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Abstract: In this paper, a novel integrated structure is proposed in order to reduce the axial 

length of the high speed of a magnetically suspended motor (HSMSM) to ensure the 

maximum speed, which combines radial displacement sensor probes and the permanent 

magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the 

magnetic bearing, and the sensor preamplifiers are placed in the control system of the 

HSMSM, separate from the sensor probes. The proposed integrated structure can save 

space in HSMSMs, improve the working frequency, reduce the influence of temperature on 

the sensor circuit, and improve the stability of HSMSMs. 

Keywords: displacement sensor; integrated structure; magnetic bearing; permanent  

magnet biased 

 

1. Introduction 

Magnetic bearings have some advantages such as no mechanical friction, no wear, no lubrication, 

long life, and high reliability, therefore, they can be applied in flywheels [1], air compressors, 

molecular pumps, turbines, generators, and bearingless motors [2–5]. To decrease the power losses of 

magnetic bearings, the permanent magnet biased magnetic bearing, which is also called hybrid 

magnetic bearing, is adopted widely [6–9]. In magnetic bearing systems, displacement sensors, which 

can detect the rotor’s displacement in five degrees of freedom (DOF) along the corresponding 
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direction, are necessary. The most frequently used displacement sensors are the eddy current sensors 

since they have high resolution and wide bandwidth in active magnetic bearing systems [10–13]. This 

type of sensor is very easily influenced by the magnetic field generated in magnetic bearing coils and 

so should be installed outside the coils [14]. Consequently, radial displacement sensors are designed to 

separate from the radial magnetic bearings in general, and a large axial length will be used, so the rotor 

modal shape is low, and bending vibrations of the rotor will be produced, resulting in a lower 

maximum high speed of the magnetically suspended motor (HSMSM). 

In addition, eddy current sensors mainly include preamplifier circuits and probes, which are 

integrated in the HSMSM. As a result, the performance of electronic components such as amplifiers, 

resistors, capacitors and diodes of the preamplifier circuit are easily affected by temperature, and they 

easily burn in the usual environment of vibrations and moisture. Therefore, existing eddy current 

sensors are not good with respect to compactness, environmental adaptability and so on. 

In this paper, a novel integrated structure is proposed, which combines the radial displacement 

sensor with eddy current and the radial magnetic bearing with permanent magnet bias. It takes 

advantage of the space in the radial magnetic bearing, and the sensor probes are placed on the adjacent 

stator poles in the axial direction. The preamplifier circuit is placed outside the HSMSM and uses 

shielded cables to connect the sensor probes. Therefore, the axial size of the HSMSM can be 

effectively reduced and the modal shape of the rotor can be increased. More importantly, the 

preamplifier circuit is not directly affected by the temperature. The prototype integrated structure was 

manufactured and verified by experimental tests, and the performance of the sensor is improved in 

aspects such as the accuracy of detecting displacements, linearity and temperature drift. 

2. Structure 

The proposed novel structure is composed of displacement sensor probes, a permanent magnet 

biased radial magnetic bearing and an external signal processing circuit. A three-dimensional diagram 

and exploded view of the proposed novel structure is shown in Figure 1 and the front view and the rear 

view of the integrated structure are shown in Figure 2, respectively. In these figures, it can be seen that 

the radial magnetic bearing consists of magnetic poles (A1~A8), coils (D1~D8), and permanent 

magnets (9). The magnetic poles have eight and are placed in the X and Y directions, in two groups 

along the Z direction (A1~A4 and A5~A8). Each group of magnetic poles contains four separated by 

90 degrees along the circumference in the +x, −x, +y and −y directions. In the figure, magnetic poles 

(A1, A3, A5, A7) are placed in the x direction and form a group, and magnetic poles (A2, A4, A6, A8) 

are placed in the y direction and form another group. There are four permanent magnets (9) and four 

sensor bases (10), and discrete permanent magnets and sensor bases are mounted between two groups 

of magnetic poles. Permanent magnets and sensor bases are arranged alternately along the 

circumference. That is to say, the discrete permanent magnets are placed along the circumference in 

the x and y directions, and sensor bases are installed among the adjacent permanent magnets. The 

sensor bases are made of aluminum and sensor probes (T1~T4), which are uniformly distributed along 

circumference, are amounted on them with glue. The rotor is suspended stably by control currents in 

every coil wound on the corresponding magnetic poles. 



Sensors 2014, 14 1952 

 

 

Figure 1. Three-dimensional diagram and exploded view of the proposed novel structure. 

 
A-magnetic bearing, D-coil, T-sensor probe, 9-permanent magnet, 10-sensor base. 

Figure 2. The novel proposed structure: (a) Front view; (b) Rear view. 

 
 

(a) (b) 

In Figure 3 various views of the novel proposed structure are given. It can be seen that the distance 

between the central position T10 of sensor probe T1 and the central position A10 of the magnetic pole 

is equal to the distance between T10 and A40, as well as the distance between T10 and A50 and the 

distance between T1o and A8o, as shown in Figure 3a. Likewise, the distances are equal among the 

central position of the sensor probe and other corresponding central points of the magnetic poles. For 

instance, LT2o, A1o = LT2o, A2o = LT2o, A5o = LT2o, A6o, LT3o, A2o = LT3o, A3o = LT3o, A6o = LT3o, A7o, and  

LT4o, A3o = LT4o, A4o = LT4o, A7o = LT4o, A8o, as shown in Figure 3b–d. 
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Figure 3. Various views of the novel proposed structure: (a) Section A-A; (b) Section B-B; 

(c) Section C-C; (d) Section D-D. 

    

(a) (b) (c) (d) 

In practical fact, a pair of differential output probes is composed by sensor probes (T1, T3) as well 

as the other sensor probes (T2, T4). As shown in Figure 4, an air gap is formed between magnetic 

poles (A1~A8) and rotor (R) and the detection gap is formed between sensor probes (T1~T4) and  

rotor (R). The length of the air gap (m1, m2) is designed to be 0.4~0.5 mm and the detection gap is 

designed to be 0.75~1.25 mm. 

Figure 4. The main view of the proposed novel structure, including the HSMSM rotor. 
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As shown in Figure 5, the displacement sensor probe (T1~T4) is mainly composed of a crystal 

oscillator, AGC network, resonant circuit, filter circuit and amplifier output circuit. The crystal 

oscillator is used to provide a stable frequency and amplitude for the excitation signal. 

Figure 5. The diagram of the preamplifier. 

 

As shown in Figure 6, a differential structure is formed between the preamplifiers of the 

displacement sensor probes T1 and T3 as well as T2 and T4, that is to say, the circuit structures of the 

preamplifiers are identical and symmetrical. The resonant circuits of sensor T1 and T3 are the same as 

sensor T2 and T4 as well. The differential structures can restrain the temperature drift and time drift, 

and improve the sensor’s temperature and time stability. 

Figure 6. The compensation circuit principle diagram of each pair of preamplifiers. 

 

As we know, the principle of the eddy current displacement sensor is the mutual inductance  

effect between a high frequency current in coils and detector. Therefore, the detector material has an 

important influence on the sensitivity and precision of the displacement sensor. Steels such as 45# or 

40Cr can often be used considering their stability. 

3. Magnetic Field Analysis 

The 3D FEM analyses are shown in Figures 7–10. From these figures, we can see that the magnetic 

field is weak at the sensor probes, so we can conclude that the sensor probes will not be influenced by 

the magnetic field produced by the radial magnetic bearing. 

Figure 7. 3D FEM model of the proposed structure. 
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Figure 8. Flux distribution of the proposed structure. 

 

Figure 9. Flux density distribution of the proposed structure. 

 

Figure 10. Flux density distribution of the stator in the proposed structure. 

 

4. Experimental Test 

The photograph of the proposed novel structure is shown in Figure 11, and it is seen clearly that the 

four sensor probes are placed between two groups of stator magnetic poles, which are distributed 

uniformly along the circumstance, so the radial magnetic bearing is integrated with the radial sensor 

probes. Figure 12 shows a photograph of a 4 kW HSMSM with the proposed structure, and it can be 

seen that the sensor circuit is separate from the sensor probes. The whole axial length can be reduced 

by 9% compared to the structure in which the radial magnetic bearing is separated from the radial 
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sensor probe by calculation, and then the first bending mode will increase about 16%, as well as the 

maximum critical speed. 

Figure 11. Photograph of the proposed structure with the radial displacement sensors and 

radial magnetic bearing. 

 

Figure 12. Photograph of a HSMSM with the proposed structure. 

 

The relation between displacement and output voltage is shown in Figure 13, and it is indicated that 

the curve has a good linearity in order to meet the sensor demands. In addition, the relationship 

between the temperature of the sensor circuit and output voltage is shown in Figure 14, where the 

output voltage ripple is approximately 4% as the temperature of the sensor circuit in the offline 

experiment varies from 20 °C to 70 °C. The displacement curve cannot reflect the change of 

temperature drift because it always remains constant under the condition of closed loop control. 

Therefore, the coil current curves of every channel can reflect the temperature drift effectively. 
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Figure 13. The relationship between displacement and output voltage value. 

 

Figure 14. The relationship between temperature and output voltage value. 

 

The relationship between the temperature of the sensor probe and the coil current of a channel is 

shown in the online experiment in Figures 15–17 where the temperature of the sensor probe is at 37 °C 

and 98 °C, respectively. In these figures, 1 V denotes 0.15 A. To be sure, the sensor circuit is separated 

from sensor probes, so the temperature of the sensor circuit is from 20 °C to 70 °C, while the 

temperature of the sensor probes is from 37 °C and 98 °C. 
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Figure 15. The relationship between temperature and coil current. 

 

Figure 16. The current curves of every channel when the temperature of the sensor probe 

is at 37 °C. 

 

Figure 17. The current curves of every channel when the temperature of the sensor probe 

is at 98 °C. 
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5. Conclusions 

A novel integrated structure to reduce the axial length and save space in a HSMSM is proposed, 

which combines a radial displacement sensor and a radial magnetic bearing. The whole axial length 

can be reduced 9% in a 4 kW HSMSM system, and the first bending mode will increase about 16%, as 

well as the maximum critical speed. The presented integrated structure separates the sensor probes 

from their circuit. Through an analysis of the magnetic field, it is determined that it is weak at the 

sensor probes, so they are not be influenced by the magnetic field produced by the radial magnetic 

bearing. A prototype of the proposed integrated structure is manufactured and it has good linear 

displacement characteristics as well as temperature characteristics according to experimental tests. 
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