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Abstract: A single-webcam distance measurement technique for indoor robot localization 

is proposed in this paper. The proposed localization technique uses webcams that are 

available in an existing surveillance environment. The developed image-based distance 

measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) 

have two merits. Firstly, only one webcam is required for estimating the distance. 

Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension 

rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing 

techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for 

the purposes of indoor robot localization, the proposed method does not need to use 

expensive high-resolution webcams and complicated pattern recognition methods but just 

few simple estimating formulas. From the experimental results, the proposed robot 

localization method is reliable and effective in an indoor environment. 

Keywords: indoor robot localization; image-based distance measurement system;  

parallel lines distance measurement system 
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1. Introduction 

Autonomous robots have a wide range of potential applications in security guards, house cleaning 

and even warfare. Most of them are equipped with position measurement systems (PMSs) for the 

purpose of precisely locating themselves and navigating in their working fields. Three typical 

techniques [1] in PMSs are triangulation, scene analysis, and proximity. The triangulation technique 

uses the geometric properties of triangles to compute object locations. The most well-known technique 

is the Global Positioning System (GPS). However, GPS, as it is satellite dependent, has an inherent 

problem of accurately determining the locations of objects within a building [2]. A proximity  

location-sensing technique entails determining when an object is “near” a known location, and  

the object’s presence can be sensed via some limited range physical phenomenon. Some famous 

techniques are detecting physical contact [3,4] or monitoring wireless cellular access points [5,6]. The 

scene analysis location sensing technique uses features of a scene observed from a particular vantage 

point to draw conclusions about the location of the observer or of objects in the scene. Some  

well-known techniques are a radar location system [7] or a visual images location system [8].  

In an indoor localization technique, the infrared light [6], ultrasonic [9], laser range finder [10,11], 

RFID [12], and radar [13] are the most popular wireless techniques. Diffuse infrared technology is 

commonly used to realize indoor locations, but the short-range signal transmission and line-of-sight 

requirements limit the growth. Ultrasonic localization [9] uses the time-of-flight measurement 

technique to provide location information. However, the use of ultrasound requires a great deal of 

infrastructure in order for it to be highly effective and accurate. Laser distance measurement is 

executed by measuring the time that it takes for a laser light to be reflected off a target and returned 

back to the sender. Because the laser range finder is a very accurate and quick measurement device, 

this device is widely used in many applications. In [10,11], Subramanian et al. and Barawid et al. 

proposed an autonomous vehicle guidance system based on a laser rangefinder. The laser rangefinder 

was used to acquire environment distance information that can be used to identify and avoid obstacles 

during navigation. In [14], Thrun et al. provided an autonomous navigation method based on a particle 

filter algorithm. In this study, the laser rangefinder can receive all the measurement information that it 

can utilize to compute the likelihood of the particles. These papers confirm that laser rangefinders are 

high performance and high accuracy measurement equipment. However, their high performance relies 

on high hardware costs. RFID-based localization uses RF tags and a reader with an antenna to locate 

objects, but the detection of each tag only can work over approximately 4 to 6 meter distances. To improve 

the low precision on location positioning, the well-known SpotON [15] technology uses an aggregation 

algorithm based on radio signal strength analysis for 3D-location sensing. However, a complete system is 

not available yet. An RF-based RADAR system [7,16,17] uses the 802.11 network adapter to measure 

signal strengths at multiple base stations positioned to provide overlapping coverage for locating and 

tracking objects inside buildings. Unfortunately, most cases to date cannot provide overall accuracy of 

systems as optimal as desired. In indoor localization for robots, most of these wireless techniques are used 

to perform scans of static obstacles around the robots, and the localization is calculated by matching those 

scans with a metric map of the environment [18,19], but in dynamic environments the detected  

static-features are often not enough for estimating a robust localization.  
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Li et al. [20] proposed a NN-based mobile phone localization technique using Bluetooth 

connectivity. In this large-scale network, mobile phones equipped with GPS represent beacons, and 

others could connect to the beacon phones with Bluetooth connectivity. By formulating the Bluetooth 

network as an optimization problem, a recurrent neural network is developed to distributively find the 

solutions in real time. However, in general, the sampling rate of Bluetooth is relatively low, and then 

accurately estimating a moving object in real time is not easy. In [21], a recurrent neural network was 

proposed to search a desirable solution for a range-free localization of WSNs under the condition that 

the WSNs can be formed as a class of nonlinear inequalities defined on a graph. Taking advantage of 

parallel computation of the NN, the proposed approach can effectively solve the WSN localization 

problem, although the limited transmission bandwidth might cause difficulty in the localization.  

Recently, image-based techniques have been preferred over wireless techniques [4,5,9,22]; this is 

because they are passive sensors and are not easily disturbed by other sensors. In [1], a  

portable-PC capable of marker detection, image sequence matching, and location recognition was 

proposed for an indoor navigation task. JongBae et al. used the augmented reality (AR) technique to 

achieve an average location recognition success rate of 89%, though the extra cost must be considered 

in this technique. In [23], Cheoket et al. provided a method of localization and navigation in wide 

indoor areas with a wearable computer for human-beings. Though the set-up cost is lower, this method 

is not easy to implement and set up if users do not know the basic concept of electronic circuit analysis 

and design. Furthermore, an imaged-based method for distance measurement was proposed in [24–29]. 

According to the transform equations in those papers, the distance can be calculated from the ratio of 

the size between the pre-defined reference points and the measured object. In recent years, we have 

seen growing importance placed on research in two-camera localization systems [30,31]. From two 

different images, the object distances can be calculated by a triangular relationship. However, to ensure 

the measuring reliability, the photography angle and the distance between two cameras must be 

maintained at the same position. Due to the use of two cameras for the measuring device, the set-up 

costs of the experimental environment will be increased.  

Nowadays, surveillance systems exist in most modern buildings, and cameras have been configured 

around these buildings. In general, one camera covers one specific area. In order to locate an 

autonomous patrolling robot using existing cameras in buildings, a single-camera localization 

technique must be developed for the patrolling robots. This study aims to develop a single-webcam 

distance measurement technique for indoor robot localization with the purposes of saving set-up costs 

and increasing the accuracy of distance measurements. In our approach, the working area setting can 

be as simplified as possible, because the existing webcams in the surveillance environment can be 

utilized without any change. For a single webcam in its working coverage area, we develop an 

improved image-based distance measurement system (IBDMS) and a parallel lines distance 

measurement system (PLDMS) to measure the location of a robot according to a known-size rectangle 

pattern, i.e., a ground tile. This measurement system uses four points, i.e., the four corners of a ground 

tile, to form a pair of parallel lines in the webcam image. Referring to the pair of parallel lines, we can 

measure the location of a robot within the visual range of a webcam. Because of the fixed monitoring 

area of an individual webcam, few simple image processing strategies are used to search for the robots 

before going through IBDMS and PLDMS. First, we use the low-pass filter and on-line background 

update method to reduce background noise, and adopt the image morphology to complete prospect 
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information and to remove the slight noise. When the mobile robot is located, IBDMS and PLDMS 

can obtain the real-world coordinates of a mobile robot. Finally, the localization of a mobile robot can 

be shown on the two-dimensional map immediately. Thus, for the purpose of indoor robot localization, 

the proposed method does not need to use complicate pattern recognition methods, but just few simple 

estimation formulas. 

2. Photography Methods  

Before locating a robot by the proposed single-webcam localization technique, the acquired images 

must go through photograph processing for removing noise and unnecessary information. These 

techniques include a gray scale, a background subtraction, a morphological image processing, and a 

connected components labeling technique. Next, we briefly discuss the procedures [32] of these 

photographic correction techniques used in this paper. 

2.1. Camera Calibration  

Distortion could happen in captured images, especially is cheap webcams are used. To attenuate 

distortion of the captured images and thus increase the accuracy of the robot location task, the camera 

calibration should be done before the localization is attempted. OpenCV has taken into account the 

radial and tangential factors for the image distortion problem. The radial factor can be calculated by 

the following equations: 

 (1) 

 (2) 

The tangential distortion can be corrected via the equations as follows: 

 (3) 

 (4) 

In Equations (1–4) the pixel
  (x, y)is the image coordinate in the input image and (xcorrected , ycorrected) is 

the image coordinate in the corrected output image. The distortion coefficient vector can be 

represented as 
1 2 1 2 3[ ]dic k k p p k . Moreover, the unit conversion can be represented as: 

 

 

(5) 
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(6) 

and the camera conversion matrix is: 

 

 

(7) 

For the 2nd webcam (HD Pro Webcam C920, Logitech, Lausanne, Switzerland) in our 

experimental environment, the distortion coefficient vector is: 

 (8) 

and the camera conversion matrix is: 

 

(9) 

For the 3rd webcam (HD Webcam PC235, Ronald, Osaka, Japan) in our experimental environment, 

the distortion coefficient vector is: 

 (10) 

and the camera conversion matrix is: 

 

 

(11) 

Figure 1. Calibration procedure for the webcam images. (a) Before the calibration 

produces for three webcams, (a.1) Logitech HD Webcam C310; (a.2) Logitech HD Pro 

Webcam C920; (a.3) Ronald HD Webcam PC235. (b) Images after the calibration 

produces for three webcams, (b.1) Logitech HD Webcam C310; (b.2) Logitech HD Pro 

Webcam C920; (b.3) Ronald HD Webcam PC235. 
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 Figure 1. Cont.  

   

(b.1) (b.2) (b.3) 

2.2. Image Segmentation 

In a grayscale image, the value of each pixel carries only intensity information. It is known as a 

black-and-white image, which is composed exclusively of shades of gray. Black is at the weakest 

intensity and white is at the strongest one. The gray scale technique can change a color image into a 

black-and-white image. The luminance ( , )lf x y  of the  is described as: 

 (12) 

where R(x,y), G(x,y), and B(x,y) are color values at the . Equation (12) can create binary images 

by a threshold value t from a grayscale image: 

 
(13) 

Subtracting a binary acquired image ( , )currentf x y  from a binary background image ( , )bgf x y , we 

can obtain a binary foreground image as: 

 (14) 

2.3. Morphological Image Processing 

After the process of image segmentation, discontinuous edges and noise may happen in a 

foreground image. These will cause wrong judgments during object identification. Therefore, this 

paper utilizes some morphological image processing operations, such as dilation, erosion, opening and 

closing, in order to enable the underlying shapes to be identified and optimally reconstruct the image 

from their noisy precursors.  

2.4. Connected-Components Labeling 

The aim of connected-component labeling is to identify connected-components that share similar 

pixel intensity values, and then to connect them with each other. The connected-component labeling 

scans an image and groups pixels into one or more components according to pixel connectivity. Once 

all groups are determined, each pixel is labeled with a grey level on the basis of the component. 
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According to the aforementioned discussions, we can locate a robot in the captured image in an  

image-domain. Figure 2 shows the overall schemes of the image processing, and the experimental results 

are shown in Figure 3. In Figure 4, Rcenter is the center of the robot in the processed image and can be easily 

calculated by the simple average method. In this paper, Rcenter stands for the center-coordinate of the robot 

in the image-domain. 

Figure 2. Procedures of the image processing techniques for the robot localization. 

 

Figure 3. (a) Background image. (b) Captured image. (c) Gray scale of the background 

image. (d) Gray scale of the captured image. (e) Background subtraction. (f) Binarization 

processing of the foreground image. (g) Morphological processing of the foreground 

image. (h) Connected components labeling. 
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Figure 3. Cont. 

  
(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 4. Coordinates of the mobile robot in the image-domain. 

 

centerR
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3. Mobile Robot Localization System with Single Webcam 

After the captured images go through image processing, we can locate the robot in the  

image-domain. Then, we should calculate the coordinates of the robot in the image. That is, two distances, 

the x-axis and the y-axis, should be determined: 1. di represents the distance between Rcenter and the 

webcam: 2. iw represents the distance between Rcenter and the wall, as shown in Figure 4. In this paper the 

IBDMS is used to calculate the distance di, and the PLDMS is used to calculate the distance wi.  

3.1. Experimental Map  

Figure 5 shows the map of our experimental environment. In the map, the coordinate of the first 

webcam is set to 1 1( , )x y , the second one is set to 2 2( , )x y , and the third one is set to 3 3( , )x y . 

( 1,2,3)iwall i 
 
represents the distance between the ith webcam and the wall. ( 1,2,3)id i 

 
represents 

the distance between the ith webcam and Rcenter. ( 1,2,3)iw i 
 
is the distance between the wall and

centerR  in the ith webcam covering area. Clearly, the coordinates of webcams ( , )i ix y  and the distances 

iwall  are given. Therefore, if distances di and iw  can be calculated, we can easily represent the robot 

with its coordinate in the area, which is covered by one of the set-up webcams. The equations for 

calculating the coordinate of the robot are defined in Equations (15–17): 

 
(15) 

 
(16) 

and: 

 
(17) 

where ( , ) ( 1,2,3)i iX Y i   are the coordinate of the robot in the covering area of the ith webcam. 

Figure 5. Map of our experimental location. 
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3.2. Calculation of Distance id  with IBDMS [24–29] 

IBDMS is developed in this paper for the purpose of calculating the distances ( 1,2,3)id i  , which 

can work on a single webcam and only depends on a known-dimension rectangle, i.e., a ground tile. 

The idea of IBDMS is from the triangular relationship, shown in Figure 6, that is we first capture an 

image incorporating a known-dimension rectangle, and then the proportion relationship between the 

real-dimension and the image-dimension of the rectangle can be found. According to the proportion 

relationship, the distance id  can then be easily calculated. Figure 6 shows the IBDMS set-up. It only 

requires a webcam and two given-location points A  and B , which could be two corners of a ground 

tile. sh  is a constant parameter of the webcam.  is the intersection of the optical axis and the plane. 

The targeted objects which lie on the plane and are perpendicular to the optical axis can be measured 

by simple trigonometric function derivations. Hence, oh  can expressed as: 

 (18) 

where oh
 
can be considered as any of distances ( 1, 2, 3)id i 

 
for the ith webcam,  and 

are pixel values in the captured image. (max)HN
 
is the maximal pixel width in a horizontal scan line 

of the image. 
ND  is the width between points A  and B .  is the horizontal view angle. 

Figure 6. Schematic diagram of the IBDMS. 
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measuring the distances iw  is developed. Figure 7 shows the schematic diagram of the PLDMS. In 
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1 2

i iLs Ls  and 3 4

i iLs Ls . Furthermore, in the image-domain, as Figure 7, the linear proportion of the line  

(
3 4

i iLs Ls ) and the line (
1 2

i iLs Ls ) can be defined as: 

 
(19) 

 
(20) 

and: 

 (21) 

where ( , ) ( 1,2,3,4)i i

j jx y j   are, respectively, the image coordinate of the points 
i

jLs , and the pixel 

( , )( 1,2,3)i ix y i   is any image points laying at the line 1 2

i iLs Ls or 3 4

i iLs Ls . In Figure 7,  is the 

number of pixels between P and Q, which can be obtained by Equation (21). 

Figure 7. Diagram of the PLDMS. 
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Figure 8. Schematic diagram of the PLDMS. 

 

3.4. Overall Procedures of the Proposed Localization Method 

Figure 9 shows the overall scheme of the proposed robot localization method, where st  is the 
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segmentation horizontal projection, as shown in Figure 10. 
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Figure 11, and are 138, 150 and 152 cm, respectively. The background image is updated in every 5 s. 

Threshold value  of the updated background image is set to 19.5. 

Figure 9. Overall scheme of the proposed localization method. 

 

Figure 10. Update of the background image by using segmentation horizontal projection. 

  

Figure 11. Map of our experimental environment. 
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4.2. IBDMS and PLDMS Set-Up  

Some basic set-up steps must be performed for the IBDMS and PLDMS before we start the robot 

localization procedures. In order to alleviate the impact from the image noise, building the first 

background image is done taking the average of 150 consecutive images, and then the background 

subtraction method can much more effectively extract the foreground image. Besides, w low-pass filter 

is adopted to further refine the background image. The obtained background images are shown in 

Figure 12. 

Figure 12. (a) Background image of the 1st webcam. (b) Background image of the 2nd 

webcam. (c) Background image of the 3rdwebcam. 

   

(a) (b) (c) 

In the 1st webcam, as shown in Figures 13 and 14, four corners of the known-dimension ground tile 

are used to draw a pair of the virtual parallel line ( 1 1

1 2Ls Ls and 1 1

3 4Ls Ls ), whose deriving linear 

equations can be expressed as: 

 (24) 

and: 

 (25) 

where the coordinates of 
1

1Ls , 
1

2Ls , 
1

3Ls , and 
1

4Ls  are respectively chosen as (113, 180), (129, 83), 

(112, 181), and (128, 97) in the image-domain.  

Figure 13. Two chosen points for the right line in the 1st webcam.  

 
  

1 1 1 1

1 2 1 1: 6.0625 865.063Ls Ls y x  

1 1 1 1

3 4 2 2: 5.68 992Ls Ls y x 

1

1Ls

1

2Ls
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Figure 14. Two chosen points for the left line in the 1st webcam. 

 

Similar to the setting procedures of the 1st webcam, the virtual parallel line ( 2 2

1 2Ls Ls and 2 2

3 4Ls Ls ) 

for the 2nd webcam can be expressed as: 

 (26) 

and: 

 (27) 

where the coordinates of 
2

1Ls , 
2

2Ls , 
2

3Ls , and 
2

4Ls  are respectively chosen as (140, 365), (168, 138), 

(404, 359), and (355, 136) in the image-domain. Figures 15 and 16 show these four points.  

Figure 15. Two chosen points for the right line in the 2nd webcam. 

 

Figure 16. Two chosen points for the left line in the 2nd webcam. 

 

The virtual parallel line ( 3 3

1 2Ls Ls and 3 3

3 4Ls Ls ) for the 3rd webcam can be expressed as: 

 (28) 

1

3Ls

1

4Ls

2 2 2 2

1 2 1 1: 8.107 1500Ls Ls y x  

2 2 2 2

3 4 2 2: 4.551 1479.61Ls Ls y x 

2

1Ls

2

2Ls

2

3Ls

2

4Ls

3 3 3 3

1 2 1 1: 5.475 1309.65Ls Ls y x  
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and: 

 (29) 

where the coordinates of 
3

1Ls , 
3

2Ls , 
3

3Ls , and 
3

4Ls  are respectively chosen as (174, 357), (214, 138), 

(415, 358), and (377, 137) in the image-domain. Figures 17 and 18 show these four points.  

Figure 17. Two chosen points for the right line in the 3rd webcam. 

 

Figure 18. Two chosen points for the left line in the 3rd webcam. 

 

4.3. Experimental Results  

In our experiments, a remote-controlled track-robot moves through the monitored areas. The path of 

the robot is shown in Figure 19a. In Figure 19a, the circled locations, causing bigger errors as shown in 

Figure 19b, are the coordinates of the front arms of the robot at the moment of which the robot is 

moving into the covering area of the 2nd webcam, as shown in Figure 19c. In Figure 19d, a bigger 

error happens in the circled locations, which are the coordinates of the front arms of the mobile robot 

at the moment of which the robot is moving into the covering area of the 3rd webcam, as shown in  

Figure 19e. The error function used to show the ability of our proposed localization method is: 

 (30) 

where are the actual coordinates, and  are the coordinates measured by the proposed 

method. In Table 1, the measurement errors range from 2.24 cm (when the robot is near the webcams) 

to 12.37 cm (when the robot is far away from the webcam). According to the definition of  and 

the dimensions of the robot, which are 54 cm × 54 cm, a common size for patrolling robots, we find 

3 3 3 3

3 4 2 2: 5.815 2055.55Ls Ls y x 

3

1Ls

3

2Ls

3

3Ls

3

4Ls

2 2

2 1 2 1( ) ( )Error x x y y  ＋

1 1( , )x y 2 2( , )x y

centerR
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that the robot can be correctly located even though it is far away from the webcams. Limited by the 

low-resolution webcams, the measurement errors are acceptable. We also can easily reduce the 

measurement errors by using high-resolution CCD camera. Furthermore, the selection of a  

known-dimension rectangle pattern should be clearly seen in the captured image in order to set up the 

reference points of IBDMS and PLDMS. In addition, a suitable threshold value  in the segmentation 

horizontal projection, which is used to update the background image, and the distortion coefficient 

vectors and camera conversion matrix in image calibration are important factors for precisely locating 

the mobile robots. 

Under the conditions of the static monitored area, it is assumed that light sources and locations of 

walls and furniture are given. Light influence, therefore, can be easily attenuated through choosing 

appropriate factors in the image processing techniques. In this paper, we pay more attention to locating 

the moving robot by using single webcam and have not yet considered the situation of partial 

occlusions. In this static indoor environment, some image techniques [33–35] could be used to 

overcome temporary partial occlusion. 

Figure 19. Moving path of the track robot (a) Path of the robot; (b) Path captured under 

the Webcam II (c) Image of the Webcam II; (d) Path captured under the Webcam III;  

(e) Image of the Webcam III 
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(b) (c) 
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Figure 19. Cont. 

 

(d) (e) 

Table 1. Measurement errors of the proposed method. 

Actual Coordinate Measured Coordinate Error (cm) Webcams 

(610,592) (613,588) 5.00 Webcam I 

(627,611) (626,609) 2.24 Webcam I 

(636,560) (630,559) 8.08 Webcam I 

(648,591) (641,594) 7.62 Webcam I 

(684,584) (676,578) 10.00 Webcam I 

(736,891) (738,883) 8.24 Webcam II 

(774,912) (775,901) 11.04 Webcam II 

(759,918) (756,906) 12.37 Webcam II 

(763,944) (759,932) 12.65 Webcam II 

(808,966) (811,952) 12.37 Webcam II 

(1001,779) (997,779) 4.00 Webcam III 

(1236,1076) (1225,1074) 11.18 Webcam III 

(1250,1019) (1241,1021) 9.49 Webcam III 

(1271,1063) (1262,1065) 11.18 Webcam III 

(1250,1041) (1241,1039) 9.22 Webcam III 

5. Conclusions 

This paper proposes the use of IBDMS and PLDMS to locate a mobile robot in an indoor 

environment. Through the image processing and according to a known-dimension ground tile, the 

IBMDS and PLDMS used can calculate the coordinates of a moving tracked robot. Using this 

framework, we can quickly estimate the localization of the tracked robot. Furthermore, the 

experimental environment is easy to set up since only three parameters have to be defined, that is, the 

maximum pixel, the perspective, and the optical distance. Because the locations of webcams are fixed, 

we can utilize a simple background subtraction method to extract the data to attenuate the problem of 

computational burden. In addition, we use a low-pass filter and an on-line background updating 

method to reduce background noise, and we adopt the image morphology to acquire the robot’s image 

information. This method does not use expensive high-resolution webcams and complex pattern 
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recognition methods to identify the mobile robot, but rather just uses a simple formula to estimate 

distance. From the experimental results, the localization method is both reliable and effective. 
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