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Abstract: To tackle robust object tracking for video sensor-based applications, an online
discriminative algorithm based on incremental discriminative structured dictionary learning
(IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both
positive, negative and trivial patches is designed to sparsely represent the overlapped target
patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To
formulate the training and classification process, a multiple linear classifier group based
on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the
models are also trained to timely adapt the target appearance variation. Qualitative and
quantitative evaluations on challenging image sequences compared with state-of-the-art
algorithms demonstrate that the proposed tracking algorithm achieves a more favorable
performance. We also illustrate its relay application in visual sensor networks.

Keywords: appearance model; object tracking; sparse representation; structured dictionary
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1. Introduction

Object tracking via video sensors is an important subject and has long been investigated in the
computer vision community. In common sense, an object, or a target, refers to a region in the video
frame detected or labeled for specific purposes. Stable and accurate tracking of objects is fundamental to
many real-world applications, such as motion-based recognition, automated surveillance, visual sensor
network, video indexing, human-computer interaction, traffic monitoring, vehicle navigation, etc. [1].

Historically, visual trackers proposed in the early years typically kept the appearance model fixed
throughout an image sequence. Recently, methods proposed to track targets while evolving the
appearance model in an online manner, called online visual tracking, have been popular [2]. An online
visual tracking method typically follows the Bayesian inference framework and mainly consists of three
components: an object representation scheme, which considers the appearance formulation uniqueness
of the target; a dynamical model (or state transition model), which aims to describe the states of the
target and their inter-frame relationship over time; an observation model, which evaluates the likelihood
of an observed image candidate (associated with a state) belonging to the object class. Although visual
tracking has been intensively investigated, there are still many challenges, such as occlusions, appearance
changes, significant motions, background clutter, etc. These challenges make the establishment of an
efficient online visual tracker a difficult task.

1.1. Related Works

Appearance representation of the target is a basic, but important, task for visual tracking.
Discrimination capability, computational efficiency and occlusion resistance are generally considered as
the three main aspects in appearance modeling. For online visual tracking, the schemes can be classified
into patch-based schemes (e.g., holistic gray-level image vector [3] and fragments [4–6]), feature-based
schemes [7–10], statistics-based schemes [11–15] and their combinations.

Based on the differences in object observation modeling, online visual tracking can be generally
classified into generative methods (e.g., [3,4,11–13,15–18]), discriminative methods (e.g., [7–10,15])
and hybrid methods (e.g., [19,20]). Generative methods focus on the exploration of a target observation
with minimal predefined error based on separative evaluation criteria, while discriminative ones make
attempts to maximize the margin or inter-class separability between the target and non-target regions
using classification techniques. Typical techniques include boosting [8,9] and support vector machine
(SVM) [7,21,22]. For the trackers using SVM, Avidan et al. [7] propose a tracking algorithm integrating
SVM to discriminate the target from its background. Tian et al. [21] present a tracking system based
on an ensemble of adaptively-weighted linear SVM classifiers based on their discriminative abilities.
Bai and Tang et al. [22] propose an online Laplacian ranking support vector tracker (LRSVT), which
incorporates the weakly labeled information to resist full occlusion and adapt to target appearance
variation. Yet, there are still some limitations for these works. Firstly, most of them consider the
classification problem on a single-patch level, which might lack flexibility and robustness when a drastic
appearance occurs. Secondly, the features applied in these works are not unique enough. It could
negatively influence the tracking performance when a similar object exists. In this paper, we continue
to explore the application of SVM classifiers in online visual tracking, where the input features are
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coefficients of sparse representation on a patch level. Thus, the patch-based SVMs are grouped for
classifier modeling.

As an elegant working model, sparse representation has recently been extensively studied and applied
in pattern recognition and computer vision [23,24]. There are two basic problems [25]: the first
one is to calculate the sparse solution of a linear system, while the second one refers to learning a
suitable dictionary for approximation performance improvement. So far, the former one has been deeply
exploring in visual tracking (e.g., [11–13,15,17,20]). Within the particle filtering framework, most of
the works cast the tracking problem as searching the most likely sampling candidate of the target via l1

minimization. Mei and Ling [11] apply sparse representation to visual tracking and deal with occlusions
via positive and negative trivial templates. Wang et al. [17] propose a novel online object tracking
algorithm with sparse prototypes, which adopts principal component analysis (PCA) basis vectors and
trivial templates to represent the tracked target sparsely, and solve the problem by using an iterative
thresholding method. Zhong et al. [20] develop a hybrid tracking method, where a sparsity-based
discriminative classifier (SDC) and a sparsity-based generative model (SGM) are cascaded for target
location estimation. However, investigation of the second problem in visual tracking has just started.
Liu et al. [12] develop a generative visual tracking algorithm with a static sparse dictionary of the target
and dynamically online updated basis distribution model by K-selection, while a recent method proposed
by Wang et al. [15] discriminates the target from the background based on the classification of the sparse
coefficients with an over-complete dictionary without learning. Learning a dictionary for classification
has recently been popular [26–28], which adds specific constraints in the dictionary learning (DL) model
to gain discrimination ability. In these works, constraints have been considered on the class labels,
learning process and sparse representation coefficients, and discriminability has been enforced in sparse
codes during the dictionary learning process to improve classification accuracy. However, they fail
to consider the dictionary design from a discriminative perspective. Moreover, the dictionary is often
learned as a whole, and the learning process is very time consuming, which might not be suitable for a
recognition application in continuous appearance variation circumstances.

1.2. Our Proposal

Inspired by the discussions above, this paper considers the dictionary learning problem for online
visual tracking, as well as a visual tracking algorithm, incremental discriminative structured dictionary
learning (IDSDL)-VT, including incremental discriminative structured dictionary learning and multiple
linear classifiers. The workflow is shown in Figure 1. On a patch level, groups of positive and
negative sparse coefficients of the target patches learned by the proposed incremental discriminative
structured dictionary learning (IDSDL) algorithm are input to the support vector machines (SVMs) to
train classifiers, which discriminate the target from the background. In the next frame, target candidates
are sampled based on affine warping, and their corresponding coefficients are obtained. Then, given
the learned model set, patch-based classifications are conducted to calculate the confidence set, and a
K-combined voting (KCV) function is used to jointly locate the target. The dictionary set is incrementally
adapted as time evolves.
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Figure 1. Workflow of the proposed algorithm. The proposed dictionary learning method,
incremental discriminative structured dictionary learning (IDSDL), is detailed in Section 2,
while the proposed affine warping, support vector machine (SVM) training and classification
and K-combined voting (KCV) are detailed in Section 3.
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Compared with the dictionary learning papers referred to above, we do not solely rely on the
optimization, but focus on the dictionary design with separate learning to improve the discriminative
ability of the sparse coefficients for classification. Moreover, the dictionary is built on a patch level,
and thus, a spatial multi-dictionary learning structure is established. Though numbers of papers have
appeared based on sparse representation, few consider the dictionary learning aspect. There is a
dictionary learning process in the algorithm proposed by Liu et al. [12], but it is a generative approach.
Moreover, the algorithm proposed by Zhong et al. [20] is a hybrid one, and its discriminative ability is not
based on the binary classifier, but the reconstruction error, which is used to generatively create weights
for confidence modeling. The algorithm proposed by Wang et al. [15] is discriminative, yet constructed
without learning. Differently, in this paper, we exploit dictionary learning within the discriminative
tracking framework and establish a tracking process based on patch-based classifiers. The main
contributions of the proposed algorithm can be described as follows: (1) compared with the previous
sparse-representation-based tracking algorithms referred to above, a structured dictionary learning



Sensors 2014, 14 3134

algorithm for discriminative classification is newly proposed; (2) compared with the generative tracking
framework via the dictionary learning summarized above, the proposed approach integrates the learning
process to formulate a discriminative visual tracking framework, which learns multiple classifiers on a
structured level; (3) compared with a one-time peak-confidence calculation, a K-combined voting (KCV)
function based on multiple classifier confidences is novelly proposed to locate the target. We focus on
the dictionary design part rather than the optimization process. Experiments on both a single camera and
visual sensor network are conducted to demonstrate the performance of the proposed method.

The rest of the paper is organized as follows. In Section 2, details of the proposed structured dictionary
learning algorithm are described. Details of the proposed visual tracking algorithm within the Bayesian
inference framework are proposed in Section 3. Experimental results and a discussion are given in
Section 4. In Section 5, concluding remarks and a possible direction for future research are provided.

2. Discriminative Structured Dictionary Learning

We begin the description of the proposed dictionary learning algorithm, incremental discriminative
structured dictionary learning (IDSDL), with the sparse appearance modeling as follows. Typically,
the global appearance of an object under different illumination and viewpoint conditions is known to
lie approximately in a low-dimensional subspace [11]. Basically, we assume that the target could be
represented with a lower error by its overlapped patches in the form of the target templates’ learning
results in the previous frames. The template contains a set of images, each of which is cropped from the
corresponding video frame based on the latest tracking results. Similar assumptions are also applied in
other tracking algorithms based on sparse representation [11–13,15,17,20].

Suppose at time t, the target Yt = [p1
t ,p

2
t , . . . ,p

N
t ] ∈ Rd2×N is sampled and vectorized into

N separate overlapped patches with zero mean and unit variance, where the size of each patch is
d2 × 1. Moreover, there exists a set of templates Tt = [t1t , t

2
t , . . . , t

M
t ] ∈ Rd2×N×M , where M

refers to the number of the templates, and the corresponding patches tjt = [b1
j ,b

2
j , . . . ,b

N
j ]

T ∈ Rd2×N ,

j = 1, 2, . . . ,M share the same patch sampling scheme with that of the target candidates and have been
stacked, normalized and vectorized. Therefore, in the current frame, any patch of the target candidate
pi
t ∈ Rd2 , i = 1, 2, ..., N could approximately lie in the linear span of the corresponding

template patches:
pi
t = βi

1b
1
t + βi

2b
2
t + · · ·+ βi

MbM
t (1)

for some scalars, βi
j ∈ R,j = 1, 2, ...,M . Thus, pi

t could be represented based on the templates
by solving the optimization problem based on the elastic net regularization [29] using the least angle
regression (LARS) method:

min
βi∈RM

1

2

∥∥pi
t −Ti

tβ
i
∥∥2
2
+ λ1

∥∥βi
∥∥
1
+

λ2

2

∥∥βi
∥∥2
2
.

s.t.βi ≥ 0

(2)

where λ1 and λ2 are regularization constants. Most of the previous tracking works apply the l1 constraints
to the coefficients, which is an approximation to the l0 regularizer for the purpose of convexity, and the
sparsity-based optimization methods by previous tracking works include basis pursuit (BP) [11] and
orthogonal matching pursuit (OMP) [13]. In this paper, we apply the elastic net penalty [29], which
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is a convex combination of the lasso and ridge penalty, and are able to conduct automatic variable
selection and continuous shrinkage, select groups of correlated variables and try to avoid overshrink
in regression problems.

In sparse representation, a dictionary refers to a matrix D = [d1,d2, . . . ,dn] ∈ R(d2×N)×M made up
of a group of basis vectors, where the target signal is spanned. Given a training set of image patches,
Y, classical dictionary learning methods learn an optimized dictionary, D, by solving the following
objective function:

min
D,β

N∑
i=1

[
1
2
∥pi

t −Dβi∥
2
2 + λ∥βi∥1

]
s.t. ∥dj∥22 ≤ 1,∀j,

(3)

This problem is not jointly convex with respect to D and β, and it is commonly solved by alternating
between the two variables. Recent studies have shown surprisingly promising results in image
classification, when the dictionary size is sufficiently large. However, for the application of visual
tracking, the size cannot be very high for computational efficiency. On the other hand, a fixed dictionary
is generally not sufficient to cope with the appearance changes of the tracking object, as well as the
background.

Figure 2. Generation of proposed dictionary, which is composed of positive and negative
template patches learned by IDSDL and trivial templates. The corresponding patches are
cropped separately from the positive and negative samples around the target based on
different sampling radii.
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Based on the assumption and definition described above, we present an incremental discriminative
structured dictionary learning method. A structured dictionary is defined as Dt = {Di

t}Ni=1, as shown
in Figure 2, where Di

t is its element corresponding to the i-th patch. Furthermore, Di
t is defined to be

constructed as:
Di

t = [Tt,N
i
t, I,−I] (4)

Tt =
[[(

P1:N
t

)1]
,
[(
P1:N

t

)2]
, ...,

[(
P1:N

t

)M]]
(5)

Pi
t = [b1

t ,b
2
t , ...,b

M
t ],Ni

t = [d1
t ,d

2
t , ...,d

M
t ] (6)
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where [
(
P1:N

t

)j
] ∈ Rd2×N refers to the matrix composed of N columns separately containing the j-th

column of a matrix Pi
t ∈ Rd2×M , i = 1, 2, ..., N . Pi

t ∈ Rd2×M refers to the dictionary part learned by
pi
s+ , and Ni

t ∈ Rd2×M refers to the part by pi
s− , where bj

t and dj
t share the same patch sampling scheme

with that of the target candidate. The relationship between Pi
t and Tt is shown in Figure 3. I ∈ Rd2×d2

is an identity matrix used as a non-negativity constraints similar with the settings in [11,15].

Figure 3. Relationship between Pi
t and Tt, where [

(
P1:N

t

)i
] ∈ Rd2×M refers to the matrix

composed of M columns separately containing the i-th column in non-vectorized matrix
tjt ∈ Rd2×N , j = 1, 2, ...,M .
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Suppose the target location has been estimated; the positive and negative training samples could be
represented in the overlapped form by St = {pi

t, li}Ni=1, li ∈ {+1,−1}. Corresponding patches are
pi
t = {xi

k, l
i
k}sk=1 and s = s+ + s−, which separately refer to the number of positive samples, pi

s+ , and
negative ones, pi

s− . A local update (LU) strategy is introduced to both update the dictionary and improve
the inter-patch independence and separability. For each patch in pi

s+ , only the corresponding M columns
of the dictionary [

(
P1:N

t

)i
] with the same patch index are learned and temporarily stacked, while the rest

columns stay fixed. Tt is not replaced until each column is updated. On the other hand, after pi
s− is

sparsely represented, Ni
t is directly updated. The update process [30] is defined as:

uj =
1

Ajj
((Bt)

(j) −Di
t−1(At)

(j)) +
(
Di

t−1

)(j) (7)

(
Di

t

)(j)
=

1

max(∥uj∥2, 1) + δ
uj (8)

where δ is a small constant, and (·)(j) refers to the j-th column. At =
∑t

t=t0
βi
t(β

i
t)

T ∈ RM×M

in and Bt =
t∑

t=t0

pi
t(β

i
t)

T ∈ Rd2×M are two auxiliary matrices. Equations (7) and (8) sequentially

update each column of the dictionary, while keeping the other ones fixed under a potential constraint(
(Di

t)
(j)
)T

(Di
t)

(j) ≤ 1. This results in an orthogonal projection of the vector, uj , onto the constraint
set, namely the l2 − ball in this paper. Convergence to a global optimum is guaranteed, since the convex
optimization problem admits separable constraints in the updated columns. As time evolves, the value
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of Dt−1 is a warm start for Dt, and a single iteration has been empirically found to be sufficient for the
convergence of the dictionary update step [30]. The proposed algorithm is listed in Algorithm 1.

Algorithm 1 Incremental discriminative structured dictionary learning (IDSDL).
Input:

Nt0−1
i, pi

s+ , pi
s− , i = 1, 2, ..., N , Tt0−1, M , λ1, λ2.

1: A+
0 ← 0,B+

0 ← 0,A−
0 ← 0,B−

0 ← 0.
2: for t = t0 → T do
3: Obtain Pi

(t−1), N
i
(t−1) by Di

(t−1) based on Equation (4).
4: for i = 1→ N do
5: Sparse representation of positive sample patches pi

s+ to obtain βi
s+ ∈ Rd2×s+ by Equation (2)

based on Tt−1.
6: Sparse representation of negative sample patches pi

s− to obtain βi
s− ∈ Rd2×s− by Equation (2)

based on Ni
t−1.

7: Update A+
t ← A+

t−1 + βi
s+

(
βi
s+

)T , A−
t ← A−

t−1 + βi
s−

(
βi
s−

)T
8: Update B−

t ← B−
t−1 + pi

s+

(
βi
s+

)T
,Bt ← Bt−1 + pi

s−

(
βi
s−

)T .
9: for j = 1→M do

10: Update [
(
P1:N

t

)j
] by Equations (7) and (8) with Di

t−1 = Pi
t−1.

11: Update dj
t by Equations (7) and (8) with Di

t−1 = Ni
t−1.

12: end for
13: Update the learned dictionary part, Pi

t, based on Equation (6).
14: Update the learned dictionary part, Dt, based on Equation (4).
15: end for
16: Update the template set, Tt, based on Equation (5).
17: end for
Output:

Updated Tt, Dt.

3. A Tracking Framework Based on IDSDL and K-Combined Voting SVM Classification

3.1. The Principle of Online Visual Tracking Based on Bayesian Inference

An online visual tracking problem can be interpreted as a Bayesian recursive and sequential inference
task in a Markov model with hidden state variables and is further divided into cascaded estimation of a
dynamical model and observation model [3]. Suppose a set of target images Yt = {y1,y2, . . . ,yt} have
been given till time t; the hidden state vector of the target, represented as Xt, can be estimated as follows,

p(Xt|Yt) ∝ p(yt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Yt−1)dXt−1 (9)

where p(Xt|Xt−1) refers to the dynamical model between the two consecutive states and p(yt|Xt)

denotes the observation model related to the likelihood estimation of yt based on the state, Xt.
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In the context of particle filtering, typically, a set of candidates X̃v
t , v = 1, 2, . . . , V is drawn from an

importance distribution q(Xt|X1:t−1,y1:t) and the weights of the samples could be updated as:

ωv
t = ωv

t−1

p(yt|X̃v
t )p(X̃

v
t |X̃v

t−1)

q(X̃t|X̃1:t−1,Yt)
(10)

To avoid degeneration, the samples would be re-sampled according to the their corresponding
importance weights to generate a set of equally-weighted particles. In the case of the bootstrap filter,
q(Xt|X1:t−1,y1:t) = p(Xt|X1:t−1), where the weights become the observation likelihood, p(yt|Xt).
This approximation is widely used in online visual tracking, because of its simplicity and efficiency.
Therefore, suppose the target state information at time t − 1 is known, and there is no other prior
knowledge; an optimal state estimation result X̃t is computed based on the maximum a posteriori (MAP)
estimation of observations over V candidates sampling at time t and mathematically described by:

X̃t = arg
Xv

t

max p(yt|Xv
t )p(X

v
t |Xt−1) (11)

Based on the basic principle described, the details of dynamical modeling and observation modeling in
the proposed framework are further described.

3.2. Gaussian Affine Warping for Dynamical Modeling

Ideally, a dynamical model p(Xt|Xt−1) should be able to fully describe the variation of the target in
detail, yet in most practical cases, this could be approximately parameterized. Typically, at time t, the
geometric parametrization of the target region can be realized by an affine transformation as:

p′
t = Gt · pt + tt (12)

where pt = (xt, yt) and p′ = (x′
t, y

′
t) correspond to the 2D coordinate before and after the transform

separately, Gt =

[
θt st

αt ϕt

]
is an 2 × 2 non-singular matrix, referring to the composition of rotation

and non-isotropic scaling and tt = (xt, yt)
T is the 2D translation vector. In a homogeneous coordinate

system, Equation (12) can be equivalently expressed as:[
p′

t

1

]
=

[
Gt tt

0 1

]
·

[
pt

1

]
(13)

Based on the principle above, Ross et al. [3] propose a variant of the particle filter, called affine
warping, where the state of the target can be described as a six-tuple set, Xt = {xt, yt, θt, st, αt, ϕt},
whose elements respectively denote x, y translations, rotation angle, scale, aspect ratio and skew
direction. The elements of Xt are independently modeled by a Gaussian distribution around the previous
state, as follows,

p(Xt|Xt−1) = N (Xt;Xt−1,Ψ0) (14)

where Ψ0 is a vector whose elements are the corresponding variances of the affine parameters.
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3.3. K-Combined Voting SVM Classification of Sparse Coefficients for Observation Modeling

The support vector machine (SVM) is one of the most widely used classifiers in machine learning and
pattern recognition application. It makes attempts to find a separating hyperplane that maximizes the
margin between two classes. The margin is defined as the distance of the closest point to the hyperplane.
Given a set of instance-label pairs {βk, lk}, k = 1, 2, ..., s, βk ∈ Rn,lk ∈ {−1,+1}, it solves the
following unconstrained optimization problem with a different loss function ξ(wk; βk, lk) as:

J(w) = min
wk

1

2
(wk)

Twk + c
s∑

k=1

ξ(wk; βk, lk) (15)

where w is termed a support vector, which are the training patterns closest to the separating hyperplane,
and c refers to the regulation term. In this paper, we apply the linear SVM version proposed by
Fan et al. [31] for training and classification.

We consider the discriminative observation modeling on a patch level. Given the patch-based
coefficients, β, of candidate Xt are obtained and P candidates have been sampled, for the p-th candidate,
p = 1, 2, ..., P , a function called K-combined voting (KCV) is proposed to compute the score, S(p∗),
recording the times that p∗ is selected as the result by:

p(yt|Xt) = argmax
p∗

CN∑
i=1

S(p∗i ) (16)

S(p∗i ) = 1 (17)

p∗i = max
p

(
1− α

1 + e−wi
t−1β

C(i)
p

+
α

1 + e−wi
0β

C(i)
p

)
(18)

where C(i) =
(
N
K

)
i
, i = 1, 2, ..., CN refers to the i-th combinatory candidate given K > 1. When

K = 1, it refers to the common single patch voting case, shown in Figure 4. wi
0 refers to the support

vector initially obtained for the i-th patch, while wi
t−1 is vector generated at time t−1. The K-combined

voting can be seen as an efficient hierarchical generalization form of single voting. Based on each
combination as the intermediate output, the final result provides a more comprehensive and neutral value
within the sampled particles. In the case of drastic appearance variation, the random combined voting
could provide more opportunities for the invariant patches to attend the voting calculation, so that it is
more likely to obtain better results. Comparison between single voting and K-combined voting has been
done as the proof in the next section. wi

0,w
i
t−1 are weight vectors of the i-th classifier learned at the first

frame and time t− 1, and α is a constant.
To both timely adapt the variation of target appearance and maintain its original invariance, a

progressive classification is applied. At time t0, the voting function is processed twice, when
sequentially, wt−1 = wt0−1 and wt−1 = w0 are separately set. The former one is introduced to locate
the target as an intermediate result based on its latest appearance model, while the latter one is used to
locally refine the location with respect to its originality. Correspondingly, the dynamical modeling is also
conducted twice to formulate a step-wise classification, similar to [15]. Thus, according to Equation (16),
only the candidate most voted for is chosen as the estimation result.
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Figure 4. Single voting and random combined voting. The former scheme is a special case
of the latter one with K = 1.
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3.4. Model Update

Once the current target location is estimated, the model is updated accordingly. In this paper, the
update process is two fold. The first one is to adapt the dictionary using the proposed IDSDL algorithm
proposed in the last section. Then, the positive and negative samples are sampled around the current
estimated location of the target. Based on the learned results, sparse coefficients are obtained to train the
SVM classifiers so that updated models are generated. Details of the IDSDL algorithm could refer to the
last section, while the classifier training is described as follows.

To establish an efficient discriminative model at time t − 1, a local linear support vector classifier
group {Modelit−1}Ni=1 corresponding to each patch, is separately trained [31]. {Modelit−1}Ni=1 contains
the output support vectors, wt−1, for current patch. For each Modelit−1, an object function, J(w),
is established. The training data is generated based on the samples Yt−1 = [p1

t−1,p
2
t−1, . . . ,p

N
t−1]

drawn around the estimated target location and follow the same patch cropping pattern with that of
target representation. For the i−th patch, the training data is made up of sparse coefficients by solving
Equation (2) with Di

t−1 as the dictionary. pi
t−1 = {βi

k, l
i
k}sk=1,βi

k ∈ RM×N+M+2d2 , lik ∈ {+1,−1},
separately correspond to the positive patches and negative ones of the candidates, and the i−th classifier
for Modelit−1 is learned to minimize the loss function:

J(wi
t) = min

wi
k

1

2
(wi

k)
Twi

k + c
s∑

k=1

(max(0, 1− lik(w
i
k)

T
βi
k))

2
(19)

Totally, N classifiers are to be trained at each frame.

3.5. Summary of the Proposed Algorithm

The proposed algorithm is summarized in Algorithm 2 based on the descriptions above.
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Algorithm 2 Visual tracking based on IDSDL and K-combined voting SVM classification.
Input:

Image sequence with T frames, initial target state X0, target region Y0, particle numbers v,
overlapped percentage, cl, cs, K, M , λ1, λ2,Ψ0, C and N .

Output:
Current target state Xt

1: (Initialization) Track the target during the first M frames to obtain the state, X1:M , and template set
TM .

2: for t = M + 1→ T do
3: (Dynamical Modeling) Obtain V target candidates {ỹv

t }
V
v=1 based on affine warping by Equation

(14) with Ψ0.
4: (Observation Modeling) Obtain the sparse coefficients of the candidates based on Equation (2).
5: (Observation Modeling) Estimate the intermediate location of the target based on the

multiple-linear-classifiers group by Equation (18) when wt = wt0 .
6: (Dynamical Modeling) Obtain V target candidates {ỹv

t }
V
v=1 based on affine warping by Equation

(14) with Ψ0.
7: (Observation Modeling) Obtain the sparse coefficients of the candidates based on Equation (2).
8: (Observation Modeling) Estimate the location of the target based on the multiple-linear-classifiers

group by Equation (18) when wt = w0.
9: (Model update) Sample the positive and negative samples around the current estimated location

of the target.
10: (Model update) Update Tt, Dt based on IDSDL by Algorithm 1.
11: (Model update) Update Modelt of multiple-linear-classifiers group based on Equation (19).
12: end for

In Algorithm 2, the proposed dictionary learning algorithm is the most computational, while the
online training and classification process does not take much running time, since the efficient linear
SVM is applied. The dynamical modeling process takes the least running time according to the proposed
straightforward process. To accelerate the process, we apply a C implementation of elastic net regulation
proposed by Mairal et al. [30]. We also normalize the target patch to make it more efficient for
data processing.

4. Experiment and Discussion

In this section, we present experiments on test videos to demonstrate the efficiency and effectiveness
of the proposed algorithm.

4.1. Experiment Setup

The proposed tracking algorithm, IDSDL-VT, is implemented in MATLAB and C/C++ and runs at
about 1.3 fps on a 3.4 GHz dual core PC with 8 GB of RAM. For parameter configuration, in each frame,
each target region is normalized to 24× 24, and the patch size is 12× 12, d = 12, while the overlapped
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percentage of the neighbored patch is 0.5. Thus, N = 9. The number of particles is V = 600 for
dynamical modeling. Moreover, the regularization constant, λ1 and λ2, in Equation (2) are set to 0.01,
and the dictionary learning is processed once per frame. In Equation (18), K = 3, α = 0.5. During
training, regions within two pixels around the target location are set as positive, while the ones in the
outer four pixels are negative, and c = 10. Except Section 4.5, the target locations are manually labeled
in the first five frames to generate the templates, M = 5.

To evaluate the efficiency of the proposed algorithms, nine benchmark video sequences, most of
which are publicly available, are used under the challenges of lighting and scale changes, out-of-plane
rotation and partial occlusion. Comparatively, the proposed tracker is evaluated against state-of-the-art
algorithms, including Frag [4], IVT [3], VTD [16], L1T [11], TLD [10], MIL [9] and PLS [18]. The
implementation is based on the source codes provided by the authors via their websites. Qualitative and
quantitative evaluations are presented in the rest of this section.

It should be noted that the setting on a particle number and the regulation constant above is based on
the setup of classical online visual tracking algorithms, for a better performance comparison [3,9–11,16].
Enlarging the normalized size of the target region and patch size would increase the computation time.
Its current setting is established after the times of the experiments with reference to the related works.
Moreover, the overlapped percentage of the neighbored patch is related to the appearance variation of the
target region. Since a low percentage number would lead to lower efficiency and the benchmark video
is of various kinds, a unbiased number, 0.5, is set. Values of K and α are empirically set based on the
times of the experiments.

4.2. Qualitative Evaluation

Qualitative analysis and discussions are provided as follows. The visual challenges include heavy
occlusion, illumination change, scale change, fast motion, cluttered background, pose variation, motion
blur and low contrast.

The two test sequences, Occlusion 1 and Occlusion 2 , in Figure 5 are separate from the work
by Adam et al. [4] and the one by Ross et al. [9], both of which highlight partial occlusion, and
set the region of high-resolution human faces as the targets for tracking, which is widely used in
human-computer-interface application environments. The frame numbers of the sequences are 898 and
819 of a size of 320 × 240. Occlusion 2 is more challenging, because it also contains in-plane rotation
and out-of-plane rotation. It is shown that for Occlusion 1, all the evaluation algorithms can follow the
target approximately correctly, yet some of the algorithms deviate from the face when occlusion occurs
(e.g., MIL [9] at #0307, #0539 and #0834, IVT [3], L1T [11], Frg [4], TLD [10] and VTD [16] at #0539).
For Occlusion 2, the differences are more obvious. It can be found that L1T [11] drifts more from the
target compared with other algorithms (e.g., MIL [9] at #0501 and #0732), and IVT [3] and TLD [10]
cannot adapt the appearance when there are occlusion and head rotation (e.g., #0732). PLS [18] cannot
continuously follow the target, while MIL [9] and Frag [4] estimate the target less accurately than the
proposed algorithm.
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Figure 5. Qualitative evaluation results of eight algorithms on challenging tested sequences
Occlusion 1and Occlusion 2.

Occlusion 1

Occlusion 2

IVT L1T TLD MIL Frag PLS ProposedVTD

Figure 6. Qualitative evaluation results of eight algorithms on challenging tested sequences
Caviar 1 and Caviar 2 .

IVT L1T TLD MIL Frag PLS ProposedVTD

Caviar 1

Caviar 2

The sequences, Caviar 1 and Caviar 2 , in Figure 6 come from the CAVIAR project
(http://groups.inf.ed.ac.uk/vision/CAVIAR/) with the frame numbers 382 and 500 of a size of 384×288.
Both of them comprise severe partial occlusion and scale variation from far to near, which are typical
scenes in surveillance applications. Moreover, there are similar objects near the target as the distractions.
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It is be shown that MIL [9], L1T [11] and PLS [18] do not perform well in Caviar 1. The first two
methods fail to discover the target when the target is occluded by a similar object (e.g., #0130), while
the latter one drifts away from the target (e.g., #0130 and #0218). Only the proposed tracker, VTD [16],
Frag [4] and TLD [10], handle the heavy occlusion successfully. However, Frag [4] cannot smoothly
adapt the scale changes of the person (e.g., #0278). In Caviar 2, almost all the trackers evaluated, except
PLS [18] and MIL [9], can follow the target. However, many of them, including IVT [3], VTD [16]
and TLD [10], cannot adapt the scale as the human moves near the camera (e.g., #0217 and #0496). In
contrast, our algorithm performs well in terms of position estimation and scale adaptation.

The sequences, Car 11and David Indoor, in Figure 7 are from the work by Ross et al. [3] with the
frame numbers 659 and 462 of a size of 720× 480 and 320× 240. Car 11are quite common in practical
intelligent vehicle application environments and are very challenging, as this is a video at night. The
target (the rear view of a car) is small and easily distracted by the surroundings, including similar vehicle
appearance and glare. It is shown that only IVT [3], PLS [18] and the proposed algorithm successfully
can track the target in the whole sequence, while the remaining drift away or take the surroundings as
the target (e.g., MIL [9] at #0065, #0179 and #0300 and VTD [16] and L1T [11] at #0179 and #0300).
David Indoorcontains out-of-plane rotation as the person turns his or her face and scale change, due to
distance variation from the cameras. It also contains illumination changes, as the person walks from a
dark room into areas with a spot light. For this sequence, some algorithms (e.g., Frag [4] and PLS [18])
drift away from the target during the tracking process, while some algorithms can not adapt the scale
when out-of-plane rotation occurs (e.g., MIL [9] and L1T [11] at #0169 and #0398). Comprehensively
and qualitatively speaking, the proposed algorithms perform the best.

Figure 7. Qualitative evaluation results of eight algorithms on challenging tested sequences
Car 11and David Indoor.

IVT L1T TLD MIL Frag PLS ProposedVTD

Car 11

David Indoor
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The two video sequences, Singerand Jumping, in Figure 8 are from the work by Kwon et al. [16]
and TLD [10]. The frame numbers of the sequences are 321 of a size of 624× 352 and 313 of a size of
352×288. Singeris challenging, as it contain illumination variation, and Deerhighlights abrupt motions.
In the former one, only the results of partial trackers (e.g., the proposed algorithm and VTD [16]) are
satisfactory, while the others cannot adjust the scale (e.g., Frag [4], L1T [11] and MIL [9]) or accurately
locate the target (e.g., TLD [10] at #0071, #0103 and #0269; IVT [3] at #0126) a drastic scale and
location deviation appears when lighting conditions change. Especially PLS [18] cannot capture the
scale variation of the target through all the frames of Singer. In Jumping, the successful trackers only
include the proposed algorithms, MIL [9] and TLD [10], while the others fail to capture the head of the
person when he or she jumps up and down repeatedly. Comprehensively and qualitatively speaking, the
proposed algorithms perform the best.

Figure 8. Qualitative evaluation results of eight algorithms on challenging tested sequences
Singerand Jumping.

IVT L1T TLD MIL Frag PLS ProposedVTD

Singer

Jumping

4.3. Quantitative Evaluation

Besides qualitative evaluation, quantitative evaluation of the tracking results is also an important issue
for tracking performance evaluation. Similar to other classical works, two performance measurements
are applied to compare the proposed tracker with the other reference trackers. Quantitative comparisons
using average center errors (CE) based on Euclidean distance and the PASCAL [32] overlap rate (OR)
criterion between the proposed method and the other ones are conducted.

Moreover, the average center error (ACE) and average overlap rate (AOR) are defined as:

ACE =
1

T

T∑
i=1

∥∥cieval − cigt
∥∥2
2

(20)

AOR =
1

T

T∑
i=1

Ai
eval ∩Ai

gt

Ai
eval ∪Ai

gt

(21)
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where cieval, c
i
gt ∈ R2×1 refer to the horizontal and vertical center coordinates of the evaluation and

ground-truth labeling results at the i-th frame, respectively, and Ai
eval,A

i
gt ∈ R+ are corresponding

areas of the target in one test sequence. T refers to the frame number of the test sequence. The results
for each sequence and each method are shown in Table 1, and it can be concluded that the proposed
tracking method performs more favorably than the other methods and the single-voting case. Though
some CE values are higher, the gaps are significantly limited, and both OR values and two criterion
averages on all tested sequences of the proposed tracker are better than all the other ones.

Table 1. Center error (pixels) and overlap rate of the tracking methods. The best three results
are in bold, italicized and underlined fonts.

Frag IVT VTD L1T TLD MIL PLS Proposed Single
Voting

Occlusion 1
5.621 9.175 11.135 6.500 17.648 32.260 4.596 3.656 3.921
0.899 0.845 0.775 0.876 0.649 0.594 0.904 0.932 0.910

Occlusion 2
15.491 10.212 10.408 11.119 18.588 14.058 46.186 4.501 4.931
0.604 0.588 0.592 0.672 0.493 0.612 0.471 0.813 0.753

Caviar 1
5.699 45.245 3.909 119.932 5.593 48.499 47.393 1.662 1.696
0.682 0.277 0.834 0.278 0.704 0.255 0.268 0.868 0.813

Caviar 2
5.569 8.641 4.724 3.243 8.514 70.269 32.431 3.238 3.252
0.557 0.452 0.671 0.811 0.658 0.255 0.365 0.814 0.802

Deer
92.089 127.467 11.920 171.468 25.652 66.457 20.198 9.763 9.833
0.076 0.217 0.577 0.039 0.412 0.213 0.510 0.598 0.566

Car 11
63.922 2.106 27.055 33.252 25.113 43.465 1.691 1.907 2.052
0.086 0.808 0.432 0.435 0.376 0.175 0.769 0.817 0.811

David Indoor
76.691 3.589 13.552 7.630 9.671 16.146 64.335 4.177 4.763
0.195 0.712 0.525 0.625 0.602 0.448 0.278 0.783 0.755

Singer
22.034 8.483 4.057 4.571 32.690 15.171 14.199 4.942 5.426
0.341 0.662 0.790 0.703 0.413 0.337 0.212 0.837 0.809

Jumping
58.448 36.802 62.988 92.393 3.589 9.894 60.206 4.051 4.471
0.138 0.283 0.080 0.093 0.690 0.527 0.096 0.724 0.664

ACE
Average

38.396 27.969 16.639 50.012 16.340 35.135 32.359 4.211 4.483

AOR
Average

0.398 0.538 0.586 0.504 0.555 0.380 0.430 0.798 0.765

To demonstrate the proposed improvement in the voting scheme, comparison between single voting
and K-combined voting is also drawn on the benchmark sequences. The settings are the same with the
ones above. It can be found that the proposed algorithm with K-combined voting is better in both center
error evaluation and overlap rate evaluation. Even with single voting, the proposed tracker can perform
better than other classical trackers on the overlap rate in most cases. It should be noted that, on the one
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hand, the performance with a low K would approach that in the single voting case. On the other hand, it
could introduce the classification error when K is too high. In our experiments, we find that the trackers
perform very well when K = 3.

Figures 9 and 10 separately illustrate the center error and overlap rate figures for all the quantitatively
evaluated sequences. Based on these figures, it can be seen that our proposed algorithm can obtain
narrow ranges of fluctuations against the other algorithms (e.g., David Indoor and Jumping). Though the
values of the proposed tracker are not the best all the time, they are lower in the center error and higher
in the overlap rate than the other algorithms in most test frames. Thus, the proposed tracker provides
comprehensively more favorable results in CEE and AOR averages than the other algorithms described
in Table 1.

Overall, it can be concluded that the proposed tracker achieves better performance than the other
state-of-the-art algorithms.

Figure 9. Center error (CE) evaluation for nine video clips. The proposed algorithm is
compared with seven state-of-the-art methods: Frag[4], IVT [3], VTD [16], L1T [11] ,
MIL [9], TLD [10] and PLS [18].
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Figure 10. Overlap rate (OR) evaluation for nine video clips. The proposed algorithm
is compared with seven state-of-the-art methods: Frag [4], IVT [3], VTD [16], L1T [11],
MIL [9], TLD [10] and PLS [18].

4.4. Dictionary Learning Results and Time

In this paper, a dictionary learning algorithm called incremental discriminative structured dictionary
learning (IDSDL) is proposed to learn from positive and negative samples, joined to construct a
structured dictionary with a newly established randomly permuted unit matrix for sparse representation.
Each test sequence corresponds to a dictionary during the tracking process. Corresponding to the patch
settings above, the selected learned dictionaries of sequence Occlusion 1 and David Indoor after 100
frames are shown in Figure 11 to demonstrate the proposed dictionary design and learning results. The
values have been normalized before plotting for better illustration.

Moreover, the average computation time per frame of the proposed IDSDL algorithm based on
different target normalized sizes are provided in Table 2. We take the challenging sequence, Car 11
as an example. The corresponding patch size is a quarter of the whole, and other parameter settings are
the same as those described in the beginning of this section. The corresponding ACE and ORE are also
provided. It can be shown that as the normalized size decreases, the running time gets shorter, yet the
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ACE and ORE get worse correspondingly. The proposed tracker fails to continuously track the target
when the target patch is normalized to 8 × 8. This is because the details of the target are lost when the
target region is interpolated on a more coarse-grained scale, and thus, the discrimination ability could
not be satisfactorily maintained. In our experiments, the normalized size is established after the times of
the experiments on all the test sequences with reference to the balance between accuracy and efficiency.

Figure 11. Dictionary of Occlusion 1 and David Indoor learned by IDSDL after 100 frames
(best viewed in color).

Occlusion 1 David Indoor

Table 2. Running time, average center error and ORE of different normalized patch sizes for
Car 11.

Normalized Size (Pixels) Running Time (Seconds) ACE (Pixels) AOR

32× 32 3.704s 1.826 0.821
24× 24 1.192s 1.907 0.817
16× 16 0.930s 4.022 0.783
8× 8 0.433s 25.441 0.406

4.5. Extending to Relay Tracking in Visual Sensor Networks

To demonstrate the potential application of the proposed algorithm, we evaluate its relay tracking
performance in visual sensor networks. The test dataset is from the CATproject (http://www.
cat-project.at/). There are four cameras, and their fields of view are slightly overlapping. A person
walks across the four cameras with different view points, which is regarded as the target. Our evaluation
is established as shown in Figure 12. We assume that the cameras are connected by the local area
network (LAN) with the computing server in the back-end. The videos acquired would be transmitted to
the server without any time delay. Moreover, each camera corresponds to a tracker in the server.

In order to make use of the visual information acquired as much as possible, we establish the tracking
process with a shared dictionary across all the cameras, shown in Figure 13. When the cameras are
switched on, their trackers begin to work. Here, we assume that the person entering the scene is the one
we are going to track. We apply foreground extraction based on Gaussian background modeling [33] to
detect the newly appeared person in the boundary area (5% of the frame height and width in this paper).
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When the foreground area is larger than a predefined threshold, the person is considered to be detected.
Once one camera detects the target, it records the corresponding location and starts to track the target. If
there is no foreground detected, the process sends the dictionary learned during the tracking process in
this camera. All the other trackers corresponding to different cameras would replace the old dictionary
with a newly received one, so that the visual information on the dictionary level can be shared across the
network. An empty dictionary is also sent in the no foreground detection and no tracking case. For a
straight forward implementation, the person entering the boundary area for the second time is considered
as a disappearance, so that the tracking process in the current camera stops.

Figure 12. Relay tracking evaluation establishment. We assume that the cameras are
connected by the local area network (LAN) with the computing server in the back-end. The
videos acquired would be transmitted to the server without any time delay.
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Figure 13. Tracking process with a shared dictionary across all the cameras.
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Quantitatively, we evaluate the lifecycle of the target once it is detected in one camera. In this paper,
the lifecycle of a target is defined as:

Plc =
Nc

Ne

(22)

where Nc is the frame numbers where the target is correctly tracked, and Ne is the frame numbers where
the target actually appears in the scene. In most cases, Ne > Nc. When the target is tracked continually
once it enters the scene, Ne = Nc. The target is regarded as being correctly followed when OR is higher
than 0.5. We compare the lifecycle of the Kalman tracking algorithm and the proposed algorithm without
and with dictionary share. The result of the lifecycle is shown in Table 3.

Table 3. The lifecycle of different methods. The best results are in bold font.

Camera 1 Camera 2 Camera 3 Camera 4 Average

Kalman 0.624 0.607 0.705 0.501 0.609
Proposed (no dictionary share) 0.806 0.709 0.753 0.641 0.727

Proposed (dictionary share) 0.873 0.732 0.884 0.702 0.798

Vertically, it can be found from the table that the proposed algorithm with dictionary sharing achieves
higher values. This is mainly because of the satisfactory online tracking performance proposed above.
Moreover, based on dictionary sharing, more visual information about the target could be obtained before
the target enters the specific scene. Thus, the performance with the dictionary sharing is better than
the one without sharing. Horizontally, all the values in Camera 2 and Camera 4 are lower than their
counterparts in other columns. This is due to the background modeling in Camera 2 and Camera 4.
In Camera 2, there are other moving objects as the target enters the scene, and in Camera 4, there
is light variation. The foreground target could not be timely and correctly detected, which leads to
a relatively poor lifecycle performance. Moreover, the value with the dictionary sharing in Camera
2 is not much higher than that without sharing, yet the opposite case occurs in Camera 3. This is
because, due to the camera view point, the person’s initial pose in Camera 2 is much different from
those in other cameras. Thus, the corresponding dictionaries learned in other cameras could not provide
much effective information about the target. It should be noted that the Kalman tracking method
heavily and continuously relies on the background modeling performance. It could not track the target
until its foreground is re-detected again, and due to the variation of foreground area, the target is not
correctly labeled in some frames. Comparatively, our proposed tracker only relies on the foreground
information once for location initialization, and with the dictionary sharing across the network, it
achieves a better performance.

4.6. Discussion

It can be found that our proposed tracker could perform more favorably than the other state-of-the-art
trackers comprehensively in both qualitative and quantitative evaluation. We present some justifications
here. For discriminative tracking algorithms, discrimination of the target from the background is
critical. One of our contributions is the proposed IDSDL algorithm for dictionary learning. The
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proposed dictionary contains both a positive template set and negative samples, and during training,
the LU strategy is proposed to only update its partial columns. Furthermore, the positive samples
are used to update the positive part, and their negative counterparts are used to generate the learned
negative part. Figure 14 shows the coefficients of positive and negative samples at #0016 in sequence
Car 4with/without dictionary learning. These coefficients would be the input of the SVM classifiers
for training. It can be found that, without dictionary learning, the coefficient values are more
globally distributed across the dimension, while with dictionary learning, the data are more aggregated.
Therefore, the proposed dictionary learning algorithm can improve the discrimination ability of the
sparse coefficients, so that better classifiers and tracking performance could be obtained.

Figure 14. Coefficients of positive and negative samples in sequence Car 4with/without
dictionary learning. The parameter settings are the same with those in the experiments above.

(b) Negative Coefficients 

without dictionary learning

(d) Negative Coefficients 

with dictionary learning

(a) Positive Coefficients 

without dictionary learning

(c) Positive Coefficients 

with dictionary learning

Confidence is also important for observation estimation. Our proposed KCV voting method combines
the classifiers randomly and outputs their estimated result by a maximal scheme. Since the candidates are
also generated randomly, the random combination could also be viewed as a supplementary re-sampling
step from the particle filtering aspect. A limited combination of random sample points are still random,
because the joint distribution of single Gaussian variables is still Gaussian. Thus, statistically speaking, it
improves the estimation generalization during the tracking process. The maximal scheme is a nonlinear
superposition process, and it creates more confidence points given limited candidates.
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It has been shown from the experiments that our proposed tracker is currently not sufficient for
real-time processing. Currently, it is mainly a MATLAB implementation with some C/C++ Mex
functions. Most of the processing time is spent on the dictionary learning and classifier training part. It is
certain that the processing could be several times faster in both single camera and visual sensor network
cases when all the codes are re-written in C. The running speed could be higher if the processing could
be paralleled or assisted with a graphic processing unit (GPU) coprocessor, since each patch could be
independently processed before KCV without interleaving. Though the proposed tracker is slower, it
achieves better performance in the accuracy evaluation.

5. Conclusions

This paper proposes an online discriminative visual tracking algorithm based on incremental
discriminative structured dictionary learning and multiple linear classification based on
randomly-combined voting. Not only qualitative, but also quantitative, evaluations are conducted,
which demonstrate that, on challenging image sequences, the proposed tracking algorithm enjoys better
performance than the state-of-the-art algorithms. It is also shown that our proposed algorithm could be
applied to relay tracking with satisfactory performance in visual sensor networks. Our future work might
focus on the application of the proposed dictionary learning method to other classification problems.
The proposed algorithm could also be extended to multiple object tracking or the tracking of specific
class (e.g., humans or their parts) given certain application environments.
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