as m−B + 1.

(2) Compute all hash values hs for all substrings of length B from p′ı = {a0a1...am} for 0 ≤ ı ≤ n,
B = {a−B+1...a} for B ≤ ≤ m, where a is from Σ. Set SHIFT[h] to min{m − + 1,
SHIFT[h]}. If SHIFT[h] = 0, the entry related to h has one more integer value named ASHIFT[h];
set ASHIFT[h] as the previous SHIFT[h]. At this time, if ASHIFT[h] 6= NULL, set ASHIFT[h] to
min{previous SHIFT[h], ASHIFT[h]}.

The shift table with AS for a pattern set X in Figure 2 is shown in Figure 3. The only entry having
zero shift value is er; SHIFT[er] = 0. Therefore, the er entry has an AS. This AS has the least shift value
among the values of SHIFT[er], except for a zero value. For this pattern set, the AS is four.

Figure 3. Shift table with auxiliary shift values.

cn

3

an

3

nb

2

nc

2

be

1

ce

1

er

0

de

1

others

4
SHIFT table

nd

2

dn

3

4
auxiliary shift value

Because we have added auxiliary shift values to the shift table, the matching operation of Step 2 in
WM is modified as follows:

Step 2: Compute the hash value p from the prefix characters of the current block. Match p with the
prefix of a pattern listed in the h index in the hash table. If matched, go to the next step. Otherwise,
traverse to the next pattern in the list until all patterns have been checked. When all patterns have been
checked, shift the block as provided in ASHIFT[h] and return to Step 1.

We compare matching procedures in WM and WM with auxiliary shifting in Figure 4. The character
sequence of the initial block is “nb” in the input text (T). Both Wu–Manber and auxiliary shifting
move the block to the right by two characters, since SHIFT[nb] = 2 in the shift table, as shown in
Figure 3. The block then indicates the sequence “er” for which SHIFT[er] = 0. In this case, following
the completion of Step 2 for the entry “er,” Wu–Manber shifts by only one character, and the next block
has the sequence “rm.” On the other hand, auxiliary shifting shifts the block right by ASHIFT[er] = 4;
the next block is “in.” Therefore, auxiliary shifting can skip three characters more than Wu–Manber.

As a result, using auxiliary shifting enables one to skip more characters in an input text than WM.
Therefore, the number of hashing operations required in Step 1 decreases, as does the overall execution
time for the matching procedure.

Sensors 2014, 14 24196

Figure 4. Examples of matching procedures for Wu–Manber (WM) and auxiliary shifting.

wumanbermaincer ta inInput text (T):

wumanbermaincer ta inInput text (T):

auxiliary shifting

Auxiliary shifting

Wu-Manber

3.2. Early Decision Method

There are two cases where we can reduce unnecessary matching operations in Steps 2 and 3 of the
Wu–Manber algorithm if we sort patterns with identical suffixes according to the prefix values as follows:

• In the prefix matching in Step 2, sorted patterns in the hash table provide necessary information to
look up the prefix table to decide whether the remaining prefixes need to be compared.
• In the character matching in Step 3, although several patterns have an identical suffix value and an

identical prefix value, a comparison of the characters can provide necessary information regarding
whether the remaining sorted patterns need to be compared.

In our proposed algorithm, the patterns in each entry of the hash table are sorted in ascending
alphabetical order. Using this sorted pattern set, we have modified Steps 2 and 3 of the WM with
auxiliary shifting, and they are given as follows:

Step 2: Compute the hash value p from the prefix characters of the current block. Match p with the prefix
of a pattern listed in the h index in the hash table. If matched, go to the next step. Otherwise, if the prefix
does not match and is greater than p or if all of the patterns have been checked, shift the block as given
in ASHIFT[h] and return to Step 1. If the prefix is smaller than p, traverse to the next pattern in the list.

Step 3: The rest of the characters of the pattern, the prefix of which is matched with p, are compared to
the characters of the input text. The character matching operation continues until a mismatch occurs.
When a mismatch is found and the character value of the pattern is greater than that of the input text,
shift the block as in ASHIFT[h] and return to Step 1. Otherwise, all characters in the pattern match
those of the input text, and the pattern is found. Return to Step 2.

Figure 5 shows the result of applying the prefix sorting operation. All patterns in the figure have the
same suffix value and are sorted according to their prefix values as well as remaining characters. As a
result, a pattern should have a prefix and character values greater than or equal to any preceding patterns
in the list.

The prefix matching operation on dnber can be skipped according to the proposed Step 2. However,
early termination by comparing a prefix value is less helpful when the number of patterns increases and
there are many patterns within the same prefix value. For this reason, we also propose the early decision

Sensors 2014, 14 24197

for character matching operations. This means that a character matching operation on c is only processed
for ancert. Moreover, no character matching operation occurs for ander, and prefix matching operations
for ander, cnber and dnber can also be skipped.

Figure 5. Sorted patterns and tables for the proposed algorithm.

anber

ancert

ander

cnber

HASH[cn]

…

HASH[er]

…

anber

P

P+1

P+2

P+3

ancert

andercnber

PREFIX[an]

PREFIX[an]

PREFIX[an]

PREFIX[cn]

pointer patterns (X) PREFIX table HASH table

dnber …P+4 PREFIX[dn]

dnber

We have applied early decision to both the prefix and the character matching operations by including
prefix sorting in the Wu–Manber algorithm. Moreover, it has been found that the overhead due to prefix
sorting is negligible compared to the overall time taken to search.

3.3. Prefix Matching with Boundary Searching

In the previous subsection, we present two cases for the early termination of matching operations that
efficiently reduce unnecessary prefix and character matching operations. However, there still exist the
remaining prefix matching operations that can be further reduced. In this part, we present an extension
of the early decision method based on boundary searching.

A pattern in the hash table entry is evaluated using the prefix matching operation followed by the
character matching operation. Following this, subsequent patterns are also similarly evaluated until
an early decision condition is satisfied. Patterns that have the same prefix and suffix are sequentially
arranged after sorting. Therefore, if the boundary of the same prefix can be defined, matching operations
for the same prefix patterns can be avoided. The following modifications are made to Steps 2 and 3:

Step 2: Compute the hash value p from the prefix characters in the current block. Using binary search,
scan the prefix table entries for patterns listed in the h entry in the hash table to find the boundary of
the same prefix group. If no such prefix exists, shift the block as in ASHIFT[h] and return to Step 1.
Otherwise, go to the next step.

Step 3: For patterns within the boundary of the prefix group, the remaining characters of the pattern of
which the prefix is matched with p are compared with the characters of the input text. The character
matching operation continues until a mismatch occurs. When all characters in the pattern match those
of the input text, the pattern is found. Return to Step 1. If all patterns in the boundary are evaluated or
if a mismatch occurs and the character value of a pattern is greater than that of the input text, shift the
block as in ASHIFT[h] and return to Step 1.

Sensors 2014, 14 24198

To eliminate unnecessary operations, the order of prefix matching operations is modified. In contrast
with the previous algorithm, this new approach first filters out patterns with the same prefix and performs
character matching operations only for the filtered patterns. To find the boundary of the prefix value over
the sorted patterns, the binary search algorithm is used instead of sequential prefix matching.

4. Theoretical Analysis

This section presents a theoretical analysis of the overhead and efficiency of our proposed algorithm.
We assume that all patterns are composed of randomly-generated and uniformly-distributed characters.

4.1. Average Number of Operations with Wu–Manber

The average complexity of the traditional Wu–Manber algorithm is known to be significantly affected
by the length of an input sequence, the minimum length of a pattern, the number of characters used, the
size of a block and the number of patterns [30]. In this paper, our analysis will focus on the number of
matching operations.

In our analysis, the average number of prefix matching (PM) operations and the average number of
character matching (CM) operations considered in a given scan window are obtained from Equations (1)
and (2), respectively. First, the average number of PM operations is calculated as the number of patterns
per suffix under the assumption that the patterns are uniformly distributed:

E{PM} =
N

ΣB
. (1)

The average number of CM operations is calculated by considering that CM for a pattern is terminated
as soon as any mismatch of characters occurs. Each character matching operation for a pattern can
proceed to the next character only if the current character is matched. Consequently, the probability that
a character matching operation proceeds to the next character is 1/Σi for the i−th character. Therefore,
the average number of matching operations for CM can be represented as:

E{CM} =
N

ΣB+B′

M−B′∑
i=0

1

Σi
, (2)

where B′ is the number of characters in a prefix block and M is the average length of patterns.
From Equations (1) and (2), the complexities of the Wu–Manber algorithm for each matching

operation are O(N/ΣB) and O(N/(ΣB+B′
)). Overall, the complexity of the matching operations of

the Wu–Manber algorithm is O(N/ΣB).

4.2. Overhead Due to Auxiliary Shifting

We analyze the computational overhead due to auxiliary shifting operations on the preprocessing
and matching processes. As mentioned in Section 3.1, while constructing the shift table, SHIFT[h]
is initialized as m − B + 1 and updated to nSHIFT[h], which indicates a newly-computed value
based on the current substring when SHIFT[h] > nSHIFT[h]. At this time, if nSHIFT[h] = 0,

Sensors 2014, 14 24199

ASHIFT[h] = SHIFT[h]; then, SHIFT[h] = nSHIFT[h]. Therefore, there is no computational overhead
caused by calculating auxiliary shift values during preprocessing.

In the matching process, the entry value h must be computed before accessing ASHIFT[h]. This h

has been already calculated to access SHIFT[h] in Step 1. Therefore, there is no computational overhead
from calculating h. However, an additional memory reading operation is required to access ASHIFT[h].
The complexity of this operation is O(1). This means that the complexity of the matching operations of
the Wu–Manber algorithm with AS is equivalent to that of the traditional algorithm, as O(N/ΣB).

Unfortunately, the auxiliary shifting approach requires more memory to save AS than the traditional
method. Each of the entries with zero shift values involves an auxiliary shift value. In the shift table,
there are N zero values at most, where N is the number of patterns, because the entries corresponding
to the suffix of the patterns only have a zero shift value. Therefore, the memory overhead for AS is less
than or equal to N integer values. Consequently, the size of the shift table with AS is ΣB + N at most.

4.3. Average Number of Operations with Early Decision

The proposed algorithm uses the results of prefix sorting and implements them using the quicksort
algorithm [32] during preprocessing. As is widely known, the quicksort algorithm has a complexity
of O(n log n). The prefix sorting method rearranges N/ΣB patterns in each entry of the hash table,
where N is the total number of patterns. Consequently, all patterns are sorted with a complexity of
O(N log (N/ΣB)).

We now analyze the average number of matching operations for the early decision method. The
number of prefix matching operations for the early decision is represented as PMED, and the number
of character matching operations is denoted by CMED. Moreover, PMBS denotes the number of prefix
matching operations through boundary searching.

We have considered the probability of proceeding to the next prefix matching operation in Step 2.
For each prefix value, the given prefix value performs the prefix matching operation with the preceding
prefix values of the patterns in the hash table. Therefore, the i−th prefix value should have as many
as (N/ΣB+B′

)i prefix matching operations. Therefore, the reduced average number of prefix matching
operations can be represented as:

E{PMED} =
1

ΣB′

ΣB′∑
i=1

N

ΣB+B′ i. (3)

In Step 3, the early decision method skips the operations for the later patterns, which have larger
character values. As a result, the method reduces the number of patterns that need to be evaluated by the
character matching operation to E{CM}i/Σ, where i is the alphabetical order of a given character in
the middle of the input text. Therefore, the average CMED is represented as:

E{CMED} =
N

ΣB+B′

M−B′∑
i=0

1

Σi

Σ∑
i=1

i

Σ2
. (4)

From Equations (3) and (4), the complexity of PMED is O(N/ΣB) and the complexity of CMED

is found to be O(N/(ΣB+B′
)). As a result, the complexity of the overall matching operation becomes

Sensors 2014, 14 24200

O(N/ΣB). In fact, the complexities of the early decision on the prefix and the character matching
operations are identical to those of the Wu–Manber algorithm. Nevertheless, the method significantly
reduces the expected number of matching operations. This is evaluated in Section 4.4.

Furthermore, we have shown the boundary searching prefix matching operation in Section 3.3. By
changing the order of the matching operations, the prefix matching operation has been altered to two
binary searches. Therefore, the average PMBS can be represented as:

E{PMBS} = 2 log2

N

ΣB
. (5)

With the method, the complexity of PMBS is O(log
(
N/ΣB

)
). Therefore, the overall complexity of

the matching operations is reduced to O(N/(ΣB+B′
)).

4.4. Performance Gain in Early Decision

We present the performance gain of our proposed method based on theoretical analysis in this
subsection. In Section 4.3, we showed that PMED and CMED have fewer operations and the same
complexity compared to the Wu–Manber algorithm. In contrast, PMBS has fewer matching operations,
as well as lower complexity in the matching operations procedure compared to the Wu–Manber algorithm.

Figure 6. Number of matching operations based on theoretical analysis. (a) Prefix matching
operation; (b) character matching operation.

0 2000 4000 6000 8000 10000
−100

0

100

200

300

400

500

600

700

Number of pattern s

N
u
m
b
e
r
o
f
o
p
e
ra
ti
o
n
s

PM
PM

ED

PM
BS

(a)

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

Number of patterns

N
u

m
b

e
r

o
f
o

p
e

ra
ti
o

n
s

CM
CM

(b)

Sensors 2014, 14 24201

The average number of operations for PM , PMED and PMBS are compared in Figure 6a, and the
average number of operations for CM and for CMED are presented in Figure 6b. The size of the scan
window and the prefix block are both set to two, and the number of characters is set to four. PMED and
CMED reduce the number of required operations by nearly half. Moreover, PMBS shows very stable
results, even when the number of patterns increases.

PMBS involves the smallest number of operations overall. However, there is a lower bound on
the number of patterns required for PMBS to have fewer operations than PMED. From the analysis
in Section 4, we know that the average number of operations for Case 1 is approximately N/(2ΣB).
Therefore, the number of patterns should be the larger value that satisfies:

N

2ΣB
≥ 2 log2

N

ΣB
. (6)

In other words, PMBS has fewer operations than PMED when the number of patterns is greater
than 16 · ΣB.

5. Implementation and Evaluation

In this section, we evaluate our proposed pattern-matching algorithm as a malicious pattern-detection
engine for two kinds of security applications. This engine is implemented on software and tested on a
real embedded system.

5.1. Implementation

To evaluate the proposed security system for the IoT devices, we exploit a Raspberry Pi [33]
computing unit integrating the Omnivision 5647 sensor as the IoT device shown in Figure 7. Many
of the IoT systems use Raspberry Pi as the smart devices. The micro-controller of this device consists of
an ARM1176 700 MHz processor, 256 MB of synchronous dynamic random-access memory (SDRAM)
and 2 GB flash memory. Furthermore, this device is connected to the Internet using Wi-Fi. The main
goal of this device is to capture 10 images of 640 × 480 pixels per second by the embedded sensor in
a fixed focus module and to transmit these images to the central server. Our malicious detection system
concurrently runs on the device during processing its main work streaming the captured images. If the
system detects a malicious attack, it stops processing and communicating with the server and alerts the
gateway, as shown in Figure 8.

Figure 7. Secured IoT device architecture.

Sensors 2014, 14 24202

Figure 8. IoT network consisting of smart physical objects.

Gateway

Internet

LAN

Malicious

Attack

alert

Central server

The performance evaluation is carried out by using the traditional Wu–Manber algorithm (WM) and
three proposed algorithms: auxiliary skipping (AS), early decision with boundary searching (EBS),
and the approach that uses both AS and EBS (AS-EBS). EBS is composed of PMBS and CMED.
Furthermore, three previously proposed improvements to the Wu–Manber algorithm have been tested for
comparison: Dai’s quasi-multiple medium (QMM) algorithm [20], Hong et al.’s quick search improved
WM algorithm (QWM) [27] and Lin et al.’s bakward hashing (BH) algorithm [28]. The block sizes
(B) of the above algorithms are set to two, because of the limited memory of the embedded system.
All algorithms are implemented in C, compiled using the O3 optimization level of the GNU Compiler
Collection (GCC).

To test our proposed system, we use two kinds of intrusion pattern sets from Snort and ClamAV.
Snort is a well-known open-source network IDS [34]. We exploit the Snort v2.9 rule set to obtain
a pattern set containing 13,896 kinds of intrusions, including SMTP, DDoS, and DNS rules. In the
case of ClamAV, which is an open-source anti-virus application [35], we have extracted 20,000 patterns
from the non-polymorphic signatures of ClamAV. All patterns from Snort and ClamAV are sequences of
characters from an alphabet Σ of size 256. The properties of these pattern sets are listed in Table 1. In
addition, we exploit two types of input data streams. The target input data stream for Snort is 192 MB
packet data captured from the Internet access. For ClamAV, we use target input data of 25 MB from the
chain of binary files in the system directory.

Table 1. Properties of pattern sets.

Pattern Set |Σ| Number Shortest Avg. Longest

Snort 256 13,896 6 20 1021
ClamAV 256 20,000 16 204 694

5.2. Performance Results in Terms of Execution Time

In order to test the performance of the proposed method, we show the execution times of all algorithms
for matching varying numbers of patterns in Figure 9. From the results, we see that AS-EBS exhibits

Sensors 2014, 14 24203

the best performance of all algorithms. For the Snort pattern set, AS-EBS attains a performance gain
of approximately 62% over WM in matching 10,000 rules, as shown in Figure 9a. We believe this is
because the auxiliary shifting approach enables one to shift by a greater number of characters in the
input data stream than WM. Therefore, it can reduce the number of hashing operations following the
completion of Step 2 of the matching procedure compared to WM.

Figure 9. Performance results of various pattern-matching algorithms. (a) Snort;
(b) ClamAV.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

1 2 3 4 5 6 7 8 9 10

E
x
e

cu
�

o
n

 �
m

e
 (

se
c.

)

Number of Snort rules

WM

AS

EBS

AS-EBS

BH

QMM

QWM

x 103

(a)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e

cu
�

o
n

 �
m

e
 (

se
c.

)

Number of ClamAV signatures

WM

AS

EBS

AS-EBS

BH

QMM

QWM

x 103

(b)

Moreover, the early decision enables us to skip unnecessary matching operations in the prefix table
(Step 2) and character matching (Step 3) in WM. AS attains a 4% performance improvement, and EBS
records a speed-up of 1.59 compared with WM. For the ClamAV pattern set, AS-EBS again exhibits the
best performance: it is almost 2.14-times faster than WM in matching 20,000 signatures, as shown in
Figure 9b. AS records a 10% performance gain. Furthermore, EBS attains a speed-up of 1.87 compared
to WM.

Sensors 2014, 14 24204

As the number of patterns increases, all algorithms suffer from performance degradation. However,
the degradation in EBS and AS-EBS is much smaller than in the other algorithms tested. The execution
time of EBS increases by a mere 28% to match 10,000 patterns instead of 1000 patterns in Snort. On
the other hand, the execution time of WM doubles for the same increase in the number of patterns
to match. The ClamAV pattern set shows similar results. The previous approaches, including BH, QMM
and QWM, experience more significant performance degradation than EBS. We believe that these approaches
require more memory for the additional table than WM in order to improve the average shift distance.

In addition, we have evaluated the performance when a large number of the Snort rules (patterns)
appears in the target input data stream. Figure 10a shows execution time variation when different
numbers of patterns exist in the input data stream. From the results, all of the algorithms show steady
performance, although the percentage of the number of patterns that appears in the input data stream
over 10,000 patterns increases from 10% to 100%. In fact, the performance gain of AS-EBS remains
almost 60% compared to WM independent of the pattern matching rate. For the ClamAV pattern set, the
execution time variation shows almost equivalent results to Snort; AS-EBS keeps the speedup factor of
1.4 compared with WM, regardless of the matching rate, as shown in Figure 10b.

Figure 10. Performance results of different input data streams. (a) Snort; (b) ClamAV.

0

10

20

30

40

50

60

70

80

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
x
e

cu
�

o
n

 �
m

e
 (

se
c.

)

Rate of matched pa�erns (Snort)

WM

AS

EBS

AS-EBS

BH

QMM

QWM

(a)

0

1

2

3

4

5

6

7

8

9

10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
x
e

cu
�

o
n

 �
m

e
 (

se
c.

)

Rate of matched pa�erns (ClamAV)

WM

AS

EBS

AS-EBS

BH

QMM

QWM

(b)

Sensors 2014, 14 24205

5.3. Effect of Auxiliary Shift Value on Shifting Operations

The performance improvement achieved by the AS approach can be explained by the reduced
number of hashing operations in Step 1 of the WM procedure. The zero rate, which is the number
of blocks having zero shift values over the number of the shift table accessing operations, helps analyze
performance improvement in detail. The zero rate is equal to the accessing rate of the auxiliary shift
values. The number of hashing operations of WM and AS, as well as the zero rate, are depicted in
Figure 11.

From the figure, we can see that AS has fewer hashing operations than WM. This is because of the
larger number of characters that can be skipped in AS than in WM. As the zero rate increases, the number
of skipped characters in AS grows. That is, the performance of AS improves in proportion to the zero
rate. For the Snort pattern set, AS shows fewer hashing operations than WM, as shown in Figure 11a.
On the other hand, a large number of hashing operations can be reduced by AS compared with WM for
matching the ClamAV signatures, as shown in Figure 11b. This is because the zero rate for ClamAV is
more than 50% and, thus, much higher than that for Snort.

Figure 11. Number of hashing operations and zero rates for shifting operations. (a) Snort;
(b) ClamAV.

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Z
e

ro

ra

te

N
u

m
b

e
r

o
f

h
a

sh
in

g
 o

p
e

ra
�

o
n

s
x

1
0

6

Number of Snort rules

WM

EBS

Zero rate (%)

(a)

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Z
e

ro

ra

te

N
u

m
b

e
r

o
f

h
a

sh
in

g
 o

p
e

ra
�

o
n

s
x

1
0

6

Number of ClamAV signatures

WM

AS

Zero rate (%)

x 103x 103

(b)

Sensors 2014, 14 24206

5.4. Effect of Early Skipping on Matching Operations

To analyze the performance improvement achieved by early decision (EBS), we measure the number
of patterns fully loaded in character matching operations in Step 3 of the matching procedure. The results
are shown in Figure 12. For both of the pattern sets, Snort and ClamAV, EBS loads fewer patterns than
the baseline WM in Step 3. For Snort, EBS reduces by more than half the number of fully-loaded patterns
in matching over 7000 patterns, as shown in Figure 12a. Indeed, in the case of ClamAV, EBS loads only
30.7% of the number of patterns that WM does to match 10,000 signatures, as shown in Figure 12b. We
believe this is because the proposed early decision scheme reduces the frequency in Step 3 due to the
prefix matching operations and the computational complexity of the character matching operations in
Step 3.

Figure 12. Number of fully-loaded patterns in the character matching step (Step 3).
(a) Snort; (b) ClamAV.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

fu
ll

y
 l

o
a

d
e

d
 p

a
�

e
rn

s
x
 1

0
6

Number of Snort ruiles

WM

EBS

x 103

(a)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

fu
ll

y
 l

o
a

d
e

d
 p

a
�

e
rn

s
x
 1

0
6

Number of ClamAV signatures

WM

EBS

x 103

(b)

5.5. Performance Results in Terms of Preprocessing Time

The proposed algorithms construct three required tables during the preprocessing stage before starting
the detecting operations, as mentioned in Section 2.2. Figure 13 shows preprocessing times of the
proposed algorithms and the WM algorithm for varying the number of patterns. In the Snort results,

Sensors 2014, 14 24207

the proposed algorithms, including AS, EBS and AS-EBS, show similar preprocessing times compared
to WM to match fewer than 6000 patterns. However, the overhead due to the AS and EBS approaches
increases as the number of patterns grows to greater than 6000. AS requires 8% more preprocessing
time than WM in the worst case to match 8000 patterns. This is because AS executes more memory
allocating operations for the auxiliary shift values, the number of which is equal to the number of zero
values in the shift table. Moreover, EBS also takes 8% more preprocessing time than WM to match 9000
patterns, because of pattern sorting. In the case of AS-EBS, there are overheads due to auxiliary shift
values and pattern sorting. Therefore, it spends the longest on preprocessing; AS-EBS requires 33%
more preprocessing time than WM.

Figure 13. Preprocessing times of pattern-matching algorithms. (a) Snort; (b) ClamAV.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

1 2 3 4 5 6 7 8 9 10

P
re

p
ro

ce
ss

in
g

�

m
e

 (
se

c.
)

Number of Snort rules

WM

AS

EBS

AS-EBS

x 103

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
re

p
ro

ce
ss

in
g

�

m
e

 (
se

c.
)

Number of ClamAV signatures

WM

AS

EBS

AS-EBS

x 103

(b)

For the ClamAV pattern set, the results are similar to that of Snort. Our approaches do not cause
overhead during preprocessing to match fewer than 11,000 patterns. However, AS requires more time
than WM to match more than 11,000 patterns. AS spends 5% more preprocessing time than WM to

Sensors 2014, 14 24208

match 18,000 patterns. Furthermore, EBS requires 7% more time than WM. As a result, AS-EBS takes
10% longer than WM to preprocess data.

5.6. Detection Accuracy

In this subsection, the detection accuracies of the algorithms are evaluated. In fact, the low detection
accuracy will cause a large number of matching operations. All of the algorithms based on WM consist of
three matching steps: SHIFT, PREFIX and character matching (CM), as mentioned before. We measure
the detection accuracies for each of these steps, respectively, and show the results for Snort in Figure 14.

Figure 14. Detection accuracy of each matching steps.

86% 87% 86% 87%
90%

81%

85%

7%
7%

7%
7%

4%

12% 4%

6% 6% 6% 6% 6%
7%

11%

70%

75%

80%

85%

90%

95%

100%

WM AS EBS AS-EBS BH QMM QWM

CM

PREFIX

SHIFT

From the results, AS and AS-EBS show 87% accuracy, which is 1% better than that of WM. This
is because the auxiliary shifting scheme improves the detection accuracy for SHIFT by eliminating
unnecessary shifting operations. However, the best accuracy for SHIFT is achieved by BH as 90%. This
is 3% higher than that of AS. BH computes a shift value from twice as many as characters compared
to the other methods. Therefore, BH requires more execution time than our approaches, although its
detection accuracy for SHIFT is better than AS. Subsequently, the AS and AS-EBS approaches achieve
7% accuracy for PREFIX. This means that the detection accuracy after the prefix matching operation
becomes 94%, which is the highest accuracy. Therefore, AS and AS-EBS perform the least number of
character matching operations. Finally, all of the algorithms reach 100% accuracy after finishing CM.
This is because CM performs exact character matching operations. In the case of EBS, the detection
accuracy is equivalent to that of WM. In fact, the early skipping approach mainly targets eliminating
unnecessary matching operations without the detection accuracy degradation from WM.

6. Conclusions

In this paper, we proposed a novel multiple pattern-matching algorithm for embedded security
systems. Since the general embedded systems have a small size for the main memory, we limited
the memory usage of the pattern-matching process. However, this limitation leads to performance
degradation. To reduce the workload of the process, we proposed the auxiliary shifting method and
the early decision scheme. The proposed methods successfully reduce the workload by skipping a large
number of unnecessary matching operations through auxiliary shift values. The early decision of the

Sensors 2014, 14 24209

matching operations, according to the prefix and character values, reduces the complexity of the prefix
and character matching operations to a logarithmic scale.

Experiments showed that our proposed method achieved a speedup of up to 2.14 compared
to the traditional pattern-matching algorithm given restricted resources. The proposed algorithm
showed enhanced performance results especially when the number of patterns became large. Our proposed
algorithm can thus contribute a high level of scalability to prevalent multiple pattern-matching algorithms.

Acknowledgments

This work was partly supported by the ICT R&D program of MSIP/IITP (Ministry of Science,
ICT & Future Planning/Institute for Information & communications Technology Promotion), Korea
(14-000-05-001, Smart Networking Core Technology Development) and in part by the ICT
R&D program of MSIP/IITP (2014(10041971), Development of Power-efficient High-performance
Multimedia Contents Service Technology using Context-adapting Distributed Transcoding).

Author Contributions

Doohwan Oh, Deokho Kim, and Won Woo Ro conceived and designed the detection algorithm;
Doohwan Oh performed the experiments; Deokho Kim and Won Woo Ro analyzed the data; All of
the authors directly participated in the writing of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010,
54, 2787–2805.

2. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660.

3. Miorandi, D.; Sicari, S.; de Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and
research challenges. Ad Hoc Netw. 2012, 10, 1497–1516.

4. Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th Workshop on Embedded
Networked Sensors (EmNets), Cork, Ireland, 25–26 June 2007; pp. 78–82.

5. Evans, D. The Internet of Things: How the Next Evolution of the Internet is
Changing Everything. Available online: http://www.cisco.com/web/about/ac79/docs/innov/
IoT_IBSG_0411FINAL.pdf (accessed on 15 December 2014).

6. Kasinathan, P.; Pastrone, C.; Spirito, M.A.; Vinkovits, M. Denial-of-Service detection in
6LoWPAN based Internet of Things. In Proceedings of the 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France,
7–9 October 2013; pp. 600–607.

7. Denning, D.E. An Intrusion-Detection Model. IEEE Trans. Softw. Eng. 1987, 13, 222–232.

Sensors 2014, 14 24210

8. Cong, L.; Jie, W. Fast Deep Packet Inspection with a Dual Finite Automata. IEEE Trans. Comput.
2013, 62, 310–321.

9. Hoang, L.; Prasanna, V.K. A Memory-Efficient and Modular Approach for Large-Scale String
Pattern Matching. IEEE Trans. Comput. 2013, 62, 844–857.

10. Cirani, S.; Ferrari, G.; Veltri, L. Enforcing Security Mechanisms in the IP-Based Internet of Things:
An Algorithmic Overview. Algorithms 2013, 6, 197–226.

11. Zhang, Y.; Lee, W.; Huang, Y.A. Intrusion detection techniques for mobile wireless networks.
Wirel. Netw. 2003, 9, 545–556.

12. Kim, I.; Oh, D.; Yoon, M.; Yi, K.; Ro, W. A Distributed Signature Detection Method for Detecting
Intrusions in Sensor Systems. Sensors 2013, 13, 3998–4016.

13. Le, A.; Loo, J.; Lasebae, A.; Aiash, M.; Luo, Y. 6LoWPAN: A study on QoS security threats
and countermeasures using intrusion detection system approach. Int. J. Commun. Syst. 2012,
25, 1189–1212.

14. Abu-Elkheir, M.; Hayajneh, M.; Ali, N. Data Management for the Internet of Things: Design
Primitives and Solution. Sensors 2013, 13, 15582–15612.

15. Wu, S.; Manber, U. A Fast Algorithm for Multi-Pattern Searching; Technical Report TR-94-17;
Department of Computer Science, University of Arizona: Tucson, AZ, USA, 1994.

16. Boyer, R.S.; Moore, J.S. A fast string searching algorithm. Commun. ACM 1977, 20, 762–772.
17. Cantone, D.; Faro, S. Fast-Search: A New Efficient Variant of the Boyer-Moore String Matching

Algorithm. Lect. Note Comput. Sci. 2003, 2647, 47–58.
18. Charras, C.; Lecroq, T. Handbook of Exact String Matching Algorithms; King’s College

Publications: London, UK, 2004.
19. Sunday, D.M. A very fast substring search algorithm. Commun. ACM 1990, 33, 132–142.
20. Dai, L. An aggressive algorithm for multiple string matching. Inf. Process. Lett. 2009,

109, 553–559.
21. Wu, S.; Manber, U. Agrep—A Fast Approximate Pattern-Matching Tool. Available online:

https://www.usenix.org/legacy/publications/library/proceedings/wu.pdf (accessed on 15 December
2014).

22. Commentz-Walter, B. A String Matching Algorithm Fast on the Average. In Automata, Languages
and Programming; Springer: Berlin/Heidelberg, Germany, 1979; pp. 118–132.

23. Aho, A.V.; Corasick, M.J. Efficient string matching: An aid to bibliographic search. Commun.
ACM 1975, 18, 333–340.

24. Lecroq, T. Fast exact string matching algorithms. Inf. Process. Lett. 2007, 102, 229–235
25. Oh, D.; Kim, S.; Ro, W.W. Multithreaded pattern matching algorithm with data rearrangement.

IEICE Electron. Express 2010, 7, 1520–1526.
26. Oh, D.; Ro, W.W. Multi-Threading and Suffix Grouping on Massive Multiple Pattern Matching

Algorithm. Comput. J. 2012, 55, 1331–1346.
27. Hong, Y.D.; Ke, X.; Yong, C. An improved Wu-Manber multiple patterns matching algorithm.

In Proceedings of the 25th IEEE International Performance, Computing, and Communications
Conference, 2006, Phoenix, AZ, USA, 10–12 April 2006; pp. 675–680.

Sensors 2014, 14 24211

28. Lin, P.C.; Lin, Y.D.; Lai, Y.C. A Hybrid Algorithm of Backward Hashing and Automaton Tracking
for Virus Scanning. IEEE Trans. Comput. 2011, 60, 594–601.

29. Zhou, Z.; Xue, Y.; Liu, J.; Zhang, W.; Li, J. MDH: A high speed multi-phase dynamic hash
string matching algorithm for large-scale pattern set. In Proceedings of the 9th International
Conference on Information and Communications Security, Zhengzhou, China, 12–15 December
2007; pp. 201–215.

30. Liu, P.; Liu, Y.B.; Tan, J.I. A Partition-Based Efficient Algorithm for Large Scale Multiple-Strings
Matching. Lect. Notes Comput. Sci. 2005, 3772, 399–404.

31. Zhang, B.; Chen, X.; Ping, L.; Wu, Z. Address Filtering Based Wu-Manber Multiple Patterns
Matching Algorithm. In Proceedings of the 2009 Second International Workshop on Computer
Science and Engineering—Volume 01, 2009 (IWCSE ’09), Qingdao, China, 28–30 October 2009;
pp. 408–412.

32. Hoare, C.A.R. Quicksort. Comput. J. 1962, 5, 10–16.
33. Halfacree, G.; Upton, E. Raspberry Pi User Guide; Technical Report; Wiley Publishing:

New York City, NY, USA, 2012.
34. Norton, M.; Roelker, D. Hi-Performance Multi-Rule Inspection Engine; Technical Report;

Sourcefire Network Security Inc.: Columbia, MI, USA, 2004.
35. Kojm, T. Clam AntiVirus User Manual. Available online: http://www.clamav.net/doc/install.html

(accessed on 15 December 2014).

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Background Knowledge and Related Work
	Security in the Internet of Things
	Traditional Malicious Pattern Detection
	Related Work

	Reducing Unnecessary Matching Operations on Embedded Systems
	Auxiliary Shift Value
	Early Decision Method
	Prefix Matching with Boundary Searching

	Theoretical Analysis
	Average Number of Operations with Wu–Manber
	Overhead Due to Auxiliary Shifting
	Average Number of Operations with Early Decision
	Performance Gain in Early Decision

	Implementation and Evaluation
	Implementation
	Performance Results in Terms of Execution Time
	Effect of Auxiliary Shift Value on Shifting Operations
	Effect of Early Skipping on Matching Operations
	Performance Results in Terms of Preprocessing Time
	Detection Accuracy

	Conclusions
	Author Contributions

