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Abstract: 3D geodata play an increasingly important role in precision agriculture, e.g., for 

modeling in-field variations of grain crop features such as height or biomass. A common 

data capturing method is LiDAR, which often requires expensive equipment and produces 

large datasets. This study contributes to the improvement of 3D geodata capturing 

efficiency by assessing the effect of reduced scanning resolution on crop surface models 

(CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of 

different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). 

Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing 

step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and 

assessed regarding their coverage relative to a seamless CSM derived from the original 

point cloud, standard deviation of elevation and mean elevation. Reducing the resolution 

to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of 

measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react 

differently to reduced scanning resolutions in different crops (variety, density). The results 

can help to assess the trade-off between CSM quality and minimum requirements regarding 

equipment and capturing set-up. 
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1. Introduction 

The important role of precision agriculture (PA) for tackling issues like global food supply, 

adaptation of crops to climatic changes or serving energy needs with renewable biomass is often 

emphasized [1–5]. Of central importance in PA are geodata of crops because they allow for site-specific 

management of crop fields [6–10]. Increasingly, three-dimensional geodata (3D geodata) are used in 

precision agriculture (e.g., [4,11–14]) because they can be examined with spatial (3D) analysis 

methods. Thus, 3D geodata are the basis for deriving features which cannot be calculated from other 

data sources like remotely sensed ortho-rectified imagery or classical surveying, e.g., directly captured 

plant heights [13]. 

An established method for capturing 3D geodata is LiDAR, which is also increasingly applied in 

PA-related studies [4,11,13–18]. Advantages of this active remote-sensing method are, e.g., its  

non-invasive and non-destructive measurements, its capability to capture crops area-wide in high 

geometric detail, its capability of partly penetrating objects like vegetation, and its independence of 

lighting conditions [13,15]. LiDAR studies in PA cover a wide range of scanning resolutions and 

object scales. For example, Paulus et al. [17,18] use a high-precision laser scanner coupled with a 

moveable articulated measuring arm to produce detailed geometric models of single plant organs 

which are valuable for quantifying growth processes. On a larger scale, crop height models of entire 

agricultural fields, which can be used, e.g., for biomass estimations are derived from terrestrial laser 

scanning (TLS) point clouds in [4,14]. In Höfle [13], single maize plant positions and their heights are 

detected in a 132 m × 6 m field, which is important for growth monitoring and site-specific plant 

treatment. The study exploits both radiometric and geometric information which were available 

directly from the TLS point clouds. Eitel et al. [16] also use both TLS radiometry and geometry to 

detect the nitrogen status of wheat for optimizing fertilizer applications. 

In the aforementioned studies [4,11,13–17], high quality data are captured with high-end TLS 

which is not applicable for operational use in PA due to the high cost of equipment, data acquisition 

and analysis. To overcome these drawbacks, recent studies explore and develop low-cost 3D sensing 

methods and platforms for different applications and object scales. Chéné et al. [19] capture the 

geometry of single plant components with a low-cost structured-light camera which has been proven to 

deliver high-quality data [20]. To derive height models for the full extent of grain crop fields, low-cost 

2D laser scanners are mounted on a mobile platform in [2,21]. From the captured point clouds, crop 

height models are derived and successfully used as input for biomass estimations. Similar to PA studies, a 

need for low-cost 3D sensors is also stated in the neighboring field of forestry. Eitel et al. [22], for 

example, successfully introduce an autonomous low-cost terrestrial laser scanner for monitoring forest 

growth which allows for continuous scanning of a scene at a fraction of the cost of high-end TLS. 

Applying low-cost sensors can lead to datasets with lower resolutions when compared to high-end 

sensors. In addition, low resolutions can be intentionally chosen to reduce the cost of a scanning 
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campaign [23]. With changing resolutions, the features of point clouds and their derivatives might also 

change, and influence analysis results. Höfle [13], e.g., finds that by reducing point cloud density, the 

correctness of single maize plant detection even improves slightly, whereas the completeness drops 

sharply from about 80% to 12.5% when reducing the point cloud to 10% of its original size  

(i.e., amount of single measurements). 

The effects of lower point cloud densities on derivatives like height-related raster models were 

mostly analyzed in forestry studies. González-Ferreiro et al. [24] state that a reduction of a point cloud 

to 6% of its original size (16 to 1 point/m2 by randomly keeping one point per cell) does not significantly 

affect the derived stand parameters, which include, e.g., mean height, dominant height, and stand basal 

area. Similarly, Jakubowski et al. [25] find height-related stand parameters react robustly to point 

cloud thinning until a point density of 1 point/m2 is reached. Gobakken and Næsset [26] reduce the 

density of ALS point clouds of coniferous forest stands by randomly keeping one point per 4, 8, and  

16 m² cell (0.25, 0.125, and 0.0625 points/m², respectively). A comparison between original and 

thinned point clouds shows that especially the maximum canopy height reacts sensitively to reduced 

point densities with difference values ranging from −0.85 to −2.76 m (at 0.25 and 0.0625 points/m2, 

respectively; [26]). 

High-resolution crop surface models (CSM) [27] which represent the upper boundary of a crop field 

are a crucial input for a wide range of applications in PA. For example, by normalizing a CSM with a 

digital terrain model representing the elevation of the bare soil, the crop height distribution can be 

derived, which is used as an input dataset in, for example, grain yield estimations [15], biomass 

modeling [11,14,21,28], crop nitrogen status [16] and leaf area index distribution [29]. To the 

knowledge of the authors, no study has investigated the effects of reduced point densities on TLS-based 

crop surface models for agricultural grain crop fields so far. In this study, we simulate low densities of 

grain crop field point clouds to analyze the changes in the derived surface models. Other factors 

affecting data capturing and CSM calculations, and limitations of the sensing method (e.g., laser 

footprint diameter [30,31], receiver sensitivity [30]) are not examined in this study. Their influence is 

minimized by selecting datasets which are homogeneous regarding these factors. Based on the results, 

the trade-off between point cloud density (i.e., data volume, acquisition effort) and surface model 

quality can be assessed. This study contributes to the improvement of 3D geodata capturing efficiency. 

It can therefore help to further establish 3D sensors for operational use in precision agriculture by 

overcoming cost constraints for equipment and data acquisition. 

2. Study Area and Datasets 

The study area represents a winter rye and a winter wheat field prepared by the Julius-Kühn-Institute for 

Crop and Soil Science in Brunswick, Germany (52.288° N, 10.435° E). The crops were captured on  

6 June 2013 at a growth stage of 71 (rye) and 67 (wheat) according to the BBCH scale [32]. Seed 

density was 250 grains/m2 for rye and 360 grains/m2 for wheat. The plain fields of similar growth and 

soil conditions had a size of 130 m × 6 m and they were subdivided into three parts with different 

nitrogen fertilizing stages (100%, 50%, and 10%) (Figure 1, Table 1). The different fertilization 

resulted in different crop stand densities which were visible directly in the fields (Figure 2). To relate 

CSM elevation changes to actual crop heights, the maximum height of single plants was measured at 
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multiple locations in each fertilizing stage and the mean value of the measurements was derived 

(Figure 1, Table 1). 

Figure 1. Study area: Scan positions, fertilizing stages and subsampled areas for analysis. 

 

Table 1. Fertilizer application and manual plant height measurements in the analyzed crop 

stands. The number after the crop name indicates the nitrogen fertilizing stage in percent. 

Crop 
Fertilization 

[kg/ha] 

Manual Measurements of Maximum Plant Height 

Number of Measurements Mean [m] 

Rye 10 1 × 10 6 1.16 
Rye 50 2 × 25 3 1.00 

Rye 100 2 × 50 6 1.04 
Wheat 10 1 × 16 10 0.52 
Wheat 50 2 × 40 10 0.69 

Wheat 100 2 × 80 10 0.81 

Figure 2. Bird’s eye view of the analyzed crop stands. (a), (b), (c) 100%, 50%, 10% 

nitrogen fertilization, respectively. (A) Rye; (B) Wheat. 
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The applied time-of-flight VZ-400 laser scanner (Riegl, Horn, Austria) emits near-infrared beams of 

1550 nm wavelength and 0.35 mrad divergence (3.5 mm diameter at 10 m distance). Its range accuracy 

is 5 mm (one sigma) at 100 m distance according to the data sheet [33]. The fields were scanned with 

the scanner mounted about 4 m above ground on an elevated platform. High-resolution point clouds 

for the experiments were acquired with a point spacing of 5 mm at 10 m distance. Additionally,  

low-resolution scans were captured from the same scan positions with a point spacing of 17 mm at  

10 m distance. They are the basis for direct comparisons to the simulated low-resolution scans 

generated in this study. 

To assess the effects of point density reduction on crop surface models in areas of different crop 

stand densities, point cloud subsamples containing single and first echoes were extracted from each 

fertilizing stage. To achieve similar scanning geometries for the subsamples, a range filter from 12 m 

to 19 m was applied to the point cloud of the scan position closest to the respective fertilizing stage 

plot (Figure 1), which is the range available in all fertilizing stages. Within this range, factors which 

are not in the focus of this study but which also influence the derivation of CSMs (e.g., laser footprint 

diameter [30,31]) are considered to be constant. The occurrence of missing recordings due to low echo 

energy at the maximum scanning range [30] is also assumed to be minimized by applying the range 

filter as the selected areas are close to the scanner and well within the maximum scanning range of up 

to 600 m [33]. The number of laser points that penetrate the crop stand horizontally via the field border 

was reduced by including a distance of minimum 1 m to the crop field boundary for subsampling. 

Vertical outliers were removed manually using the Riegl RiSCAN PRO software. The six resulting 

point clouds (Table 2) were exported into ASCII files which contain the XYZ coordinates for  

the analyses. 

Table 2. Features of the high-resolution point clouds. The number after the crop name 

indicates the nitrogen fertilizing stage in percent. 

Crop 
Extent 

[m × m] 
Number of Points  

Point Density [Points/0.01 m2] 

Mean Maximum Standard Deviation 

Rye 10 4 × 11 153,940 18.6 222 30.4 
Rye 50 3.5 × 8 74,493 15.0 142 21.0 

Rye 100 3 × 8 80,969 13.0 170 21.5 
Wheat 10 3 × 8 100,169 16.5 148 24.2 
Wheat 50 3 × 9 99,077 23.8 122 23.6 
Wheat 100 5 × 9 154,057 23.4 224 27.3 

3. Methods 

The main steps conducted in this study are summarized in Figure 3. Data preparation and 

preprocessing were described in Section 2. In Section 3.1., the method for reducing the point density 

and the resulting datasets are introduced, followed by details on the crop surface modeling and crop 

surface model change assessment in Section 3.2. 
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Figure 3. Overview workflow of the study design. 

 

3.1. Point Density Reduction 

To simulate lower scanning resolutions, the number of points is reduced in each of the six sample 

point clouds by selecting the point of every nth laser beam based on the timestamp of beam emission, 

with n being a multiple of two (Figure 4a). The approach simulates a scanning set-up with lower 

scanning frequencies of a static terrestrial scanner as introduced, e.g., in [22]. The steps applied in this 

study range from 2 to 50 so that 25 reduced point clouds were generated from the original dataset. The 

final step width of 50 is chosen to reach the point cloud reduction which corresponds to the data of the 

low-resolution scans. The stepwise reduction approach is also used, e.g., in [34,35]. 

Figure 4. Stepwise point density reduction. (a) Original point cloud with index of laser 

beam timestamp; (b) Stepwise point selection with step width 2; (c) Resulting reduced 

point cloud. 

 

3.2. Crop Surface Modeling and Surface Model Change Assessment 

In order to assess the effect of point cloud thinning on crop surface models, two CSM types are 

derived and analyzed: (1) a raster Zmax with the maximum LiDAR point elevation value assigned to the 

respective cell and (2) a raster Zp90 with cells containing the elevation of the 90th percentile. Zmax is 

chosen to analyze a simple and straight forward canopy surface model which is, for example, 

appropriate for on-line processing. With Zp90, a model is analyzed which is more robust against 
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changes in point density than Zmax [24–26]. The CSMs are calculated with a cell size of 0.1 m × 0.1 m 

which is the cell size that results in a seamless CSM derived from the high-resolution (5 mm at 10 m 

distance) point clouds (CSMref). In the CSMs which are derived from thinned point clouds, raster cells 

with no value can occur because the respective cells are void of laser points. These raster gaps are 

included and evaluated in the subsequent analyses and, thus, are intentionally not interpolated as it was 

done in other studies, e.g., [14,27]. 

The assessment of the CSMs derived from the thinned point clouds (CSMred) is based on the 

comparison between the CSMref and CSMred raster datasets. Thus, this study follows an intrinsic 

approach [36] which allows for a relative assessment based on features derived from the datasets 

themselves, as applied, e.g., in [37–39] who use their maximum quality datasets as a basis for 

reference models and model change assessments. The overlap of CSMref and the respective CSMred is 

guaranteed by a fixed coordinate of the raster origin. All calculations were conducted in the software 

Orientation and Processing of Airborne Laser Scanning Data (OPALS) [40]. 

In order to validate the CSMred, they are compared to their counterparts derived from the  

low-resolution scan datasets (CSMslowres). Number of points, coverage (i.e., number of raster cells with 

elevation values relative to the seamless CSMref), standard deviation of CSM elevation values, and the 

mean absolute elevation difference to the CSMref are compared. CSMred and CSMslowres are connected 

via the absolute number of points in the respective point clouds: In the 10%-fertilized rye dataset,  

for example, the reduction step width 48, with 3221 points, is closest to the low-resolution scan, with 

3182 points, and is therefore used for the comparison. 

Table 3. Crop surface model parameters examined in this study. 

Parameter Description Represented Feature 

Coverage 
Percentage of cells with elevation values 

relative to the seamless CSMref 
Horizontal distribution of points 

Standard 
deviation 

Standard deviation of the  
elevation values of the derived CSMs 

Vertical distribution of points and  
elevation values in the derived CSMs 

Mean 
difference to 

CSMref 

Mean elevation difference  
CSMref − CSMred or CSMref − CSMlowres 

Measure of CSM height underestimation 
due to reduced data resolution 

To analyze the CSMred development over the whole range of reduction steps, coverage, standard 

deviation, and the mean absolute difference values CSMref − CSMred are calculated for each reduced 

point cloud (Table 3). The three parameters are chosen to represent core features of the CSMs: The 

coverage describes the ratio of cells relative to the CSMref which contain at least one laser point and 

thus an elevation value. On the basis of the coverage, the required scanning resolution for deriving 

seamless CSMs or CSMs that contain a given percentage of empty cells can be assessed. The standard 

deviation of CSM elevation values (SD) represents the vertical heterogeneity of the crop surface.  

It influences, e.g., the application of fungicides, which depends on the crop surface area [29]. If the SD 

changes with reduced scanning resolutions, an adjustment of the herbicide quantity would be 

necessary. The mean absolute differences CSMref − CSMred represent the decreasing probability of 

capturing the highest points in a crop canopy with decreasing scanning resolution. All applications that 

are based on CSMs or their derivatives are, thus, affected by CSMref − CSMred differences, which 



Sensors 2014, 14 24219 

 

 

implies the need for corrected CSM elevation values when lower scanning resolutions are used for 

capturing crop fields. 

4. Results 

The results of stepwise thinning of the high-resolution datasets are described in Section 4.1.  

Section 4.2 contains the comparison between the stepwise-thinned point clouds and their low-resolution 

counterparts as well as the description of the changes of the CSM parameters coverage, standard 

deviation, and the mean elevation difference in absolute values and percentage of crop height. 

4.1. Effects of Point Density Reduction 

Figure 5 shows an exemplary result of the stepwise point cloud reduction. The stepwise reduction 

method follows closely a 1/n relationship with n being the step width (i.e., every n-th point of the full 

dataset is selected). The number of points in the point cloud shown in Figure 5b is 2.09% of the 

original dataset, corresponding well to the theoretical percentage of 2.08% derived from step width 48. 

The horizontal extent and high point density clusters are preserved by the method whereas areas with a 

low number of points tend to become void of points. The point cloud which was extracted from the 

coarse scan (Figure 5c) exhibits a similar point distribution but with a more emphasized distinction 

between high and low point density areas. The vertical extent of the thinned (Figure 5b) and  

low-resolution (Figure 5c) point cloud is 0.1 m and 0.3 m smaller, respectively, which reflects the 

lower probability of capturing single protruding stalks when applying lower resolutions. 

Figure 5. Exemplary results for point density reduction. Bird’s eye view on the point cloud 

of 10%-fertilized rye. (a) Original point cloud colored according to point elevation;  

(b) Result of point cloud thinning with step width n = 48; (c) Point cloud of low-resolution 

scan with a number of points similar to (b). (b) and (c) are also colored according to  

point elevation.  
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4.2. Crop Surface Modeling and Surface Model Change Assessment 

To compare the point clouds produced by low-resolution scans with the corresponding point cloud 

resulting from the stepwise reduction process, descriptive features are summarized in Table 4. 

Additionally, coverage, standard deviation, and the mean value of the difference to the CSMref are 

listed for the CSMslowres and CSMsred. 

Table 4. Point cloud and CSM features of the low-resolution scans (‘Lowres’) and their 

counterparts derived from stepwise point cloud thinning (‘Step n’). 

Crop 
Point 
Cloud 

No. of 
Points 
(abs.) 

No. of Points 

(Mean)  

CSM 
Type Coverage 

Standard 

Deviation 

CSMref − 

CSMred/lowres 

(Mean) 

   [Points/0.01 m²]  [%] diff. [m] diff. [m] diff. 

R10 

Lowres 3182 0.4 Zmax 44.2  0.214  0.24  
   Zp90 21.8  0.191  0.15  

Step 48 3221 0.4 Zmax 53.7 −9.5 0.225 −0.011 0.17 0.10 
   Zp90 22.4 −0.6 0.179 0.012 0.09 0.06 

R50 

Lowres 1585 0.3 Zmax 37.7  0.124  0.11  
   Zp90 15.7  0.110  0.05  

Step 48 1546 0.3 Zmax 43.7 −6.0 0.122 0.002 0.12 −0.01 
   Zp90 13.3 2.4 0.097 0.013 0.06 −0.01 

R100 

Lowres 1670 0.3 Zmax 36.8  0.122  0.15  
   Zp90 16.2  0.109  0.08  

Step 48 1680 0.3 Zmax 45.6 −8.8 0.125 −0.003 0.13 0.02 
   Zp90 14.9 1.3 0.100 0.009 0.07 0.01 

W10 

Lowres 2110 0.4 Zmax 51.1  0.094  0.08  
   Zp90 22.9  0.078  0.03  

Step 48 2076 0.4 Zmax 56.6 −5.5 0.087 0.007 0.08 0.00 
   Zp90 21.6 1.3 0.067 0.011 0.04 −0.01 

W50 

Lowres 2123 0.5 Zmax 49.0  0.062  0.06  
   Zp90 20.4  0.050  0.02  

Step 46 2,127 0.5 Zmax 53.7 −4.7 0.060 0.002 0.07 −0.01 
   Zp90 18.4 2.0 0.046 0.004 0.03 −0.01 

W100 

Lowres 3396 0.5 Zmax 48.8  0.049  0.03  
   Zp90 20.7  0.051  0.00  

Step 46 3326 0.5 Zmax 53.6 −4.8 0.053 −0.004 0.06 −0.03 
   Zp90 18.7 2.0 0.046 0.005 0.03 0.00 

Average 

Lowres -- 0.4 Zmax 44.6  0.111  0.11  
   Zp90 19.6  0.098  0.04  

Step -- 0.4 Zmax 51.2 −6.6 0.112 −0.001 0.11 0.00 
   Zp90 18.2 1.4 0.089 0.009 0.05 −0.01 

Regarding the point density, the coarse scans and the reduced point clouds have a similar number of 

points per cell of 0.4 points/0.01 m² in average. On the other hand, the coverage of the derived CSMs 

is lower for the CSMslowres, especially in case of the Zmax CSM with a mean coverage of 44.6% for the 

CSMslowres and 51.2% for the CSMsred. For the Zp90 surface models, the coverage is similar with 19.6% 

(CSMlowres) and 18.2% (CSMred). Also the standard deviations of the CSM elevation values and the 

mean difference to the CSMref correspond well with the difference values being at least one order of 

magnitude smaller. 
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The following diagrams (Figures 6 and 7) describe the CSMred changes with decreasing point 

density by showing the development of the parameters chosen for characterizing the CSMsred over the 

whole range of point cloud thinning. 

Figure 6. Development of mean CSMred coverage with stepwise reduced point cloud size. 

Solid line: Mean coverage value of all analyzed crop plots, dashed line: range of coverage 

values. Blue: Zmax CSM, green: Zp90 CSM. Cross markers: Mean CSMlowres values. 

 

The coverage relative to the CSMref is summarized in Figure 6. To relate the calculations to the 

CSMslowres, the mean coverage values of Table 4 are shown as crosses at step width 48. The most 

prominent feature of the parameter development in Figure 6 is the general decrease of coverage values. 

For example, a reduction to 25% of the original point cloud size (step width 4) still leads to a high 

coverage of 97.2% and 93.8% for Zmax and Zp90 models, respectively. However, starting from the first 

reduction steps, a divergence between the Zmax and Zp90 CSMred values can be seen. This can be 

attributed to the exclusion of cells which contain only one point in the Zp90 CSM and which are not 

used for the derivation of elevation percentile values. It occurs mainly in the first half of the reduction 

steps until about step width 26, finally leading to a coverage of 49.5% for the Zmax CSMred and 17.3% 

for the Zp90 CSMred at step width 50. 

When differentiating between crops and fertilizing stages, the CSMsred show a similar behavior in 

both the Zmax and Zp90 models. The lowest loss of coverage is calculated for the 10%-fertilized wheat 

plot. The descending order of the other datasets is 50%, 100%-fertilized wheat and 10%, 100%,  

50%-fertilized rye. Therefore, the wheat plot CSM coverage is less sensitive against point cloud 

reduction. The least fertilized plot shows the lowest coverage loss when comparing the fertilizing 

stages for one crop variety. This can be explained by the more regular penetration of laser beams in the 
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less dense stands, so that the points available for CSM raster derivation are distributed more 

homogeneously within the CSM extent and, thus, fewer cells void of points occur. 

Figure 7. Development of mean CSMref − CSMred elevation difference values with stepwise 

reduced point cloud size. (a), (b) Absolute values for Zmax and Zp90 CSMs, respectively;  

(c) Values for Zmax in percent of crop height (manual field measurements). Blue: rye plots, 

green: wheat plots. Solid line with markers: 100% fertilizing, solid line: 50% fertilizing, 

dashed line: 10% fertilizing. Crosses: CSMlowres values at the corresponding reduction step 

width. Cross indices: ‘R’ = rye, ‘W’ = wheat, number = fertilizing stage. 

 

Finally regarding the CSMsred and CSMslowres coverage values, the Zp90 CSM derived from reduced 

point clouds shows practically no difference. Contrary, the coverage of the Zmax CSMred is too high 

when compared to the CSMlowres which is due to the more homogeneous distribution of points in the 

thinned point clouds (Figure 5). The CSMred coverage should thus be considered too optimistic in case 

of the Zmax CSMs. 

The standard deviations show no distinct change all over the different reduction steps. For both the 

Zmax and Zp90 CSMsred, a slight increase of values occurs which follows a linear function with 0.0012 

(Zmax) and 0.0006 (Zp90) slopes. At the same time, the mean elevation values of the CSMsred exhibit 

slight decreases with slopes of −0.0028 (Zmax) and −0.0008 (Zp90). In addition to the point density 

reduction, the observed standard deviation changes are also influenced by changing mean values. 

However, the magnitude of change in the standard deviation is marginal, so that the standard deviation 
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of CSMred elevation values is considered constant over the whole range of reduction steps. Models and 

applications that use the standard deviation of CSM elevation as input can therefore be regarded as 

robust against reducing the scanning resolution. 

A further important feature examined in this study is the CSM elevation change. Figure 7a,b shows 

the mean absolute elevation difference CSMred – CSMref for Zmax and Zp90 surface models. Similar to 

the development of coverage (Figure 6), the CSMred mean elevations decrease with increasing point 

reduction, following logarithmic functions similar to the results in [25,41] given for forest stands. 

When comparing the Zmax (Figure 7a) and Zp90 (Figure 7b) CSMs, the Zmax models clearly react 

stronger to the point reduction with the final values at step width 50 being on average two times higher 

than the respective Zp90 values. Corresponding to the findings in forestry studies [24–26], the more 

robust Zp90 CSM can therefore also be considered advantageous for applications in PA. 

The CSM elevation development also differs between the two crop varieties, with wheat reacting 

less sensitively to point reduction than rye. This is the case for the Zmax and the Zp90 CSMs, but more 

emphasized for the Zmax models. In both crop varieties, the two higher fertilized plots show a similar 

development of mean CSMred elevation values whereas the 10% fertilizing stages show a stronger 

decrease, and thus diverge from the 100% and 50% fertilizing stages. 

The comparison between CSMred and CSMlowres indicates that the CSMsred tend to overestimate the 

reduction of CSM elevation in the case of the wheat plots in both the Zmax and the Zp90 models  

(Figure 7a,b; Table 4). Taking the example of the 100%-fertilized wheat, the Zp90 model derived from 

the thinned point cloud shows an elevation difference to the CSMref of 0.026 m, but the Zp90 model 

which is based on the low-resolution scan has an even lower difference of 0.003 m so that almost no 

reduction of CSM elevation over the whole range of simulated resolutions can be expected when 

conducting real scans. In contrast, in the case of the rye plots, the CSMlowres values cover a wider 

range, leading to a slight overestimation of CSM elevation difference in the 50%-fertilized rye plot and 

a strong underestimation in case of the 10%-fertilized plot (Figure 7a,b). 

Overall, the 100%-fertilized wheat, which can be considered the plot with the highest crop density 

due to seed density and maximum fertilization, is least affected by point cloud reduction. At the final 

reduction stage (step width 50, 2% of the original point cloud size), the CSMred is in average 5.7 cm 

and 2.8 cm lower in the Zmax and Zp90 CSM, respectively. In contrast, the 10%-fertilized rye plot shows 

the largest CSM elevation decrease with 18.1 cm (Zmax) and 9.6 cm (Zp90). 

In addition to the absolute CSM difference values, the mean elevation difference relative to crop 

height is of interest. In Figure 7c, the difference values of the Zmax CSMs are therefore related to the 

manual crop height measurements (Table 1) and given in percent of crop height. A different pattern 

can be seen when compared to Figure 7a. The rye plot CSMs do not strictly show the highest elevation 

reduction values any more as the 10%-fertilized wheat has the highest percentage of CSM elevation 

change. Furthermore, the rye plots show a similar development over the range of reduction steps and 

diverge less than in Figure 7a. However, the rye plots still react more sensitively to point reduction 

compared to 100% and 50%-fertilized wheat. 

Overall, the 10%-fertilized wheat plot shows the highest percentage of elevation differences with up 

to 17.0% of the crop height at reduction step 50, although the comparison to the CSMlowres value 

indicates an overestimation of the difference. In addition, the divergence from its higher fertilized 

counterparts is more emphasized in comparison to Figure 7a. Similar to Figure 7a, the robustness of 
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the 100%-fertilized wheat plot data against point reduction stands out. At a reduction to 6.25% of the 

original point cloud size (step width 16), the mean CSMred elevation is only 5% lower than the 

measured crop height. In contrast, 10%-fertilized wheat shows a decrease of 11% at the same point 

reduction level. 

5. Discussion 

A prominent feature when comparing the CSM elevation changes in Figure 7a,b is the high 

sensitivity of the Zmax CSM, which is consistent with the findings in [24–26]. Thus, depending on the 

application in PA, the appropriate model type must be chosen. If, for example, a CSM were used to 

adjust the height of an agricultural processing tool to the crop surface, the Zmax CSM would better 

describe the maximum surface elevation, and a high scanning resolution would be required. In 

contrast, for empirical models of, e.g., biomass as used in [11] for optimizing the speed of a combine 

harvester, a Zp90 CSM can be used as input, thus reducing the required scanning resolution. 

In addition, the different crop varieties and densities examined in this study lead to different 

sensitivities to point density reduction. The 100%-fertilized wheat, for example, results in the lowest 

percentage of elevation loss with decreasing point density due to a very dense and plain canopy 

(indicated by low CSM standard deviations in Table 4), which intercepts most of the laser beams. The 

resulting point cloud resembles a plain that is still captured well by low-resolution scans. The 

described behavior may seem trivial, because by applying a lower scanning resolution, the probability 

of capturing the highest point of a plant obviously decreases. However, there are crucial implications 

for precision agriculture: To decide on the applied scanning resolution or the scanning device, there 

needs to be a priori knowledge about the crop stand features. If, for example, a mean Zmax CSM 

elevation loss of 7% is feasible, a wheat field with a crop density and height distribution similar to the 

100%-fertilized field used in this study can be scanned with 1/50th of the resolution applied here, 

meaning that instead of 0.005 m point spacing at 10 m distance, 0.25 m would be sufficient  

(Figure 7c). But when working on a field similar to the 10%-fertilized wheat of this study, a point 

spacing of 0.04 m would be required to reach the same CSM quality. 

Similarly, for example, when correction factors for biomass or leaf area index models have to be 

provided, generic values cannot be applied. The models must be adjusted to the crop features, as stated 

also in [42] for forestry applications. To find correction factors for homogeneous parts of a crop field, 

representative areas can be captured with both LiDAR and manual reference measurements. 

The crop stand features also influence the robustness of CSM coverage: In sparse and homogeneous 

crops like the 10%-fertilized wheat used in this study, the penetration rate of laser beams is higher. By 

reducing the number of points of the 10%-fertilized wheat point cloud to 1/22 of its original size, a Zmax 

CSM coverage of 80% could still be achieved. To capture a crop field similar to the 10%-fertilized 

wheat used in this study, lower resolutions still provide enough measurements to derive a CSM with 

high coverage. In denser or more heterogeneous fields, on the other hand, more laser beams are 

intercepted in the canopy or single dense areas as caused, e.g., by dense tussocks, so that the crop stand 

is not homogeneously covered with measurements. Subsequently, compared to the example of  

10%-fertilized wheat, the 50%-fertilized rye only shows a coverage of 64%, so that in comparable crop 

stands, higher scanning resolutions would be necessary for deriving seamless CSMs. 
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The two CSM types (Zmax, Zp90) show different sensitivities of coverage against point density 

reduction, with the Zp90 model being more sensitive (Figure 6). Thus, taking into account the higher 

sensitivity of Zp90 CSMs, there is a trade-off between coverage and elevation accuracy. However, it 

must be noted that this applies for the 0.1 m × 0.1 m raster as used in this study, which was chosen to 

achieve a seamless high-resolution CSM in accordance to other studies using the same [13], or even 

higher [11,14], resolutions. 

Finally, issues regarding the used datasets and methods are addressed. First, it should be kept in 

mind that the point cloud reduction by selecting points of every nth laser beam simulates low-resolution 

scans. The high-resolution point clouds used as a basis for the reduction contain measurements that 

were captured due to a higher penetration rate compared to a low-resolution scan. By starting the 

simulation of a low-resolution scan from a high-resolution dataset, points will be included in the 

selection of every nth laser beam that would not have been captured in case of a real low-resolution 

scan at all. This can be seen in Figure 5 as well as in the deviations between CSMsred and CSMslowres in 

Figures 6 and 7. However, the comparison between the CSMsred and CSMslowres confirms, rather than 

contradicts, the presented results so that the simulated low-resolution datasets are considered valid 

representatives of low-resolution scans. 

Second, to achieve datasets of comparable scanning conditions, plots within the same scanning 

range were selected, resulting in low incidence angles around 75° against nadir. Higher incidence 

angles are normally preferred to avoid shadowing effects in canopies [11,43,44] as visible in Figure 5a. 

However, as the object examined in this study was the crop surface and not the volume or the terrain, 

the low penetration rate that can be expected from the low incidence angle was not considered an 

obstacle for the analyses. 

Third, no interpolation method was applied to fill gaps in the derived CSMs due to cells void of 

laser points. The presented results, especially regarding the coverage values, can therefore be used as 

guidelines to assess the percentage of CSM cells that would have to be filled by interpolation methods, 

should a seamless CSM need to be provided as, e.g., in [14]. 

6. Conclusions and Outlook 

To analyze the effect of point density on high-resolution grain crop surface models, high-end TLS 

point clouds with a resolution of 5 mm at 10 m distance were thinned by stepwise reduction of the 

number of points. By comparing the derived CSMs it was found that when reducing the point cloud to, 

e.g., 25% of the number of points in the high-end dataset, the CSM coverage (i.e., cells that contain at 

least one point) is still >90% (Figure 6) and the average CSM elevation difference is <4% of crop 

height (Figure 7c). However, coverage and elevation sensitivity strongly depend on CSM type  

(e.g., Zmax or Zp90) and crop stand features (e.g., surface heterogeneity, crop density). The coverage of 

Zmax CSMs is more robust against point cloud thinning compared to Zp90 CSMs, but the Zmax CSM 

elevation reacts more sensitively. Additionally, the CSM coverage of the sparse crop stands was less 

sensitive compared to the dense stands. In contrast, the CSM elevation of the dense crop stands results 

in a higher robustness against reducing the number of points. Thus, depending on the application, a 

trade-off between coverage and robust elevation modeling has to be taken into account by choosing the 

appropriate CSM type and scanning resolution. Furthermore, when using CSMs as input for, e.g., 
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biomass or leaf area index models, correction factors have to be derived from on-site measurements to 

cover the crop height and density heterogeneities within a field. 

The applied reduction method approximates datasets produced by scanning devices with lower 

performance and cost, or scan settings which were chosen to capture smaller data volumes. A comparison 

between high-end datasets and data produced by real low-cost TLS as used, e.g., in [22,45,46] would 

be a further important step towards optimized 3D or, by adding the time dimension, 4D analysis of 

grain crop fields. In addition, other scanning set ups like 2D laser scanners mounted on mobile 

platforms [11,21,43] or unmanned aerial vehicle-borne laser scanning (ULS) [15,45,47–50] should be 

investigated regarding the minimum requirements for deriving models that are of value for PA 

applications. Homogeneous footprint sizes, nadir perspectives, and scanning ranges can be achieved by 

mounting multiple 2D scanners on a boom spanning the working width of an agricultural machine. The 

mentioned scanning set ups can provide advantageous scanning geometries for penetrating a crop stand 

to the ground and for avoiding disadvantages like, e.g., angle-dependent errors as examined in [51]. A 

combination of multiple low-cost sensors scanning the area closely in front of an agricultural machine 

over the whole working width could thus be used for deriving, e.g., canopy height or biomass models 

on-site and on-line, providing information for site-specific crop treatment and growth monitoring in 

real time. Scanning devices operating with larger laser footprint diameters compared to the 3.5 mm at 

10 m distance applied in this study were used in [4,11,43], with up to 140 mm at 10 m distance in [4]. 

Examining the optimal footprint diameter for capturing objects like grain crop fields similar to the 

forestry studies [30,31] would be beneficial for improving the efficiency of capturing 3D geodata in 

PA. Furthermore, from point clouds captured by a device providing the full waveform of large 

footprints, the vertical structure of crop stands could be derived as shown for a forested area in [52]. 

Another promising method for the 3D reconstruction of crop fields is based on imagery captured from 

cameras mounted on unmanned aerial vehicles (UAV). Using the structure from motion-approach 

(SfM) to derive 3D geodata from UAV-based photographs, the studies [12,53] show a high potential of 

UAV use in precision agriculture. The transfer of the findings presented in this study to other sources 

of point clouds of agricultural objects, e.g., the SfM method, should be investigated to find new, 

efficient and complementary sources for 3D geodata important for precision agriculture. 
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