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Abstract: Because of the advantages of finger-vein recognition systems such as live 

detection and usage as bio-cryptography systems, they can be used to authenticate 

individual people. However, images of finger-vein patterns are typically unclear because of 

light scattering by the skin, optical blurring, and motion blurring, which can degrade the 

performance of finger-vein recognition systems. In response to these issues, a new 

enhancement method for finger-vein images is proposed. Our method is novel compared 

with previous approaches in four respects. First, the local and global features of the vein 

lines of an input image are amplified using Gabor filters in four directions and Retinex 

filtering, respectively. Second, the means and standard deviations in the local windows of 

the images produced after Gabor and Retinex filtering are used as inputs for the fuzzy rule 

and fuzzy membership function, respectively. Third, the optimal weights required to 

combine the two Gabor and Retinex filtered images are determined using a defuzzification 

method. Fourth, the use of a fuzzy-based method means that image enhancement does not 

require additional training data to determine the optimal weights. Experimental results 

using two finger-vein databases showed that the proposed method enhanced the accuracy 

of finger-vein recognition compared with previous methods. 

Keywords: finger-vein recognition; enhancement method; Gabor and Retinex filtering; 

fuzzy-based method 
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1. Introduction 

With the increased demand for personal information security, biometric technologies such as iris, 

face, fingerprint, finger-vein, voice, gait, palm-print, and hand geometry recognition have been 

employed in a wide number of security systems, e.g., building access, computer log-ins, door access 

control, cellular phones, and ATMs [1–4]. Biometric technology, which exploits the behavioral and/or 

physiological characteristics of an individual, has high distinctiveness, permanency, universality, 

usability, and performance capabilities [4]. In particular, finger-vein recognition systems are used to 

authenticate individuals as enrolled or non-enrolled, and it has various advantages, such as live 

detection and possible applications in bio-cryptography systems [5]. In human identification 

applications, finger-vein recognition uses the vein patterns detected inside the finger. When capturing a 

finger-vein image, the deoxyhemoglobin in the veins absorbs near infrared (NIR) light at a wavelength 

of 760–850 nm. The vein region in a finger-vein image thus appears as dark pixels, whereas the other 

regions appear as brighter pixels. Therefore, the area of a finger-vein image can be separated into 

regions with vein and non-vein patterns. The vein patterns of all fingers of the same person also have 

different characteristics. Therefore, to facilitate higher recognition accuracy, some finger-vein 

recognition systems use more than two fingers from the same individual. 

Although finger-vein recognition is less affected by wounds or deformations on the finger than 

fingerprint recognition, finger-vein patterns can be ambiguous and unclear because of light scattering 

from the skin, low contrast, and uneven illumination. These factors degrade the quality of a finger-vein 

images and the discrimination of vein patterns, which reduces the accuracy of the finger-vein 

recognition. To overcome the performance degradation of finger-vein recognition, many previous 

studies have developed different enhancement methods for finger-vein images, some of which are 

compared with the proposed method in Table 1. Previous quality enhancement methods for finger-vein 

images can be classified into restoration-based and non-restoration-based methods [6]. 

For example, Yang et al. developed a restoration-based method that removes the optical blur from 

the camera lens and the skin scattering blur from the structure of the finger skin layers to transform a 

low-quality finger-vein image into a high-quality image [7]. They formulate the camera lens and skin 

scattering blurs by considering the optical characteristics of the skin layers using a Gaussian-based 

point spread function (PSF) model and a depth-PSF model. Several restored images are obtained based 

on various skin surface depth parameters because it is not possible to correctly estimate the depth of 

the skin surface in the vein region. In addition, a linear superposition method is employed to conjoin 

the several restored images to produce a combined image. However, this method is limited because the 

processing time is increased by obtaining several restored images with various skin surface depth 

parameters. To eliminate the skin scattering blur in a finger-vein image, an optical model based on skin 

scattering and atmospheric scattering components has also been used for enhancing finger-vein  

images [8]. This approach is based on de-hazing and the removal of skin scattering blur, which makes 

the vein patterns in a finger-vein image easier to distinguish. However, this method is limited because 

its performance can be affected by the detection of the scattering parameter. In addition, enhancement 

of the recognition accuracy was not discussed in this paper.  

Yang et al. proposed an enhancement method for finger-vein images based on scattering removal, 

Gabor filtering, and a multi-scale multiplication rule [9]. However, they assumed that the luminance of 
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the surrounding environment would be constant during processing to facilitate scattering removal. In 

addition, the optimal parameters of the Gabor filter were designed in an elaborate manner based on the 

characteristics of the vein lines. Therefore, the parameters need to be redesigned for vein images 

captured using different devices. By contrast, our proposed method uses a roughly designed Gabor 

filter, which has the advantage that its performance is not affected significantly by the different types 

of vein images (in this study, this was confirmed by tests using two finger-vein databases, which were 

collected with two different devices). In our method, performance enhancement is achieved using a 

combination of Gabor and Retinex filters based on a fuzzy system. The fuzzy system can be designed 

heuristically without a training procedure to obtain the optimal weights for the combination of Gabor 

and Retinex filtering. Therefore, this system has the advantage that it does not need to be redesigned 

for different finger-vein databases. 

Depending on the number of images used, non-restoration-based methods can be divided into single 

image-based and multiple image-based enhancement methods. For example, Zhang et al. developed a 

single image-based approach [6,10–15], which uses gray-level grouping (GLG) for contrast 

enhancement and a circular Gabor filter (CGF) for image enhancement to increase the quality of 

finger-vein images [10]. Pi et al. introduced a quality improvement approach based on edge‐preserving 

and elliptical high‐pass filters to maintain the edges and remove any blur [11]. Histogram equalization 

is then used to increase the contrast of the resulting image. In addition, a fuzzy-based multi-threshold 

algorithm, which considers the characteristics of the vein patterns and the skin region, was proposed by 

Yu et al. [12]. This fuzzy-based multi-threshold algorithm is not only straightforward, but it also 

increases the contrast between the vein patterns and the background. Yang et al. introduced an 

enhancement method that uses multi-channel even-symmetric Gabor filters with four directions and 

three center frequencies to obtain distinct vein patterns [13]. After obtaining the filtered images, an 

enhanced image is generated by combining the filtered images based on a reconstruction rule. 

However, enhanced recognition accuracy was not demonstrated in any of these previous studies [10–13]. 

Park et al. proposed an image quality enhancement method that considers the direction and 

thickness of the vein line based on an optimal Gabor filter [6], where they determine the direction of 

the vein lines based on eight directional profiles of a gray image and the thickness of the vein lines 

based on the optimal Gabor filter width. This method improves the visibility of the resulting  

finger-vein image and the recognition accuracy using the enhanced images. However, this method uses 

two-step Gabor filtering (four directional Gabor filters and optimal Gabor filtering based on eight 

directions), which increases the processing time. In addition, detection errors in the orientation and 

thickness of the vein line can affect the performance. Yang et al. introduced a line filter transform 

(LFT) to compute the primary orientation field (POF) of a finger-vein image after using the curvatures 

of the cross-sectional profiles to estimate the coarse vein-width variation field (CVWVF) [14].  

The venous regions are enhanced by the curve filter transform (CFT), and the visibilities of the vein 

region and vein ridges are clearly improved. However, detection errors in the orientation and thickness 

of a vein line could affect the performance. To enhance the quality of a finger-vein image, Cho et al. 

presented an adaptive Gabor filtering method based on the orientation and width of a detected  

finger-vein line [15], where a finger-vein line detected using vein line tracking is used to measure the 

orientation of the finger-vein. 
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Table 1. Comparison of the proposed method and previous methods. 

Category Restoration-Based Method 
Non-Restoration-Based Method 

Single Image-Based Method Multiple Image-Based Method 

Method 

Restoration-based on optical blur 

caused by camera lens, and skin 

scattering blur by the skin  

layer [7]. 

Restoration method based on  

de-hazing and skin scattering  

blur [8]. 

Method using gray-level grouping and a 

circular Gabor filter for contrast and 

image enhancement [10]. 

Method using edge-preserving and 

elliptical high-pass filters, and histogram 

equalization [11]. 

Fuzzy-based multi-threshold algorithm 

[12]. 

Method using multi-channel Gabor and 

image reconstruction [13]. 

Method using optimal Gabor 

filter based on the direction 

and thickness of the vein  

line [6]. 

Method using coarse vein-

width variation field and 

primary orientation  

field [14]. 

Method using vein line 

tracking and adaptive Gabor 

filtering [15]. 

Combination of Gabor and Retinex 

filters based on fuzzy theory 

(proposed method) 

Strength 

Various vein-patterns can be 

distinguished by removing  

blur effects. 

The contrast between vein patterns and 

skin regions is increased. 

The proposed method is straightforward in 

terms of image enhancement. 

Information related to the 

orientation and width of the 

vein line is considered during 

image enhancement. 

Local and global features of a finger-

vein are considered. 

The performance is not affected by 

detection errors in the orientation and 

thickness of a vein line. 

Weakness 

The direction and width of the 

vein are not considered during 

restoration. 

The performance can be affected  

by the detection of the  

scattering parameter. 

No enhancement of the 

recognition accuracy was 

demonstrated. 

The direction and width of the vein are 

not considered. 

No enhancement of the recognition 

accuracy was demonstrated. 

Detection errors in the 

orientation and thickness of a 

vein line can affect the 

performance. 

The processing time is increased by 

the use of both Gabor and Retinex 

filters. 
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The width of a finger-vein is obtained using the gray profiling of the original image that 

corresponds to the finger-vein line. However, the image enhancement performance could be  

degraded by inaccurate detection of the vein orientation and width in all previous studies [6,14,15].  

Kumar et al. proposed a system that combined finger-vein and fingerprint recognition results using a 

novel score-level fusion method [16]. The finger-vein image is enhanced based on the average 

background image and local histogram equalization. However, skin areas become uneven with this 

method, despite the distinctiveness of the vein line. Thus, vein line detection is required based on 

further processing by matched filtering, repeated line tracking, maximum curvature detection, Gabor 

filtering, and morphological operations. However, our method has the advantage that the image 

produced after image enhancement can be used for recognition without further processing. 

In [17], the authors proposed a quality assessment method for finger-vein images, but they did not 

consider quality enhancement. Miura et al. proposed a robust method for extracting the centerlines of 

veins by calculating the local maximum curvatures in cross-sectional profiles of vein images [18]. 

However, this study aimed to locate an accurate vein line and it did not focus on vein image 

enhancement, which differs from our method for enhancing finger-vein images. Yang et al. proposed a 

method for evaluating the finger-vein image quality using a trained support vector machine (SVM), 

which was based on the gradient, image contrast, and information capacity of the image [19]. 

However, this method was used for quality evaluation rather than finger-vein image enhancement, 

which differs from our method for enhancing the finger-vein image. 

Nguyen et al. [20] proposed a method for detecting fake finger-vein images, which combined the 

features of the Fourier transform, and Haar and Daubechies wavelet transforms based on a SVM. 

However, their method was used for detecting fake finger-vein images rather than finger-vein image 

enhancement, which differs from our method. 

In this study, we propose a novel finger-vein image enhancement method to overcome the problems 

of previous methods. Four directional Gabor filters and Retinex filtering are used to amplify the local 

and global features of the vein lines in an input image. The two images produced by Gabor and 

Retinex filtering are combined to obtain an enhanced image based on a fuzzy-based fusion method. 

Gabor and Retinex filtering are both common image enhancement methods, but the main novelty of 

our approach is the fuzzy-based combination method for Gabor and Retinex filtering. The fuzzy 

system can be designed heuristically without a training procedure to obtain the optimal weights for the 

combination of Gabor and Retinex filtering. Therefore, this system has the advantage that it does not 

need to be redesigned for different finger-vein databases whereas a neural network-based system must 

be trained to suit specific databases. The means and standard deviations in the local windows of the 

images produced after Gabor and Retinex filtering are used as the inputs for the fuzzy rule and fuzzy 

membership function, respectively. The optimal weights used to combine the Gabor and Retinex 

filtered images are determined using a defuzzification method. 

The remainder of this paper is organized as follows: in Section 2, the proposed method is described, 

including the detection of a finger-vein region, Gabor filtering in four directions, Retinex filtering, the 

proposed image-fusion method based on fuzzy theory, and a finger-vein recognition method.  

The experimental results and some concluding remarks are given in Sections 3 and 4, respectively. 
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2. Proposed Fuzzy-Based Fusion Method for Finger-Vein Image Quality Enhancement 

2.1. Overview of the Proposed Approach 

Figure 1 shows a flowchart of the proposed fuzzy-based fusion method for finger-vein image 

enhancement. After inputting a finger-vein image, the finger-vein region is detected using detection 

masks that are applied to the upper and lower finger boundaries [6,17,20], which eliminates the 

allocation of unnecessary processing time to an enhancement procedure for the background region (see 

Step 2 in Figure 1 and Section 2.2). To amplify the local and global features of the vein lines in an 

input image, Gabor filtering in four directions and Retinex filtering are employed to generate two 

images (see Step 3 in Figure 1 and Sections 2.3 and 2.4). The optimal weight values for combining the 

Gabor and Retinex images are obtained using a fuzzy rule, fuzzy membership function, and 

defuzzification method based on the means and standard deviations (STDs) measured in the local 

windows of the two resulting images (see Step 4 in Figure 1 and Section 2.5). The Gabor and Retinex 

images are combined using the determined optimal weights (see Step 5 in Figure 1 and Section 2.5). 

Finger-vein recognition is conducted using the combined image, including size normalization based on 

stretching and sub-sampling, feature extraction, and code matching to identify whether the subject is 

genuine or an imposter (see Step 6 in Figure 1 and Section 2.6). 

Figure 1. Flowchart showing the proposed fuzzy-based fusion method for finger-vein 

image enhancement. 

 

2.2. Finger Region Detection 

A captured finger-vein image is separated into finger-vein and background regions because the 

latter do not contain the vein patterns used for finger-vein recognition. The background region appears 

as dark pixels whereas the finger-vein region appears as bright pixels, which means that detection 

masks over the upper and lower finger boundaries can be used to find the finger-vein region, as shown 

in Figure 2 [6,17,20]. The mask size was determined empirically as 20 × 4 pixels. 
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Figure 2. Detection masks for the (a) upper and (b) lower finger boundaries [6,17,20]. 

 

Figure 3. Examples of finger region detection using images from database I:  

(a) original images and (b) detection results for the finger boundaries. 

 

 

(a) (b) 

The y-positions indicate where the maximum values for template matching are obtained (at each  

x-position) using the detection masks shown in Figure 2, which are considered the upper and lower 

edge boundaries [6,17,20]. A thick finger area (for example, the left part of Figure 3a) usually lacks a 

vein pattern because the NIR light has difficulty penetrating the thick finger to be captured by the 

camera. In addition, the thin vein pattern information is not visible in the fingertip region of a captured 

finger-vein image. To consider these conditions, we define the left (X1) and right (X2) boundaries in the 

horizontal direction, as shown in Figures 3a and 4a. The values of X1 and X2 were defined empirically 

(a) 

 

(b) 
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based on the characteristics of the finger-vein database used in the experiments. In database I, with a 

640 × 480 image size [6,17,20], the values of X1 and X2 are 220 and 169, respectively. In database II, 

with a 320 × 240 image size [21], the values of X1 and X2 are set to 20 and 51, respectively (detailed 

explanations of databases I and II are provided in Section 3). The values of X1 and X2 are larger in 

database I than those in database II for the following reasons. Database I was collected using a device 

produced in our laboratory. The device includes a hole where the finger that needs to be recognized is 

placed. The hole is small but a small area of the finger, i.e., the region between the 1st and 2nd 

knuckles, can be observed through the hole by the camera in the device. Therefore, the unseen (dark) 

areas from the left and right boundaries of the image are larger in database I than those in the database 

II, as shown in Figures 3 and 4. Consequently, we used the larger values for X1 and X2 in database I. 

Figures 3 and 4 show examples of finger region detection using detection masks. Because of the noise 

in the upper and lower boundaries of the finger region of database II, the region of interest used for 

finger-vein recognition is reduced in the vertical direction compared with the detected finger region, as 

shown in Figure 4. 

Figure 4. Examples of finger region detection using images from database II:  

(a) original images and (b) detection results for the finger boundaries. 

 

 

(a) (b) 

2.3. Finger-Vein Image Enhancement Method Based on Four-Directional Gabor Filtering Algorithm 

In general, a two-dimensional (2D) Gabor filter is defined as a Gaussian function that comprises a 

complex sinusoidal signal. The Gaussian function can be expressed as Equations (1) and (2) [6,13,22]: 
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(2) 

The parameters x  and y  determine the space-domain envelope of the Gaussian function on the  

x- and y-coordinates in 2D [6,13,22], respectively, x  and y  indicate the rotated x- and  

y-coordinates of a 2D Gabor filter based on a   rotation rate, respectively [6,13,22], and ĵ  and 0f  
represent 1  and the spatial center frequency of the filter, respectively [6,13,22]. In this method, the 

real part of the Gabor filter is employed only to increase the effectiveness of the processing time by 

eliminating the imaginary part of the Gabor filter. An even-symmetric Gabor filter without an 

imaginary part can be expressed as [6,13,22]: 

 

(3) 

where i (i = 1,2,3,4) indicates the channel index in four directions, i (= 4i / ) is the orientation of the 

i
th

 channel of the Gabor filter, and fi represents the spatial center frequency of the even-symmetric 

Gabor filter according to the i
th

 channel. fi, x, and y are 0.05, 9.53, and 9.53, respectively. 

Figure 5. Examples of the results obtained by four-directional Gabor filtering using images 

from database I: (a) the original images with the detected finger boundaries and (b) the 

images produced after the application of filtering. 

 

 

(a) (b) 

As shown in Figures 3 and 4, the finger-veins follow various directions, such as horizontal, vertical, 

and diagonal. Therefore, we use four Gabor filters in four directions, i.e., 45, 90, 135, and 180, as 

shown in Equation (3), to increase the amplitudes of the vein lines in various directions. For each 

channel, the filtered image (Oi(xi,yi)) is obtained by convoluting the original image (I(x,y)) using the 

corresponding Gabor kernel ( ),( yxGe
i ), as follows [6,13,22]: 
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 (4) 

where   is the convolution operator. Using Equations (3) and (4), the four resulting images are 

generated according to the four directions (–45, 0, 45, and 90) of the Gabor filter. To combine the 

four resulting images and produce the final image, the lowest gray-level value among the four resulting 

images at the same position is chosen as the best match for the Gabor filter because the finger-vein line 

is darker than the skin region [6,13]. Figures 5 and 6 show images produced using four directional 

Gabor filtering for database I and database II, respectively. As shown in these figures, the finger-vein 

lines are more distinct than those in the original image. 

Figure 6. Examples of the results obtained by four-directional Gabor filtering using images 

from database II: (a) the original images with the detected finger boundaries; and  

(b) the images produced after the application of filtering. 

 

 

(a) (b) 

2.4. Finger-Vein Image Enhancement Using Retinex Filtering Algorithm 

To enhance the distinctiveness of the image, the Retinex algorithm is introduced by reducing the 

variance in the image illumination to normalize the image illumination [23,24]. The intensity of the 

captured image ( ),( yxL ) is modeled by multiplying the illumination ( ),( yxIc ) and the ratio of 

reflection ( ),( yxr ) [24]:  

 (5) 

From Equation (5), we can obtain Equation (6) [23]: 

 (6) 

The illumination ( ),( yxIc ) is assumed to be a convolution of the Gaussian filtering ( ),( yxF ) and 

the image ( ),( yxL ), as shown in Equations (7) and (8) [24]: 

 (7) 

),(),(),( yxIyxGyxO e
ii 

),(),(),( yxryxIyxL c 

),(log),(log),(log yxIyxLyxr c

)],(),(log[),(log),(log yxFyxLyxLyxr 
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(8) 

where F(x,y) and ),(log yxr indicate the Gaussian filter and the image produced after Retinex filtering. 

Retinex images obtained using various sigma values ( = 10, 15, 20, 25, 50) for Gaussian filtering are 

shown in Figures 7 and 8. The vein patterns in the images produced after Retinex filtering are more 

distinct, and the contrast between the vein patterns and the skin regions is higher than that in the 

original images. 

Figure 7. Retinex images obtained using various sigma values with images from database I: 

(a) the original image with the detected finger boundaries; Retinex images obtained using 

sigma values of (b) 10, (c) 15, (d) 20, (e) 25, and (f) 50. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Retinex images obtained using various sigma values with images from database II: 

(a) the original image with the detected finger boundaries; Retinex images obtained using 

sigma values of (b) 10, (c) 15, (d) 20, (e) 25, and (f) 50. 

   

(a) (b) (c) 
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Figure 8. Cont. 

   

(d) (e) (f) 

2.5. Finger-Vein Image Enhancement Method with a Fuzzy-based Fusion Approach 

The enhancement of thick vein lines is limited by the four-directional Gabor filter, whereas the thin 

vein lines become more distinct, as shown in Figures 9b and 10b. However, the thick vein lines are 

more distinct with Retinex filtering, as shown in Figures 9 and 10. Therefore, we can estimate that the 

local and global features of the vein lines are enhanced by the Gabor and Retinex filters, respectively. 

To enhance both the local and global features, we propose a fuzzy-based image fusion method for 

combining the Gabor and Retinex filtered images. 

Figure 9. Comparison of outputs produced by Gabor and Retinex filtering using images 

from database I: (a) original image of the detected finger boundaries; (b) results with 

Gabor filtering; and results with Retinex filtering using sigma values of (c) 10, (d) 15,  

(e) 20, (f) 25, and (g) 50. 

   

(a) (b) (c) 

   

(d) (e) (f) 
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Figure 9. Cont. 

 

(g) 

Figure 10. Comparison of the outputs with Gabor and Retinex filtering using images from 

database II: (a) original image of the detected finger boundaries; (b) results with Gabor 

filtering; and results with Retinex filtering using sigma values of (c) 10, (d) 15, (e) 20,  

(f) 25, and (g) 50. 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

(g) 

2.5.1. Definition of the Membership Function 

Figure 11 illustrates the proposed fuzzy-based image fusion method. The mean (μ(x,y)) and STD 

(std(x,y)) values in the local windows of the images produced by Gabor and Retinex filtering are used 

as the inputs for the fuzzy logic system, as shown in Figure 11. We apply the local window by 

overlapping with a 1-pixel step. ),( yx1 , ),( yxstd1 , ),( yx2 , and ),( yxstd2  (which are normalized 

based on a min-max scale of 0 to 1) denote the mean and STD values measured in the local window 

according to the center position ),( yx  of the Gabor and Retinex images, respectively; ),( yxVG  and 
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),( yxVR  are the pixel values of the Gabor and Retinex filtered images at the ),( yx
 position, 

respectively; w and ),( yxVO  indicate the optimal weight values obtained using fuzzy logic and the 

pixel value of the enhanced combined image obtained from the Gabor and Retinex images at the ),( yx
 

position, respectively. The horizontal and vertical lengths of the local square window are set as two 

times larger than the greatest width of the vein lines in the Gabor and Retinex filtered images. 

Figure 11. Illustration of the proposed fuzzy-based image fusion method. 

 

The STD value in a local window that includes a vein line is usually larger than that of a window 

that includes only the skin area. In addition, a vein line is included in the local window and the mean 

value of the local window is lower because the vein line is darker than the skin area. Therefore, we can 

obtain the following relationships. If the mean and STD values in the local window are low and high, 

respectively, the possibility that the local window contains a vein line is high. By contrast, if the mean 

and STD values in the local window are high and low, respectively, the possibility that the local 

window contains a vein line is low. Based on this relationship, we determine the fuzzy rules, which 

have four inputs, i.e., the mean ( ),( yx1 ) and STD ( ),( yxstd1 ) for the Gabor filtered image, and the 

mean ( ),( yx2 ) and STD ( ),( yxstd2 ) for the Retinex filtered image, in the local window, as shown in 

Table 2. A detailed explanation of Table 2 is given in Section 2.5.2. 

Figure 12a–d shows the membership functions for the input values. As shown in these figures, each 

of the four inputs is categorized as low (L) and high (H) based on a linear membership function. A 

membership function usually represents the distributions of the input or output values for a fuzzy 

system. Thus, we define the two distributions (L and H) for the mean in the local window of the Gabor 

image shown in Figure 12a. In general, two distributions can share some common areas, and therefore, 

we define the two distributions of L and H that include an overlapping region, as shown in Figure 12a. 

The number of input values is as high as four in Figure 12a–d, and therefore, we only use two 

membership functions (L and H) for each input value to reduce the number of fuzzy rules in Table 2. 

However, the optimal output weight needs to be represented in detail; therefore, we use three 

membership functions for L, M, and H, as shown in Figure 12e. Consequently, the optimal weight (w) 

of the fuzzy output used to combine the Gabor and Retinex images is obtained using the membership 

function for the output value, as shown in Figure 12e. 
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Table 2. Fuzzy rules based on the characteristics of the Gabor and Retinex filtered images. 

Input 1 (u1) of 

Gabor Image 

Input 2 (std1) of 

Gabor Image 

Input 3 (u2) of 

Retinex Image 

Input 4 (std2) of 

Retinex Image 

Output (w) of 

Gabor Image 

L L L L M 

L L L H L 

L L H L M 

L L H H L 

L H L L H 

L H L H M 

L H H L H 

L H H H H 

H L L L M 

H L L H L 

H L H L M 

H L H H L 

H H L L H 

H H L H L 

H H H L H 

H H H H M 

Figure 12. Membership functions used for fuzzy-based image fusion: (a) mean and  

(b) standard deviation (STD) of the local window in a Gabor filtered image; (c) mean and 

(d) STD of the local window in a Retinex filtered image; and (e) membership function for 

obtaining the optimal weight. 

  

(a) (b) 

  

(c) (d) 
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Figure 12. Cont. 

 

(e) 

2.5.2. Fuzzy Rules that Consider the Characteristics of Gabor and Retinex Images 

As described in Section 2.5.1, if the mean and STD values in the local window are low (L) and high 

(H), respectively, the possibility that the local window contains a vein line is high (H). Conversely,  

if the mean and STD values in the local window are high (H) and low (L), respectively, the possibility 

that the local window contains a vein line is low (L). Based on these relationships, 16 types of fuzzy 

rules are determined using four (L) or (H) inputs to obtain the optimum weighting value required for 

image fusion, as shown in Table 2. The weighting value of a Retinex filtered image is determined  

as 1-w, as shown in Figure 11. As shown in Table 2, if u1 and std1 for a Gabor filtered image are L and 

H, respectively, and u2 and std2 for a Retinex filtered image are H and L, respectively, we assign the 

larger weighting value (H) to the Gabor filtered image because the possibility that the local window of 

this image contains a vein line is larger. If u1 and std1 for the Gabor filtered image, and u2 and std2 for 

the Retinex filtered image are L or H, we assign the same weighting value (M) to the Gabor and 

Retinex filtered images, respectively, because it is difficult to determine the local windows of the 

Gabor and Retinex filtered images that has a higher possibility of containing a vein line. 

For a high (H) µ1, high (H) std1, high (H) µ2, and low (L) std2, although the high (H) mean value of 

the local window indicates that this window region contains more skin area than vein lines, we assign 

the larger weighting value (H) to the Gabor filtered image because the STD value of the local window 

of this image is higher than that of the Retinex filtered image (the possibility that the local window of 

the Gabor filtered image contains a vein line is larger). 

2.5.3. Determination of the Optimal Weights Using Defuzzification 

Using the four input values (µ1, std1, µ2, and std2) obtained in the local window, the eight 

corresponding output values are calculated as f1(L) and f1(H) for µ1, f2(L) and f2(H) for std1, f3(L) and 

f3(H) for µ2, and f4 (L) and f4 (H) for std2 using four linear membership functions, as shown in  

Figure 13, where, f1(·), f2(·), f3(·), and f4(·) are the membership functions that correspond to µ1, std1, µ2, 

and std2, respectively. Therefore, 16 combination pairs of the above output values are obtained as  

{( f1(L), f2(L), f3(L), f4 (L)), ( f1(L), f2(L), f3(L), f4 (H)), ( f1(L), f2(L), f3(H), f4 (L)), ( f1(L), f2(L), f3(H),  

f4 (H)),…( f1(H), f2(H), f3(H), f4 (H))}. Assuming that the values of f1(L), f1(H), f2(L), f2(H), f3(L), f3(H), 
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f4(L), and f4(H) are 0.39, 0.61, 0.55, 0.45, 0.67, 0.33, 0.27, and 0.73, respectively, we can obtain the 

values listed in Table 3 based on the values in Table 2. 

Figure 13. Illustrations showing the linear membership outputs based on four input values: 

(a) µ1, (b) std1, (c) µ2, and (d) std2. 

  

(a) (b) 

  

(c) (d) 

Table 3. Illustrations of 16 combination pairs of output values for four membership functions. 

Pair Index Output of f1(·) Output of f2(·) Output of f3(·) Output of f4(·) 
Min 
Rule 

Max 

Rule 

1 0.39 (L) 0.55 (L) 0.67 (L) 0.27 (L) 0.27 (M) 0.67 (M) 

2 0.39 (L) 0.55 (L) 0.67 (L) 0.73 (H) 0.39 (L) 0.73 (L) 

3 0.39 (L) 0.55 (L) 0.33 (H) 0.27 (L) 0.27 (M) 0.55 (M) 

4 0.39 (L) 0.55 (L) 0.33 (H) 0.73 (H) 0.33 (L) 0.73 (L) 

5 0.39 (L) 0.45 (H) 0.67 (L) 0.27 (L) 0.27 (H) 0.67 (H) 

6 0.39 (L) 0.45 (H) 0.67 (L) 0.73 (H) 0.39 (M) 0.73 (M) 

7 0.39 (L) 0.45 (H) 0.33 (H) 0.27 (L) 0.27 (H) 0.45 (H) 

8 0.39 (L) 0.45 (H) 0.33 (H) 0.73 (H) 0.33 (H) 0.73 (H) 

9 0.61 (H) 0.55 (L) 0.67 (L) 0.27 (L) 0.27 (M) 0.67 (M) 

10 0.61 (H) 0.55 (L) 0.67 (L) 0.73 (H) 0.55 (L) 0.73 (L) 

11 0.61 (H) 0.55 (L) 0.33 (H) 0.27 (L) 0.27 (M) 0.61 (M) 

12 0.61 (H) 0.55 (L) 0.33 (H) 0.73 (H) 0.33 (L) 0.73 (L) 

13 0.61 (H) 0.45 (H) 0.67 (L) 0.27 (L) 0.27 (H) 0.67 (H) 

14 0.61 (H) 0.45 (H) 0.67 (L) 0.73 (H) 0.45 (L) 0.73 (L) 

15 0.61 (H) 0.45 (H) 0.33 (H) 0.27 (L) 0.27 (H) 0.61 (H) 

16 0.61 (H) 0.45 (H) 0.33 (H) 0.73 (H) 0.33 (M) 0.73 (M) 
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In general, the Min and Max rules are used to determine the deduced value from a combination  

pair [24,25]. Therefore, we can choose the minimum and maximum of the four values in a combination 

pair using the Min and Max rules, respectively. For example, if the four values of a combination pair 

are 0.39(L), 0.55(L), 0.67(L), and 0.27(L), the values of 0.27 and 0.67 are selected using Min and Max 

rules, respectively. In addition, if all four values are L, the corresponding output is M, as shown in the 

fuzzy rules defined in Table 2. Consequently, the values of 0.27(M) and 0.67(M) are selected using 

Min and Max rules, respectively, with the fuzzy rules in Table 2. Thus, the 16 types of deduced values 

based on the Min and Max rules, and the values listed in Table 2 are determined in this manner. In the 

present study, the deduced value is called the inference value (IV) for convenience [24]. 

Using these 16 IVs, we can obtain the final optimal weightings based on the defuzzification step. 

Figure 14 shows an example of defuzzification using the IVs and the membership function for the 

output value (weight). With each IV, we can obtain the output values (w1, w2, w3, w4, and w5 in Figure 14). 

Various defuzzification operators are introduced, i.e., the first of maxima (FOM), last of maxima 

(LOM), middle of maxima (MOM), mean of maxima (MeOM), and center of gravity (COG) [24,26]. 

In Figure 14a, the FOM method selects the minimum value (w2) among the weight values calculated 

using the maximum IV (IV1(M) and IV3(H)) as the output weight. The LOM method selects the 

maximum value (w4) among the weight values calculated using the maximum IV (IV1(M) and IV3(H)) 

as the output weight. The MOM method selects the middle value ((w2 + w4)/2) among the weight 

values calculated using the maximum IV (IV1(M) and IV3(H)) as the output weight. Finally, the 

MeOM method selects the mean value ((w2 + w3 + w4)/3) among the weight values calculated using the 

maximum IV (IV1(M) and IV3(H)) as the output weight. The output (score) calculated by the COG is 

w5, as shown in Figure 14b, which is the geometrical center (GC) of the union area of three regions 

(R1, R2, and R3). Using various defuzzification methods, the output weights are determined for the 

Gabor filtered image (w in Figure 11) and for the Retinex filtered image (1-w of Figure 11). 

Figure 14. Illustration of the defuzzification methods used: (a) FOM, LOM, MOM, and 

MeOM; and (b) COG. 

  

(a) (b) 

Table 2 shows that the number of fuzzy rules is 16 (2 × 2 × 2 × 2). If we use three distributions of 

L, M, and H as the input membership function, the number of fuzzy rules becomes 81 (3 × 3 × 3 × 3), 

which is considerably high and complex for use in a fuzzy system. Therefore, we simply use an input 

membership function based on the two distributions of L and H. However, the three distributions  
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of L, M, and H are used as the output membership function to obtain more detailed values for the fuzzy 

system output. 

2.6. Finger-Vein Recognition Method 

Finger-vein recognition is performed after obtaining the enhanced image using the fuzzy-based 

fusion method, including size normalization, code extraction, and code matching [6,17,20]. Size 

normalization using linear stretching based on the detected finger boundaries (see Step 2 in Figure 1 

and Section 2.2) is performed to reduce the variations in the shape and size of each finger.  

The finger-vein image is transformed into a rectangular 150   60 pixel image, as shown in  

Figure 15b [6,17,20]. This rectangular image is then downsampled to a 50   20 pixel image by taking 

the average gray-level value in each 3 × 3 pixel sub-block to enhance the processing speed for code 

extraction and matching, as shown in Figure 15c [6,17,20]. 

Various feature extraction methods, such as the local binary pattern (LBP) and discrete wavelet 

transform (DWT) based on Daubechies and Haar wavelets [6,20], are used to evaluate the performance 

of the proposed finger-vein image enhancement method. First, the binary codes of the local features in 

the finger-vein image are extracted using an LBP operator [6,20]. Figure 16 shows an example of 8-bit 

binary code extraction using the LBP method. Because 8-binary bits are produced for each pixel 

position ( ),( cc yx ), 6,912-bit binary codes (8 (bits)  48 (width)  18 (height)) are generated by the 

LBP operator using a single down-sampled 50   20 pixel image. 

Figure 15. Images obtained using size normalization and downsampling: (a) original 

image with the detected finger boundaries; (b) a rectangular 150   60 pixel image using 

linear stretching based on the detected finger boundaries; and (c) a downsampled  

50   20 pixel image. 

   

(a) (b) (c) 

Figure 16. Example of finger-vein code extraction using a LBP operator. 
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The Hamming distance (HD) is used to obtain the matching score (distance) between enrolled and 

input binary codes using an LBP operator, as shown in Equation (9) [6,17,20]: 

)(
1

BCIBCE
N

HD   (9) 

where BCE and BCI denote the enrolled and input binary codes, respectively, and   and N represent 

the Boolean exclusive OR operator and the total number of bits (6,912) of the binary codes, 

respectively. During iris recognition, non-iris areas such as eyelashes and eyelids are generally not 

used for recognition. The iris codes extracted from the non-iris areas are designated as invalid codes 

and they are not used to calculate the HD. However, all of the texture areas, including finger-veins and 

skin regions of the finger, are used for matching in our method. Therefore, a scheme that only uses 

valid codes is not adopted in Equation (9). 

The input image is decomposed into four sub-band regions (LL, LH, HL, and HH) using 

Daubechies and Haar wavelets. The global features used for finger-vein recognition are extracted from 

these regions [6,20,27]: the LL and HH sub-bands are characterized as low- and high-frequency 

components, respectively, according to the vertical and horizontal directions; the LH sub-band is 

characterized as a conjoined low-frequency component in the vertical direction by a scaling function 

and a high-frequency component in the horizontal direction by a wavelet function; the HL sub-band is 

characterized as a conjoined high-frequency component in the vertical direction and a low-frequency 

component in the horizontal direction by wavelet and scaling functions, respectively [6,27]. Using the 

DWT with three-level decomposition, 64 sub-space regions are obtained, and the mean and STD 

values in each sub-space region are extracted as global features. From the DWT image, 128 features  

(2 (mean and STD in each sub-space region)  64 (sub-space regions)) are obtained, which are 

normalized by min-max scaling. To determine the matching score based on the global features of the 

enrolled and input finger-vein images, the matching score of the Euclidean distance (ED) can be 

calculated as follows:  





M

i

ii qp
M

ED
1

2)(
1

 (10) 

where ip , iq , and M indicate the enrolled and input global features, and the number of global features 

(128), respectively. 

3. Experimental Results 

Two finger-vein image databases were used to verify the accuracy of finger-vein recognition  

using the proposed algorithm. Database I contained images captured by a device made in our 

laboratory, which comprised images of 33 people and the total number of images was 3,300  

(33 people × 10 classes (10 fingers per person) × 10 images (10 per finger)). The image resolution was 

640 × 480 pixels [6,17,20]. Figure 17 shows the finger-vein image-capture device used to produce 

database I, which comprised six NIR illuminators at 850 nm and a webcam. The width, height, and 

depth of the device were 43 mm, 100 mm, and 42 mm, respectively. The NIR illuminators were 

positioned on opposite sides of the camera for the following reasons. If the NIR illuminators were 

positioned at the sides of the finger, the camera could capture the finger-vein image while the finger is 
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illuminated from the side. In this case, however, the uniformity of illumination would be degraded 

throughout the entire finger area. Thus, the image quality would be worse than that obtained when 

positioning the NIR illuminators above the finger’s dorsal side, which was the position used for our 

device (Figure 17). 

Figure 17. The image capture device made in the laboratory, which was used to obtain the 

finger-vein images in database I. 

 

Database II comprised 3,816 finger-vein images (106 people × 6 classes (index, middle, and ring 

fingers of both hands) × 6 images (per finger)) and the image resolution was 320 × 240 pixels [21]. 

The equal error rate (EER) was measured to compare the accuracy of finger-vein recognition using the 

proposed quality enhancement method and a previous method. The EER is the error rate when the false 

acceptance rate (FAR) is most similar to the false rejection rate (FRR). The FAR indicates the error 

rate of non-enrolled people being incorrectly recognized as enrolled persons. The FRR denotes the 

error rate of enrolled people being rejected incorrectly as non-enrolled people [6,17,20]. For database 

I, the numbers of authentic and imposter matches were 14,850 (10C2 × 330) and 5,428,500  

(3300C2 − 14,850), respectively. For database II, there were 9,540 (6C2 × 636) authentic matches and 

7,269,480 (3816C2 − 9,540) imposter matches. In database I, the number of images in each class (finger) 

was 10. The number of images used for enrollment was changed in the 10 images, and therefore, the 

number of authentic matches with these 10 images was 10C2. In addition, because the number of 

classes was 330 (33 people × 10 classes (10 fingers per person)), the total number of authentic 

comparisons was 14,850 (10C2 × 330). The imposter comparisons were performed using entire images, 
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excluding the authentic comparisons, and therefore, the number of imposter comparisons was 

calculated as 5,428,500 (3300C2 − 14,850). 

For database II, the number of image per class (finger) was 6. The number of images used for 

enrollment was changed in the six images, and therefore, the number of authentic matches with these 

six images was 6C2. In addition, because the number of classes was 636 (106 people × 6 classes  

(index, middle, and ring fingers of both hands)), the total number of authentic comparisons  

was 9,540 (6C2 × 636). The imposter comparisons were performed using entire images, excluding  

the authentic comparisons, and therefore, the number of imposter comparisons was calculated  

as 7,269,480 (3816C2 – 9,540). 

Figures 18 and 19 show the mean and STD values for vein lines and skin regions using the 

proposed method with images from database I and database II, respectively.  

Figure 18. Comparison of the mean and STD values of the vein line and skin region using 

the proposed method with an image from database I: (a) original image of the detected 

finger boundaries; (b) Gabor filtered image; (c) Retinex filtered image with a sigma value 

of 20; and (d) image produced using the fuzzy-based fusion method with LOM and the 

Min rule (proposed method). 

  

(a) (b) 

  

(c) (d) 
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Figure 19. Comparison of the mean and STD values of a vein line and skin region using 

the proposed method for an image from database II: (a) original image of the detected 

finger boundaries; (b) Gabor filtered image; (c) Retinex filtered image with a sigma value 

of 20; and (d) image produced using the fuzzy-based fusion method with LOM and the 

Min rule (proposed method). 

  

(a) (b) 

  

(c) (d) 

The mean values of the vein line regions of the Gabor filtered images are lower than those in the 

original images, whereas the STD values of the vein line regions of the Gabor filtered images are 

higher than those in the original images. In addition, the mean and STD values for the skin regions of 

the Gabor filtered images are similar to those of the original images. This indicates that the vein lines 

in the Gabor filtered images are more distinct than those in the skin regions. For the Retinex filtered 

image, both the mean and STD values of the vein line regions are higher than those in the original 

image. This shows that the contrast between the vein lines and skin regions in the Retinex filtered 

images is much higher than that in the original images. However, the Retinex filtered image has a 

problem because the noise is increased in the skin region, which is confirmed by the increase in the 

STD for the skin area of the Retinex filtered image compared with the original image. Figures 18d and 

19d show enhanced images obtained with the fuzzy-based fusion method using LOM and the Min rule. 

A comparison of the means and STDs of the vein and skin areas in these images confirms that the 
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proposed method reduces the noise in the skin region and enhances the contrast between the vein line 

and skin region. 

3.1. Experimental Results with Database I 

3.1.1. Comparison of the Images Processed by Gabor Filtering, Retinex Filtering, and the  

Proposed Method 

The proposed method was tested using a four-directional Gabor image and a Retinex image with 

sigma values of 10, 15, 20, 25, and 50 from database I. Figure 20 shows the enhanced images obtained 

by the fuzzy-based fusion of the Gabor filtered image and Retinex filtered image with a sigma value  

of 20. Figure 20c–d shows enhanced images obtained using the fuzzy-based fusion method, where the 

two images produced after Gabor filtering (Figure 20a) and Retinex filtering with a sigma value  

of 20 (Figure 20b) were combined with various defuzzification methods based on the Min rule. The 

images shown in Figures 20c–d were enhanced by reducing the noise and increasing the distinction 

between the vein line and skin region. In Figure 20d, the noise was reduced more in the skin region 

compared with the other enhanced images because the LOM defuzzification method selects the last 

output weight value (among all output values), which is relatively close to 1.  

Figure 20. Enhanced images produced using the proposed method with four-directional 

Gabor filtering and Retinex filtering with a sigma value of 20 based on an image from 

database I: (a) Gabor filtered image; (b) Retinex filtered image with a sigma value of 20; 

(c) Fuzzy FOM based on the Min rule; (d) Fuzzy LOM based on the Min rule;  

and (e) Retinex filtered image with a sigma value of 50. 

  

(a) (b) 

  

(c) (d) 
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Figure 20. Cont. 

 

(e) 

Therefore, the weight value of the Gabor filtered image is larger than that of the Retinex filtered 

image, as shown in Figure 11, and the noise is reduced by Gabor filtering. However, the contrast of the 

vein line was increased more in the images shown in Figure 20c compared with the other enhanced 

images by FOM defuzzification because the FOM method selects the first output weight value (among 

all output values), which is relatively close to 0. Therefore, the weight value for a Retinex filtered 

image is larger than that of a Gabor filtered image, as shown in Figure 11, and the contrast of the vein 

line is increased. The sigma value of Retinex filtering determines the size of the Gaussian filter. It was 

confirmed that the noise was reduced in a Retinex filtered image with a sigma value of 50 (Figure 20e) 

compared with a sigma value of 20 (Figure 20b). In addition, the image quality of the image produced 

was increased compared with the original and the Gabor and Retinex filtered images, as shown in 

Figure 20. The lowest EER was obtained with Fuzzy LOM based on the Min rule and we illustrate this 

in Figure 20d. The highest recognition accuracy with database I was obtained using the LBP method 

and Retinex filtering with a sigma value of 20, as shown in the following tables and figures, and 

therefore, we illustrate the image produced by Retinex filtering with a sigma value of 20. 

3.1.2. Comparison of the Accuracy of Finger-Vein Recognition Using the LBP Method 

As shown in Table 4, the recognition accuracy of the proposed method based on a four-directional 

Gabor filtered image and Retinex filtered image with sigma values of 10, 15, 20, 25, and 50 was 

compared using images from database I. The recognition accuracy is expressed in terms of EER based 

on an LBP operator. The recognition accuracy of Retinex filtered images with sigma values of 15–50 

were enhanced by reducing the noise in the skin region compared with the Retinex filtered image with 

a sigma value of 10.  

As shown in Table 4; the lowest EER (1.6561%) was obtained by combining Gabor and Retinex 

filtered images with a sigma value of 20 and using fuzzy-based fusion (Min + LOM method); which 

was lower than that for the original; Gabor; or Retinex filtered images. In addition; the recognition 

accuracy with the proposed method was increased with all sigma values for Retinex images compared 

with the original; Gabor; or Retinex filtered images; as shown in Table 4. Figure 21 shows the receiver 

operational characteristic (ROC) curves for the proposed method using a Gabor filtered image and a 

Retinex filtered image with a sigma value of 20; which demonstrates that the proposed method 

outperformed other methods. The genuine acceptance rate (GAR) was calculated as 100 − FRR (%). 
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Table 4. Recognition accuracy using the proposed method with Gabor filtering and 

Retinex filtering, with various sigma values, and a LBP operator in terms of EER for 

images from database I (unit: %). 

Method 
Sigma Value 

10 15 20 25 50 

Original image 3.0957 

Gabor filtering 2.4564 

Retinex filtering 3.1163 2.2406 1.9943 1.9628 2.2665 

Fuzzy Min rule 

(Gabor + Retinex) 

FOM 2.8444 2.0907 1.8917 1.8809 2.2875 

LOM 2.0971 1.6714 1.6561 1.7312 2.1336 

MOM 2.5221 1.9813 1.7711 1.7549 2.2216 

MeOM 2.5568 1.8881 1.7948 1.7513 2.2414 

COG 2.5501 1.8498 1.7747 1.7803 2.1826 

Fuzzy Max rule 

(Gabor + Retinex) 

FOM 2.6480 1.9548 1.8337 1.8131 2.2115 

LOM 2.2569 1.7729 1.6718 1.7184 2.1920 

MOM 2.5300 1.9000 1.7551 1.7527 2.2166 

MeOM 2.3536 1.8121 1.7286 1.7011 2.1622 

COG 2.5560 1.8582 1.7749 1.7681 2.1911 

Figure 21. ROC curves obtained using the proposed method with Gabor filtering and 

Retinex filtering, with a sigma value of 20, and a LBP operator for images from database I. 
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3.1.3. Comparison of the Finger-vein Recognition Accuracy Using Daubechies Wavelet Method 

To demonstrate that the proposed method can enhance the recognition accuracy regardless of the 

type of recognition algorithm used, additional experiments were conducted using finger-vein 

recognition based on a Daubechies wavelet. Table 5 shows the finger-vein recognition accuracy for an 

original image, Gabor filtering, Retinex filtering, and the proposed method based on images from 

database I. As shown in Table 5, fuzzy-based fusion using the proposed method increased the 

recognition accuracy compared with the original image and both Gabor and Retinex filtering. In 

addition, the accuracy comparison shown in Table 5 indicates that the lowest EER obtained was 

17.1340%, which was achieved by the proposed fuzzy-based fusion method with Gabor and Retinex 

filtering (sigma value of 10) using FOM and the Max rule, as shown in Table 5 and Figure 22. 

Table 5. Recognition accuracy of the proposed method with Gabor filtering and Retinex 

filtering, with various sigma values, and a Daubechies wavelet in terms of EER for images 

from database I (unit: %). 

Method 
Sigma value 

10 15 20 25 50 

Original image 22.1564 

Gabor filtering 21.0246 

Retinex filtering 17.6892 19.1360 20.4271 21.2442 22.6522 

Fuzzy Min rule 

(Gabor + Retinex) 

FOM 17.6550 18.9607 19.9225 20.6797 22.0395 

LOM 18.2462 19.1647 19.8896 20.2432 20.8612 

MOM 17.2971 18.5995 19.6813 20.4106 21.3814 

MeOM 17.2776 18.5480 19.7489 20.3397 21.4183 

COG 17.2790 18.6564 19.6560 20.4020 21.4573 

Fuzzy Max rule 

(Gabor + Retinex) 

FOM 17.1340 18.5820 19.7045 20.5765 21.7044 

LOM 17.6858 18.6977 19.6775 20.1349 21.1535 

MOM 17.2861 18.5965 19.6664 20.4055 21.3796 

MeOM 17.1869 18.5296 19.6425 20.3179 21.4062 

COG 17.2500 18.6302 19.7060 20.3905 21.4376 

3.1.4. Comparison of Finger-vein Recognition Accuracy Using a Haar Wavelet Method 

To demonstrate that the proposed method can enhance the recognition accuracy regardless of the 

type of recognition algorithm used, additional experiments were conducted using finger-vein 

recognition based on a Haar wavelet. Table 6 shows the accuracy of finger-vein recognition for the 

original image, Gabor filtering, Retinex filtering, and the proposed method using images from database I. 

Table 6 confirms that fuzzy-based fusion using the proposed method increased the recognition 

accuracy compared with the original image and both Gabor and Retinex filtering. A comparison of the 

accuracies in Table 6 shows that the lowest EER was 17.2472%, which was achieved using the 

proposed fuzzy-based fusion of Gabor and Retinex filtering (sigma value of 10) based on MeOM and 

the Max rule, as shown in Table 6 and Figure 23. 
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Figure 22. ROC curves obtained using the proposed method with Gabor filtering and Retinex 

filtering, with a sigma value of 10, and a Daubechies wavelet for images from database I. 

 

Table 6. Recognition accuracy of the proposed method with Gabor filtering and Retinex 

filtering, with various sigma values, and a Haar wavelet in terms of the EER for images 

from database I (unit: %). 

Method 
Sigma Value 

10 15 20 25 50 

Original image 21.9457 

Gabor filtering 21.0902 

Retinex filtering 20.2605 19.9946 20.1749 20.2424 21.1762 

Fuzzy Min rule 

(Gabor + Retinex) 

FOM 18.2522 18.5999 19.2453 19.7527 20.6428 

LOM 18.1611 18.3407 18.7428 19.0482 19.9215 

MOM 17.3471 18.1422 18.7486 19.2664 20.2761 

MeOM 17.3105 18.0367 18.6332 19.2486 20.2888 

COG 17.3556 18.0572 18.7200 19.3121 20.2168 

Fuzzy Max rule 

(Gabor + Retinex) 

FOM 17.6965 18.2328 18.7112 19.1041 20.1956 

LOM 17.5980 18.4322 19.1212 19.5938 20.3843 

MOM 17.3273 18.0621 18.7441 19.2559 20.2573 

MeOM 17.2472 18.0280 18.7272 19.2473 20.3109 

COG 17.3116 18.1001 18.7230 19.3365 20.1999 
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Figure 23. ROC curves obtained using the proposed method with Gabor filtering and 

Retinex filtering, with a sigma value of 10, and a Haar wavelet for images from database I. 

 

3.2. Experimental Results with Database II 

3.2.1. Comparison of Images Processed Using Gabor Filtering, Retinex Filtering, and the  

Proposed Method 

To demonstrate the increased recognition accuracy with the proposed method regardless of the type 

of database used, additional experiments were conducted with images from database II. Figure 24 

shows the images produced with the proposed method using Gabor filtered images and Retinex filtered 

images with sigma values of 15 for images from database II. 

Figure 24. Enhanced images obtained using the proposed method with four-directional 

Gabor filtering and Retinex filtering with a sigma value of 15 using images from database 

II: (a) Gabor filtered image; (b) Retinex filtered image with a sigma value of 15;  

and (c) Fuzzy FOM based on the Max rule. 

   
(a) (b) (c) 
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The images produced using the proposed method were enhanced compared with the original and the 

Gabor and Retinex filtered images, as shown in Figure 24. The lowest EER was obtained with Fuzzy 

FOM based on the Max rule, as shown in Table 7; thus, we illustrate this case in Figure 24c.  

In addition, the highest recognition accuracy obtained by the LBP method was with Retinex filtering 

and a sigma value of 15 for images from database II, as shown in Table 7 and Figure 25, and therefore, 

we only show an image produced by Retinex filtering with a sigma value of 15. 

Table 7. Recognition accuracy of the proposed method with Gabor filtering and Retinex 

filtering using various sigma values and a LBP operator in terms of the EER for images 

from database II (unit: %). 

Method 
Sigma Value 

10 15 20 25 50 

Original image 8.1231 

Gabor filtering 6.3478 

Retinex filtering 3.6255 3.3674 3.2498 3.6085 5.4432 

Fuzzy Min rule 

(Gabor + Retinex) 

FOM 3.4471 3.2076 3.2161 3.5351 5.2578 

LOM 3.1880 3.1467 3.3996 3.7709 5.4413 

MOM 3.3134 3.1503 3.2830 3.5735 5.3588 

MeOM 3.3339 3.1536 3.3138 3.5187 5.2382 

COG 3.2849 3.1951 3.2677 3.5347 5.3445 

Fuzzy Max rule 

(Gabor + Retinex) 

FOM 3.2984 3.0846 3.1019 3.4455 5.1466 

LOM 3.2029 3.1909 3.3226 3.7220 5.4485 

MOM 3.3111 3.1406 3.2919 3.5345 5.2446 

MeOM 3.3391 3.1480 3.2722 3.5497 5.2568 

COG 3.2609 3.1820 3.2468 3.5004 5.3041 

Figure 25. ROC curves obtained using the proposed method with Gabor filtering and 

Retinex filtering, with a sigma value of 15, and a LBP operator for images from database II. 
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3.2.2. Comparison of Finger-vein Recognition Accuracy Using the LBP Method 

As shown in Table 7, the recognition accuracy of the proposed method based on a four-directional 

Gabor filtered image and Retinex filtered images was compared with sigma values of 10, 15, 20, 25, 

and 50 using images from database II. Table 7 confirms that fuzzy-based fusion using the proposed 

method increased the recognition accuracy compared with the original image and both Gabor and 

Retinex filtering. In addition, the comparison of the accuracy shown in Table 7 demonstrates that the 

lowest EER was 3.0846%, which was achieved using the proposed fuzzy-based fusion of Gabor and 

Retinex filtering (sigma value of 15) based on FOM and the Max rule, as shown in Table 7 and  

Figure 25. The EER was higher with database II than that with database I (Table 4) because the image 

resolution of database II (320 × 240 pixels) was lower than that of database I (640 × 480 pixels). In 

addition, the noise and blurring were higher in images from database II compared with those from 

database I, which reduced the distinctiveness of the vein line. 

Two types of matching schemes are used in biometrics: identification and verification. In 

identification methods, one input data item is matched with multiple enrolled data without 

supplementary ID information such as usernames (1 to N matching). In verification methods, one input 

data item is matched with only one enrolled item, which is determined using additional ID information 

(1 to 1 matching). The recognition accuracy is usually measured in terms of rank during identification 

(rank 1, rank 10, etc.), whereas it is measured in terms of the EER and ROC curves during verification. 

Our study aimed to develop a finger-vein verification system, so the accuracy was measured in terms 

of the EER and ROC curves. 

3.3. Processing Time of the Proposed Method 

Finally, the processing time of the proposed method was measured on a desktop computer with an 

Intel Core i7 processor at 3.33 GHz and 4 GB of RAM, as shown in Table 8. For database I, we used 

LOM and the Min rule because the accuracy of finger-vein recognition using LOM and the Min rule 

with the LBP method was higher than that with other methods, as shown in Table 4. In addition, we 

used FOM and the Max rule for database II because the accuracy of finger-vein recognition using 

FOM and the Max rule with the LBP method was higher than that with other methods, as shown in 

Table 7. 

Table 8. Processing time for each sub-module of the proposed method per image. 

Sub-Modules 
Processing Time (ms) 

Database I Database II 

Image preprocessing Finger region detection 10.3 5.3 

Image enhancement 

Four-directional Gabor filtering 83.1 51.5 

Retinex filtering 380.4 124.8 

Image fusion by fuzzy logic 36.1 13.9 

Feature extraction and 

matching 

Size normalization 0.3 0.2 

Finger-vein code extraction by the  

LBP operator and HD calculation 
13.533 13.533 

Total 523.733 209.233 
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As shown in Table 8, the total processing times for each image from databases I and II  

were 523.733 ms and 209.233 ms, respectively, which shows that our method can be used as a  

real-time finger-vein recognition system. The processing time for each image from database II was less 

than that for images from database I because the image size used in database II (320 × 240) was 

smaller than that in database I (640 × 480). 

In our method, image enhancement is achieved using a combination of both Gabor and Retinex 

filtering based on a fuzzy system. The fuzzy system can be designed heuristically without a training 

procedure (which is required for neural network systems) to obtain the optimal weights for the 

combination of Gabor filtering and Retinex filtering. Therefore, this fuzzy-based system has the 

advantage that it does not need to be redesigned for different types of finger-vein databases, whereas a 

neural network-based system must be trained to suit specific databases. 

In this study, we demonstrated an image enhancement method for finger-vein recognition but our 

system does not have the function for template protection. However, a previous study [5] proposed a 

cancellable and non-invertible finger-vein recognition system based on bio-hashing, fuzzy commitment 

and fuzzy vault sketches, and a fusion method. Our finger-vein features based on Haar and Daubechies 

wavelets are real values, similar to those used by their method based on Gabor filter and linear 

discriminant analysis (LDA) [5], thus our finger-vein features can be transformed into cancellable and 

non-invertible features using their method [5]. The finger-vein features used by the LBP operator are 

binary bits, but they can also be transformed into cancellable and non-invertible features using their 

method if the binary bit features are first represented as real values via additional processing by 

clustering, etc. [28]. In future research, we plan to implement this method for template protection [5]  

in our finger-vein recognition system, which will make the template of our system cancellable and 

more secure. 

4. Conclusions 

In this study, we developed a fuzzy-based image fusion algorithm for enhancing the quality of a 

finger-vein images, which can be degraded by various factors such as the light scattering from the skin 

and the finger thickness. Gabor filters in four directions and Retinex filtering were used to amplify the 

local and global features of the vein lines in the input image. The optimal weights for the fuzzy-based 

fusion method were determined using the mean and STD values in the local windows of the images 

produced by Gabor filtering and Retinex filtering, which were employed as the inputs for the fuzzy 

rule and fuzzy membership function. Based on the optimal weights obtained, finger-vein image 

enhancement was achieved by combining the Gabor and Retinex filtered images. The experimental 

results showed that the finger-vein recognition accuracy was enhanced using the proposed method 

compared with other methods based on images from two finger-vein databases. Further, this was 

confirmed using various finger-vein recognition algorithms such as LBP and DWT based on 

Daubechies and Haar wavelets. In future research, we plan to apply the proposed method to hand vein 

or palm vein images. In addition, we will test the possibility of applying our method to other biometric 

modalities such as face, iris, and fingerprint images. 
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