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Abstract: Surface Electromyography (sEMG) is a non-invasive measurement process that
does not involve tools and instruments to break the skin or physically enter the body to
investigate and evaluate the muscular activities produced by skeletal muscles. The main
drawbacks of existing sEMG systems are: (1) they are not able to provide real-time
monitoring; (2) they suffer from long processing time and low speed; (3) they are not
effective for wireless healthcare systems because they consume huge power. In this work,
we present an analog-based Compressed Sensing (CS) architecture, which consists of three
novel algorithms for design and implementation of wearable wireless sEMG bio-sensor.
At the transmitter side, two new algorithms are presented in order to apply the analog-CS
theory before Analog to Digital Converter (ADC). At the receiver side, a robust
reconstruction algorithm based on a combination of `1-`1-optimization and Block Sparse
Bayesian Learning (BSBL) framework is presented to reconstruct the original bio-signals
from the compressed bio-signals. The proposed architecture allows reducing the sampling
rate to 25% of Nyquist Rate (NR). In addition, the proposed architecture reduces the
power consumption to 40%, Percentage Residual Difference (PRD) to 24%, Root Mean
Squared Error (RMSE) to 2%, and the computation time from 22 s to 9.01 s, which
provide good background for establishing wearable wireless healthcare systems. The
proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR) for
the reconstruction process.
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1. Introduction

Today’s healthcare systems are effective for an individual measurement from the human body, but
are not integrated into comprehensive Body Area Networks (BANs), wherein simultaneous biomedical
sensors work on a test subject. Furthermore, there is a need for increasing patient mobility because in
many cases biomedical sensors for medical monitoring are not wireless yet [1]. This creates the need for
the implementation of new wireless healthcare systems with a common architecture and the capacity
to handle multiple wearable wireless bio-sensors, monitoring different body signals, with different
requirements. Using wireless healthcare systems based on low-power wearable wireless bio-sensors
has two aspects [1]. Firstly the use of new wireless technological solutions enables individually based,
multi-parameter monitoring at home. Thus patients with chronic diseases, as well as a constantly
growing number of seniors, will profit from treatment and medical monitoring at home or workplace.
Moreover, unlimited mobility implies the use of wireless and even implanted bio-sensors, which greatly
enhance home monitoring and follow-up of medical conditions. The second aspect emphasizes with
increasing the efficiency of treatments at hospital and medical centers. The rising healthcare costs also
make it an urgent need to develop ambulatory systems to reduce hospital visits. Therefore, it is necessary
to design portable, low power, low sampling rate, and high-performance wireless health care systems
that deliver healthcare services at any location 24/7. The sEMG method is a non-invasive and convenient
procedure to record signal and machine-based estimation of force of muscle contraction or for assessing
muscle fatigue with large number of rehabilitation and other applications such as myoelectric control,
sensors placement, fatigue detection, and voice recognition [2]. Existing sEMG systems are based on
wired/fixed sensors, and they suffer of long processing time, low speed, limited mobility, high cost, and
large size [3,4]. These limits create real need for the implementation of new wearable wireless sEMG
sensors that deliver healthcare services anywhere at any time [5].

The sEMG bio-signals can be processed to detect medical abnormalities or to analyze the
biomechanics of the human or animal movement [6,7]. There are three important features in the sEMG
bio-signals, i.e., amplitude (ranging from 1 µV to 50 mV), frequency, and phase. The sEMG signals
exhibit good level of sparsity in the time and frequency domains [7]. The existing and conventional
data acquisition approaches have traditionally relied on the Shannon sampling theorem [7]. This theory
says a signal must be sampled at least twice its bandwidth in order to be represented without error.
The traditional approaches have two major drawbacks. Firstly, they generate huge intolerable number
of samples for many applications with a large bandwidth. Secondly, even for low signal bandwidths,
including some biomedical signals, they produce a large amount of redundant digital samples. That
is why it is desirable to reduce the number of acquired samples by utilizing sparsity. Compressive
sampling (CS) is a random data acquisition procedure that requires only a few incoherent random
linear measurements to compress signals that are sparse in some domain [7]. The CS theory is an
optimal solution for this purpose. Specifically, the application of analog-CS before the ADC achieves
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compression of the data with a proportionate savings in energy. After an exhaustive search, we did not
find any new study that aims at an effective random sampling rate data acquisition algorithm for wireless
sEMG systems. This paper aims to apply analog-CS theory to establish low power and low sampling rate
algorithms for a wearable wireless sEMG sensor for long-term recording of sEMG signals, which is a
very useful tool for detection of various pathologies. This work is novel in four aspects: (1) compressing
sEMG bio-signal at the sensing step before ADC; (2) digitalizing only compressed sEMG bio-signal;
(3) transmitting the sEMG bio-data only when a significant event is detected; (4) reducing the number of
bits transmitted to minimize the average radio power while maintaining the captured signal information.
In this paper, we firstly apply the analog-CS theory as a new and random data acquisition procedure to the
transmitter side before ADC in order to compress analog input signal. Secondly, we apply the Sensing
Matrix Selection (SMS) method at the transmitter side in order to determine the best fit for random
sensing matrix in the CS scenario. Thirdly, the reconstruction algorithm based on the contribution of
`1-`1-optimization and BSBL framework is applied to the receiver side in order to recover the original
sEMG bio-signals. The proposed architecture allows reducing the sampling rate to 25% of NR. In
addition, the proposed architecture reduces the power consumption to 40%, PRD to 24%, RMSE to
2%, and the computation time from 22 s to 9.01 s, which provide good backgrounds for providing
low sampling rate wireless healthcare services. Furthermore, the proposed architecture achieves robust
performance in low SNR for the reconstruction algorithm. The proposed algorithms are created by C,
HSPICE, and MATLAB/Simulink toolboxes. The proposed algorithms are tested over several hours of
clinical sEMG bio-signals from the following databases: (1) PhysioNet (PhysioBank ATM) [8]; (2) EMG
Bank [9]; (3) EMG project lab [10]. The structure of this paper is organized as follows: In Section II, an
overview about CS theory as a random data acquisition method is presented. In Section III, the proposed
system architecture and our novel algorithms for the transmitter and receiver sides of wireless sEMG
sensor are presented. In Section IV, the results on sampling rate, power consumption, computation time,
and reconstruction process are illustrated. The conclusion is given in Section V and future works are
discussed in Section VI.

2. Overview of Compressed Sensing Theory

The need for compression of sEMG bio-signals arises in the following areas: (1) large sEMG database
in the hospital; (2) long-term sEMG recording; (3) ambulatory (24 h) monitoring of sEMG bio-signals;
(4) limits on hardware memory and delay; (5) establishing ultra low power and low sampling rate
wireless healthcare sEMG systems [11–13].

The existing compression techniques rely on the Shannon sampling theorem and have two major
drawbacks. Firstly, they generate large number of samples for many applications with a large bandwidth.
Secondly, even for the bio-signals with low bandwidth, they produce a large amount of redundant digital
samples. Table 1 compares the existing and random data acquisition methods based on the CS theory in
terms of sampling frequency (fs), sampling rate, Compression Ratio (CR), and distortion degree [14].
Highlighted in Table 1 are the lower values for sampling rate and higher values for CR obtained by the
analog-CS theory. The CS theory is a mathematical framework in acquiring and recovering for sparse
signals with the help of an incoherent projecting basis that provides insight into how a high resolution
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dataset can be inferred from a relatively small and random number of measurements using simple random
linear process. The basic idea of the CS theory as a new and random sampling approach is that when the
biomedical signal is sparse or nearly sparse in terms of the number of non-zero coefficients, relatively
few well-chosen observations suffice to reconstruct the original signal. In fact, CS is a new approach for
the acquisition and recovery of sparse or compressive biomedical signals significantly below the classical
Nyquist rate. Any signal can be expressed as [15]:

D =
N∑
i=1

(SiΨi) (1)

where S is the coefficient vector for D under the basis Ψ = [Ψ1,Ψ2, ...,ΨN ]. If D has the most compact
representation in Ψ, then D can be compressed in the proper basis [16]. The CS theory also proposes that
rather than acquiring the entire signal and then performing compression, it should be possible to capture
only a part of the signal’s useful information. In the CS theory, we have a M ×N measurement matrix
Φ and biomedical signal D with N × 1 dimension such that M � N ; therefore, the compressed signal
C can be expressed as [17]:

[C]M×1 = [Φ]M×N [D]N×1 (2)

The original signals can be exactly reconstructed, with a high level of accuracy and probability via `1
norm by solving the following convex optimization problem [18]:

min‖D‖1 s.t C = ΦD (3)

where ‖D‖1 is defined as ‖ D ‖1=
∑

n ‖ Dn ‖ with D ∈ <N . However, certain conditions must be met
to guarantee the accuracy of the reconstruction process [19,20].

Table 1. Compression techniques.

Technique Sampling Rate Distortion CR

Existing methods 2fs Medium Medium
CS method fs/CR Low High

2.1. Digital and Analog-CS Scenarios

The applications of wireless and wearable healthcare systems are constrained by the available energy,
which imposes strict energy requirements on the bio-sensor circuits. That is why the following items are
important to minimize power consumption: (1) compress bio-signal at the sensing step; (2) digitize
only compressed bio-signal; (3) transmit data only when a significant event is detected; (4) reduce
the number of bits transmitted to minimize the average radio power while maintaining the captured
bio-signal information. Most of the power (78%) of the total power in an sEMG bio-sensor is dissipated
in the transmitter side [21]. Therefore, there is a real need to decrease the amount of data to be transmitted
and reduce the duty cycle of the transmitter to establish ultralow power bio-sensors. The analog-CS
theory is an optimal solution that achieves significant improvements in minimizing sampling load as
well as power consumption. Figure 1 shows the difference between analog-CS and digital-CS scenarios.
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Figure 1. CS scenarios: (A) Digital (B) Analog.

It can be seen in Figure 1 that the analog-CS scenario is based on Random demodulation (RD)
using Gilbert multiplier [22]. This scenario consists of the following steps. (1) The analog bio-signal
multiplies with the random sensing matrix φ based on Gilbert approach [22,23]; (2) The output signal
of multiplier goes to an active integrator; (3) The M × 1 dimension compressed version of the input
bio-signal is generated at the transmitter side. Therefore, in the analog-CS scenario at the transmitter
side, the input analog sEMG bio-signal [D]N×1 is compressed to output analog bio-signal [C]M×1 such
thatM � N and then, the ADC needs to digitize a smaller amount of data [24,25]. In the wireless sEMG
systems, real-time sEMG bio-data is transmitted to a personal base station (e.g., a smart-phone, personal
computer, or any portable device) and then transmitted to hospital, medical centers, and healthcare
provider via the Internet.

3. The Proposed System Architecture

Figure 2 illustrates the proposed block diagrams based on the analog-CS theory for the transmitter and
receiver sides of an ultralow power wireless sEMG sensor. The transmitter side consists of the following
parts: (1) sEMG amplifier including Low Noise Amplifier (LNA) and Variable Gain Amplifier (VGA)
with variable gain in 60–80 dB for frequency range from 15 Hz to 1 kHz [26,27] (in our work, MD3880
for VGA and INA329 for LNA have been used); (2) an Analog-Front-End (AFE) (in our work, ADS1298
has been used); (3) an analog-CS step based on two proposed algorithms; (4) 16 bits ADC to digitize the
analog compressed sEMG; (5) the transmitter to send the compressed bio-signals via wireless networks
to the receiver (in our work the TeleMyo 2400T G2 Transmitter at a sampling rate of 1500 samples per
second has been used). The suitable CR level of a raw sEMG bio-signal for diagnosis and treatment
purposes is between 10 and 30, which requires a resolution of 8–12 bits [28]. (In our work, CR = 25

with 10-bits resolution has been adopted). On the other hand, to control the CR level, the sparsity
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level of the bio-signal can be adjusted by applying a robust dynamic thresholding approach to the input
signal [29]. We use the dynamic approaches based on the following steps: (1) the DC level of the
bio-signal computes a sliding average over a window of length w (w has selected between 5 and 10 in
our work); (2) set the threshold level as a fraction of the peak-to-peak amplitude; (3) control sparsity
level by careful selection of the sparsifying domain [30]. At the receiver side, the original bio-signal is
reconstructed by applying a robust reconstruction algorithm based on a contribution of `1-`1-optimization
and BSBL framework for diagnostic and treatment purposes.

Figure 2. The proposed system architecture (A) Transmitter (B) Receiver.

4. The Proposed Algorithms

Three new algorithms for the transmitter and receiver sides are presented. The purpose of Algorithms
I and II is to generate analog compressed sEMG bio-signal at the transmitter side. The main objective
of Algorithm III is to recover the original sEMG bio-signal from the compressed bio-signal at the
receiver side.

4.1. Transmitter Algorithms

The fundamental purpose of Algorithm I is to generate the analog compressed sEMG bio-signal based
on random sensing dictionary φ obtained from the SMS method in Algorithm II. This Algorithm consists



Sensors 2014, 14 24311

of the following steps: (1) get the random sensing matrix φ from Algorithm II [30]; (2) examine the
Restricted Isometry Property (RIP) for the selected matrix; (3) calculate the sparsity level; (4) generate
the compressed bio-signal. The flowchart of Algorithm II is shown in Figure 3. The main objective
of Algorithm II is to select the best candidate for the random sensing matrix φ in the CS scenario to
ensure high accuracy in the reconstruction process. This algorithm comprises of the following steps.
(1) Apply dynamic thresholding to the raw sEMG bio-signal; (2) Select the initial square matrix;
(3) Employ the row selection scheme [31]; (4) Generate sparse coding based on Orthogonal Matching
Pursuit (OMP) [32]; (5) Update the initial matrix; (6) Compare the updated matrix with the Binary
Toeplitz (BT) matrix [33]; (7) Verify the incoherence degree between the updated matrix and the
sparsity bases; (8) Nominate the best candidate for the random sensing matrix φ in order to generate
the compressed analog bio-signal at the transmitter side of the wearable wireless sEMG sensor.
Tables 2 and 3 show the pseudo-codes for Algorithms I and II, which are applied to the transmitter
side of sEMG sensor.

Figure 3. Flowchart for Algorithm II.
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Table 2. Algorithm I: compressed sEMG bio-signal.

Input: sEMG bio-signal [D]N×1, Output: Compressed bio-signla [C]M×1

Sparsity matrix [Ψ]N×N ,
Random matrix [Φ]M×N ,

Threshold Value (TV)

Step Process

1. If [Ψ] has RIP Property
2. else
3. P = 0.01

4. While [Ψ] not RIP Property
5. P = P + 0.2

6. end While
7. Calculate Sparsity level (SP ) = (N/N −K)

8. If SP ≥ 0.98 , M � βKlog(N/M)

9. else
10. While SP ≺ 0.98

11. TV = TV + 0.01

12. end While
13. end
14. Generate compressed bio-signal [C]M×1

Table 3. Algorithm II: sensing matrix [Ψ].

Input: Raw sEMG bio-signal [D]N×1 Output: Random sensing matrix [Ψ]

Sparsity matrix [Ψ]N×N

Step Process

1. Apply dynamic thresholding approach
2. Select initial square matrix
3. Apply row selection scheme
4. Determine sparse coding based on OMP
5. Update selected dictionary based on SVD
6. Compare with Binary Topeltiz (BT) matrix
7. Verify the incoherence degree with [Ψ]

8. Nominate the selected dictionary as [Ψ]

4.2. Receiver Algorithm

The main objective of the robust reconstruction algorithm based on a combination of
`1-`1-optimization and BSBL framework is to recover the original bio-signal from the compressed
bio-signal at the receiver side. Based on the sparsity level of the sEMG signal, the reconstruction
process at the receiver side could be selected as either `1-optimization or `1-`1-optimization and BSBL
framework in order to reconstruct the received bio-signal with high probability and enough accuracy [34].
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The `1-`1-optimization is applied to the received sEMG-neuropathy signals, which are sparse in the
frequency domain as [34]:

min(‖D‖1 + λ|FD‖1) s.t. ‖C − ΦD‖2 ≺ ε (4)

where λ is a positive constant and F is a N ×N Fourier transform matrix. The `1-`1-optimization idea
comes from multi-`1-optimization, which can expressed as [34,35]:

min(
N∑
i=1

(λi‖ΨiD‖1) s.t. ‖C − ΦD‖2 ≺ ε (5)

where λi is a positive constant. In the frequency domain Ψ is changed to F , which is an N ×N Fourier
transform matrix. In another scenario, if the transmitter receives sEMG-healthy or sEMG-myopathy
signals that are sparse in the time domain, the `1-optimization is applied to the received bio-signal in
order to reconstruct the original bio-signal. The `1-optimization is defined as [35]:

min(‖D‖1) s.t. ‖C − ΦD‖2 ≺ ε (6)

Table 4 shows the pseudo-code for Algorithms III.

Table 4. Algorithm III: robust reconstruction process.

Input: Raw sEMG bio-signal [D]N×1, Output: Reconstructed sEMG bio-signal
Sparsity matrix [Ψ]N×N ,
Random matrix [Φ]M×N

Step Process

1. If [D] is sparse in time or frequency
2. If [D] is sEMG-Neuropathy signal
3. P = 0.01

4. Apply `1-optimization by min‖D‖1 s.t C = ΦD

5. Determine reconstructed bio-signal endif
6. elseif [D] is sEMG-Healthy or sEMG-Myopathy
7. Apply `1-`1-optimization
8. If SP ≥ 0.98 , M � βKlog(N/M)

9. Determine reconstructed bio-signal endif
10. elseif [D] is sparse in tems of K non-zero blocks
11. Calculate hyper parameters (γ, β)

12. Obtain
∑

0 = diag(γ, β)

13. Initial estimation of [D] ' N(0,
∑

0)

14. Apply MAP approach
15. Determine reconstructed bio-signal endif
14. end

In the last scenario, the BSBL framework is applied to the received bio-signals that are not sparse in
the time or frequency domains but are sparse in terms of non-zero blocks. This framework divides
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the non-sparse bio-signal into a set of non-overlapping blocks with a few non-zero blocks [36].
By employing this framework, a non-sparse signal can be partitioned into a concatenation of
non-overlapping blocks of which only a few blocks are non-zero [37]. Therefore, the main structure
of this framework is to explore and exploit the intra-block-correlation in terms of entry values within
each block [38,39]. The flowchart of Algorithm III is shown in Figure 4. This framework consists of
the following steps [40,41]. (1) Define the input bio-signal into a set of non-overlapping blocks with
only non-zero blocks and mutually uncorrelated to each other; (2) Determine the Gaussian distribution
property for each non-zero block with two hyperparameters that can control the block-sparsity level;
(3) Estimate the posterior of the original bio-signal by applying the Maximum-A-Posteriori (MAP)
approach [42–44]; (4) Update the initial original bio-signal by applying two learning rules for
hyperparameters based on Auto-Regressive (AR) method [45,46].

Figure 4. Flowchart for Algorithm III.

As a result, the reconstruction algorithm at the receiver side consists of the following steps. (1) Check
the sparsity in terms of either the number of non-zero coefficients in the time or frequency domains or
the number of non-zero blocks; (2) Apply `1-optimization for healthy and myopathy bio-signals (as they
are sparse in the frequency domain) and `1-`1-optimization for neuropathy bio-signals; (3) Apply BSBL
framework for sparsity in terms of number of non-zero blocks. Figure 5 illustrates four types of sEMG
signals with the length of N = 350 to 500 and the average computing time is equal to 15.26 s.
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Figure 5. Healthy, neuropathy and myopathy sEMG signals.

5. Simulation Results

For the simulation results, several hours of sEMG bio-signals that are sparse in time or frequency
domains are selected from the following databases: (1) PhysioNet (PhysioBank ATM including
EMG-healthy, EMG-myopathy, and EMG-neuropathy bio-signals and annotations) [8]; (2) EMG
Bank [9]; (3) EMG project lab [10].

For simulation results, the following assumptions have been made. (1) The Analog-CS approach was
performed using 250 × 1024 BT matrix φ; (2) Length of window for dynamic thresholding is chosen
between 5 and 10; (3) The sEMG healthy (H), neuropathy (N), and myopathy (M) signals with 1024
samples dynamically threshold at 10% to control the sparsity level; (4) CR = 25% with 10 bits of
resolution. Table 5 depicts a comparison on the analog-CS and the digital-CS in terms of sensitivity
(SEN) and specificity (SPE). The SEN and SPE are calculated by the following equations [35]:

SEN = TP/(TP + TN), SPE = TN/(TN + FP ) (7)

where TP is true positive, TN true negative, FP is false positive, and FN is false negative.

Table 5. Comparison of analog-CS and digital-CS.

Algorithm SEN. % SPE. %

Proposed analog-CS (Transmitter) 99.9 98.2
Current digital-CS (Transmitter) 87.2 86.2
Proposed analog-CS (Receiver) 99.2 97.2
Current digital-CS (Receiver) 84.2 85.6

It should be noted that the proposed analog-CS algorithm shows very high SEN and SPE compared
with current digital-CS. Figure 6 compares the quality of reconstruction process with Fs = 2 kHz for
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three types of sEMG signals. It can be observed from Figure 6 that the proposed reconstruction process
exhibits very good level of accuracy at the receiver side for recovering the original bio-signal. Figure 7
plots the Computation Time (CT), which is an important factor to minimize the power consumption vs.
the sparsity level.

Figure 6. Performance of reconstruction process.

It can be noted from Figure 7 that increasing the sparsity level reduces the CT (in our work to 9.01 s
at sparsity level of 98.9%).

Figure 7. Computation time.
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Figure 8 shows the SNR versus of sparsity level. It can be observed from Figure 8 that the proposed
algorithms exhibit excellent performance in SNR (in our work to 89.2 dB at sparsity level of 98.9%).
Figure 9 plots the sparsity level versus of the threshold value. As mentioned earlier, the suitable value
of the thresholding process increases the sparsity level for the sEMG bio-signal, which is an important
parameter in the CS scenario. It can be noted that the good level sparsity is obtained by increasing the
threshold value (in our work the threshold percentage was selected at 30%).

Figure 8. SNR for three types of sEMG signals.

Figure 9. Sparsity level.

Figure 10 shows the sampling rate (percentage of NR) vs. the reconstruction accuracy for three types
of sEMG bio-signals. It can be seen from Figure 10 that the sampling rate can be reduced to 25% of
NR without sacrificing of the performance in the reconstruction process. Figure 11 plots the Normalized
Power Consumption (NPC) vs. CR for three types of sEMG bio-signals. It can be seen from Figure 11
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that power consumption can be minimized to 40% at CR = 25 in our work. Figure 12 plots the RMSE in
terms of Sub-Sampling Ratio (SSR), which is 1/CR, for three types of sEMG bio-signals. The RMSE is
calculated via the following formula [34]:

L∑
l=1

(‖D1 − D̂‖2/‖D̂‖2) (8)

where Dl is the normalized original sEMG bio-signal in the lth Monte Carlo Simulation (MCS), D̂ is the
normalized estimated sEMG bio-signal in the lth MCS, and L is the number of Monte Carlo Simulation,
which is selected to be 50 in our simulation. It can be seen from Figure 12 that all RMSE values decrease
with decrease of CR or the increase of sub-sampling ratio. The MCS is a method for obtaining numerical
results, which relies on many simulations by varying parameters within statistical constraints [35].

Figure 10. Sampling rate.

Figure 11. Normalized power consumption.
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Figure 12. RMSE.

Figure 13 shows the PRD vs. Compression Factor (CF) for three types of sEMG bio-signals sampled
at 8 kHz and digitized with 4 bytes/sample. The PRD are defined as [35]:

PRD =

√√√√(
N∑
i=1

(D[i]− D̂[i])2/(
N∑
i=1

D2[i] (9)

where D[i] is the original sEMG bio-signal, D̂[i] is the reconstructed sEMG bio-signal, and N is the
total number of samples. The CF is calculated by:

CF = Db − Cb/Db ∗ 100 (10)

whereDb is the number of bits for the original sEMG bio-signal andCb is the amount of bits necessary for
processing the compressed sEMG bio-signal. It can be seen from Figure 13 that decreasing CF minimizes
the PRD, which means good PRD level is achieved at smaller number of bits necessary for storing the
original sEMG bio-signal. Highlighted in Figure 13 are the lower PRD values obtained with smaller CF.
Table 6 summarizes the results on SSR and RMSE for three types of sEMG signals. Since processing
long-term sEMG bio-signals involves sampling frequency from 0.5 kHz to 6 kHz and quantization with
4 byte/sample and generates huge bits of information, coding with fewer bits based on the analog-CS
theory is an optimal simulation for minimizing the power consumption and sampling rate. Table 7
summarizes the results on CT in seconds and SNR in dB for three types of sEMG signals. Measurements
in Table 7 illustrate values of 98.82 dB, 96.83 dB, and 94.46 dB for SNR at the sparsity level of 98.99%.
Table 8 summarizes the results on NPC, Sampling-Rare Reduction (SRD), and Accuracy (A) of the
reconstruction process at the receiver side for three types of sEMG signals. Measurements in Table 8
illustrate values of 0.42, 0.41, 0.40 for NPC at SRD = 25%.
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Figure 13. PRD.

Table 6. Comparison on RMSE.

SSR RMSE(H) RMSE(N) RMSE(M)

0 0.0200 0.0200 0.0200
0.2 0.0168 0.0144 0.0125
0.4 0.0144 0.0120 0.0110
0.6 0.0130 0.0110 0.0105
0.8 0.0120 0.0102 0.0100
1 0.0108 0.0102 0.0102

1.2 0.0108 0.0102 0.0102

Table 7. Comparison on SNR and CT.

Sparsity % SNR(H) CT(H) SNR(N) CT(N) SNR(M) CT(M)

60 8 45 4 44 2 43
65 36 45 32 37 30 36
70 46 35 42 34 40 33
75 55 28 51 27 49 26
80 65 22 61 21 58 20
85 76 12 72 11 69 10
90 87 8 82 7 80 6
95 96 7 92 6 90 5

100 99 6 97 5 95 4
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Table 8. Comparison on accuracy and NPC.

SRD% A %(H) A %(N) A %(M) NPC(H) NPC(N) NPC(M)

10 100 100 100 1 1 1
15 100 100 100 0.90 0.85 0.84
20 100 95 94 0.70 0.65 0.64
25 92 90 88 0.42 0.41 0.40
30 78 74 70 0.30 0.28 0.25
35 60 58 55 0.18 0.16 0.15
40 45 44 40 0.17 0.15 0.14
45 35 31 30 0.16 0.15 0.14
50 25 21 20 0.15 0.14 0.13

6. Discussion

The existing long-term sEMG monitoring systems with multiple channels suffer from serious
problems such as very large amount of data from sampling, limited processing capacity, limited storage,
low transmission rate and power, bulky size, poor mobility, and high power consumption. Therefore,
they are not suitable for wearable wireless applications that must have small size, excellent mobility, low
power consumption, and high transmission rate. As most of the power in a wearable wireless sEMG
sensor is dissipated for transmitting bio-data to the receiver, which may reside in a smartphone or any
portable device, an optimal solution for minimizing the power consumption is to decrease the amount
of bio-data and reduce the duty cycle. Therefore, real-time analog data compression plays an important
role for wireless portable devices. Wearable wireless sEMG sensors based on the analog-CS theory aim
to establish low power and low sampling rate algorithms for the long-term recording of the electrical
activity produced by muscles, which are very useful for treatment and diagnostic purposes as well as for
detection of various pathologies.

In the analog-CS scenario at the transmitter side, the input analog sEMG bio-signal [D]N×1 is
compressed to output analog bio-signal [D]M×1 withM � N . This work has presented a novel approach
based on the analog-CS theory, which consists of three algorithms for the acquisition and reconstruction
of analog data for a wearable wireless sEMG sensor. At the transmitter side, two new algorithms have
presented in order to apply the analog-CS theory before ADC. At the receiver side, a reconstruction
algorithm based on a combination of either `1-`1-optimization or `1-optimization and BSBL framework
has presented to reconstruct the original signals from the compressed signals with high probability and
enough accuracy.

The proposed algorithms enable recovery of the full sEMG bio-signal while simultaneously
compressing the amount of collected analog data at the transmitter side and relaxing the noise at the
receiver side. The proposed architecture has offered lower energy consumption compared with the
digital-CS scheme and enabled analog data compression. Tables 9–11 demonstrate the comparisons
on power consumption, accuracy, SNR, CT, and Classification Accuracy (CA) based on K-Nearest
Neighbor (K-NN) [47] for three types of sEMG bio-signals for the digital-CS and analog-CS scenarios.
The highlights in Tables 9–11 can be classified as follows. (1) By applying Algorithms I and II at the
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receiver side of the sEMG bio-sensor, lower values for PRD and CT are obtained; (2) By employing the
robust reconstruction algorithm based on a combination of multi-`1-optimization and BSBL framework
at the receiver side of the sEMG bio-sensor, lower values for SNR and PC as well as higher values
for classification and reconstruction accuracy are obtained. Based on the results in Tables 9–11, the
analog-CS approach is an optimal solution for establishing low power wireless portable sEMG long-term
recording systems. Table 12 presents a comparison on Power Reduction (PR) at the transmitter and
receiver sides for the digital-CS approach based on `1-optimization in terms of different values of CR.
Table 13 demonstrates the PR at the transmitter and receiver sides for the analog-CS approach based on
`1-`1-optimization and BSBL framework for three types of sEMG signals.

Table 9. Comparison on healthy sEMG signals.

Algorithm PRD% SNR(dB) NPC CT (s) CA% Reconstruction Accuracy%

Digital-CS 0.0350 87.3 0.820 18.02 93.24 95.52
Analog-CS 0.0108 98.9 0.420 6.02 98.23 99.98

Existing Approach 0.056 82.1 0.93 28.30 91.85 87.24

Table 10. Comparison on myopathy sEMG signals.

Algorithm PRD% SNR (dB) NPC CT (s) CA% Reconstruction Accuracy %

Digital-CS 0.0341 85.2 0.815 19.25 92.85 94.92
Analog-CS 0.0102 96.7 0.415 5.24 98.89 99.97

Existing Approach 0.053 80.15 0.91 29.90 91.23 89.34

Table 11. Comparison on neuropathy sEMG signals.

Algorithm PRD % SNR (dB) NPC CT (s) CA % Reconstruction Accuracy %

Digital-CS 0.0362 84.1 0.831 20.22 93.99 94.83
Analog-CS 0.0100 95.9 0.400 4.27 99.01 99.12

Existing Approach 0.067 79.8 0.94 29.90 91.11 86.99

Table 12. Comparison on Power Reduction based on digital-CS.

CR % T. PR (H) % T. PR (H) (N) % T. PR (M) % R. PR (H) % R. PR (N)% R. PR (M) %

55 7 12 13 21 25 26
50 6 10 12 20 24 25
45 5 9 10 18 21 24
40 3 7 8 10 11 12
35 2 6 7 8 9 10
30 1.5 5.25 6 7 8 9
25 1 4 5 6 7 8
20 0.5 3 4 5 6 7
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Table 13. Comparison on power reduction based on analog-CS.

CR % T. PR (H) % T. PR (H) (N) % T. PR (M) % R. PR (H) % R. PR (N) % R. PR (M) %

55 17 21 21 37 45 45
50 15 20 20 35 41 43
45 10 18 19 34 40 41
40 9 10 15 16 18 22
35 8 7 13 10 15 18
30 7 8 12 9 12 15
25 6 7 10 8 10 12
20 5 6 8 7 9 10

It can be seen from Table 13 that greater reduction of power consumption is achieved by applying
analog-CS to the transmitter and receiver sides of a sEMG bio-sensor. Measurements in Table 13 show
17%, 37%, 21% and 45% power reduction at 50% NR and 7% , 12%, 9% and 15% power reduction at
25% NR for three types of sEMG bio-signals, respectively.

7. Conclusions

Today’s healthcare systems are based on wired/fixed sensors because in many cases biomedical
sensors for medical monitoring are not yet wireless. This creates the need for the implementation of
new wireless bio-sensors for long-term recording and monitoring of bio-signals. The benefit of using
wireless healthcare systems based on wearable wireless bio-sensors can be divided into two areas.

One area is the use of new wireless technological solutions for individually based multi-parameter
monitoring at home. It means patients with chronic diseases, as well as the constantly growing population
of seniors, will benefit from treatment and medical monitoring at home or workplace. Moreover,
unrestricted freedom of movement implies the use of wireless and even implanted biomedical sensors
that greatly enhance home monitoring and follow-up of medical conditions. The second area of benefit
rests in increasing the efficiency of treatments at hospital and medical centers. The ambulatory systems
based on new technologies can become lighter, smaller, and capable of recording multiple signals
up to 48 h. The recorded signals are saved in flash-type memories, which can be transferred to the
hospital and medical centers for further actions. On the other hand, the increase of heath costs urgently
prompts the development of ambulatory systems to reduce the number of patients going to hospital and
medical centers.

Therefore, it is necessary to design portable, low power, low sampling rate, high performance wireless
health care systems that can deliver healthcare services anywhere at any time. This paper has presented
an analog-based CS theory procedure that consists of three novel algorithms to design and implement
the wearable wireless sEMG bio-sensor architecture for sEMG bio-signals, which are sparse in both
the time and the frequency domains. At the transmitter side, two new algorithms have been presented
in order to apply the analog-CS theory before ADC to maximize the processing speed by minimizing
both the load of processing time and the duty cycle. At the receiver side, a faithful reconstruction
algorithm based on the combination of multi-`1-optimization and BSBL framework has been presented
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to reconstruct the original bio-signals from the compressed bio-signals with high accuracy. In addition,
this work has presented an analog-based CS theory procedure that consists of two interesting properties:
(1) reduction in power consumption, which significantly lowers the average bio-sensor power; (2) a
reconstruction process robust to noise, because the noise is not sparse on the sparsity basis. Therefore,
the resolution of the data acquisition step, and hence the ADC, can be relaxed without undermining the
quality of the reconstruction. The proposed architecture has reduced the sampling rate down to 25%

of NR, power consumption to 40%, PRD to 24%, RMSE to 2%,and total computation time from 22 s
to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. In
addition, the proposed architecture simultaneously has recovered the original bio-signals with good level
of accuracy and SNR greater than 95.8 dB. Wireless sEMG systems based on the proposed architecture
and the three novel proposed algorithms will be able to improve healthcare services for patients not only
in hospital or at medical center but also at their homes and workplaces, to improve the overall quality of
life and to minimize healthcare costs.

8. Future Works

We intend to develop the tools for wireless sEMG bio-sensor and provide them to the web-based
portals. The developed tools can be designed to access the valuable data stored on medical servers.
Furthermore, we will develop a hybrid reconstruction algorithm based on multi-`1-optimization and
BSBL framework for other types of multi-sparse bio-signals to decrease the computational complexity
at the receiver side.
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