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Abstract: This paper introduces a feature optimization method for robot long-range 

feature-based visual homing in changing environments. To cope with the changing 

environmental appearance, the optimization procedure is introduced to distinguish the most 

relevant features for feature-based visual homing, including the spatial distribution, 

selection and updating. In the previous research on feature-based visual homing, less effort 

has been spent on the way to improve the feature distribution to get uniformly distributed 

features, which are closely related to homing performance. This paper presents a modified 

feature extraction algorithm to decrease the influence of anisotropic feature distribution. In 

addition, the feature selection and updating mechanisms, which have hardly drawn any 

attention in the domain of feature-based visual homing, are crucial in improving homing 

accuracy and in maintaining the representation of changing environments. To verify the 

feasibility of the proposal, several comprehensive evaluations are conducted. The results 

indicate that the feature optimization method can find optimal feature sets for feature-based 

visual homing, and adapt the appearance representation to the changing environments  

as well.  

Keywords: long-range visual homing; uniform distribution; feature selection; feature 

updating; changing environments 
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1. Introduction 

A usual dichotomy partitions robot visual navigation methods into quantitative and qualitative 

methods [1]. The estimation of metric position information is not needed in a qualitative method, and 

the environments are usually represented by a route. It is crucial for robots to move autonomously 

from their current position to the home position along the route. Numerous methods for route guidance 

have been proposed, including node-based [2–6] ones and those that do not use nodes [7,8]. 

Navigation models that do not separate routes into sequences of waypoints have been proposed in [7,8], 

following the widely neglected branch of models based on recognition-triggered response. The 

navigation with nodes has been modeled by local visual homing strategies [2–5]. Inspired by the 

simple principle of biological navigation, local visual homing has the ability to return to a previously 

visited location, and has drawn attention in robotics study as computationally cheap building blocks in 

a minimalistic appearance-based navigation framework. 

In this paper, we present that long-range homing along a route can be achieved by implementing 

local visual homing strategy to sequentially visit the topological nodes. In the feature-based local 

visual homing in unprepared environments, the extracted visual features are ideal alternatives to 

artificial landmarks. However, a big challenge during long-range homing in changing environments is 

the management of rich feature sources [9,10]. In order to avoid irrelevant and redundant features,  

task-oriented selection schemes are needed, which contain additional constraints in evaluating feature 

usefulness for the tasks. Furthermore, in order to obtain optimal features during long-range navigation, 

it is necessary to maintain an up to date representation of surrounding environments. Propelled by 

above requirements, the main work of this paper focuses on the feature optimization orienting towards 

long-range feature-based visual homing in changing environments. 

Several feature-based visual homing strategies have been presented in the literature, such as average 

displacement vector [11], average landmark vector (ALV) [12] and the included angle difference 

method [2]. However, they all need or imply an equal-distance assumption that all landmarks are 

distributed at the same distance from the snapshot location. Since the assumption is always violated in 

unstructured environments, the true home vector will deviate from the estimated direction [2,11,13]. 

Uniformly distributed features do improve the feature-based homing accuracy, especially for the ALV, 

which has drawn significant attention for simplicity [13]. There are adequate visual features extracted 

from unstructured environments to identify a goal to home, yet no attention has been given to modify 

the feature distribution for feature-based visual homing. A few of the widely employed feature 

extraction algorithms have tried to get uniformly distributed features [14–16], however, none meets the 

requirement on feature distribution for feature-based visual homing. 

The feature selection is essential to object classification [17], localization [18], robot  

navigation [19,20], etc. With respect to the features used in visual homing, there are several criteria for 

the selection process [21,22], in which the demanding task is the explicit quantitative characterization 

of feature properties in view of their relative importance. In the previous literature, most approaches to 

the characterization of feature quality focus on recognition and classification tasks, but few of them are 

ideally suited to feature-based visual homing. Furthermore, most previous research on visual homing 

was carried out under the assumption that the environments are static. The significance of rating and 
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updating mechanisms, which are crucial to continuously evaluating the relative importance of features 

and discarding useless ones, is always ignored.  

Motivated by the aforementioned thought, our work concerns the optimization of feature 

distribution, selection and updating. In particular, we focus on acquiring uniformly distributed features 

to fulfill the equal-distance assumption. The features are graded by the quantitatively characterized 

selection criteria of visual homing. When the agent retraces the environments, the importance of 

features is re-evaluated to update the appearance representation. In this paper, the ALV strategy is 

adopted as building blocks of the route for simplicity. Besides, the features are extracted by SURF 

algorithm [23], because of its high accuracy and less computing time. In order to improve the 

performance of long-range feature-based visual homing in changing environments, the work presented 

in this paper concentrates on maximizing the advantage of the ALV method by modifying the 

distribution of high quality SURF features. 

The remainder of the paper is organized as follows: Section 2 outlines the extraction algorithm of 

well-distributed SURF features. Section 3 presents the feature selection and updating mechanisms. 

Section 4 shows the framework of feature optimization. Experiments in Section 5 demonstrate the 

performance. Section 6 draws conclusions and points out future work directions. 

2. Uniformly Distributed Features  

Due to their good invariance, local features have been introduced to substitute for artificial 

landmarks when the agent is situated in unknown environments. The Speeded Up Robust Features 

(SURF) [23] and Scale-Invariant Feature Transform (SIFT) [24] are widely used, however, neither 

controls the feature distribution. Several modified versions have focused on improving spatial 

distribution [14–16], but none can ideally meet the need of feature-based visual homing. In addition, 

little work has been done to improve the distribution of SURF features. Considering that SURF burden 

is computationally low, we aim at improving the spatial distribution. 

Figure 1. The octave and division of the scale layer. The left side shows the octave 

consisting of scale layers. The right side shows the scale layer consisting of 16 sector rings. 

 

Considering that the SURF features are extracted in scale space and the image sizes are identical, 

extracting features over the scale space in a uniform way becomes very important. The SURF scale 

space consists of several octaves and scale layers, as shown in the left side of Figure 1.  
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In consideration of using panoramic images, each scale layer can be divided into regular sector rings 

along the radial and circumferential directions (right side of Figure 1). The features should be 

uniformly distributed in each sector ring. Therefore, the feature distribution problem in the image can 

be seen as a problem in scale layers. Since the scale space is constructed by up-scaling the box filter 

size, the number of features decreases as the filter size increases because of the smoothing 

characteristics. Besides, the number of sector rings decreases progressively among octaves of the  

scale space.  

Supposing that the number of key-points extracted by the standard SURF algorithm in the scale 

layer (s) of the octave (o) is Nos, the number of sector rings is nos, and the key-point number in the ith 

sector ring is M
i 

os. The feature distribution in the scale layer will be relatively uniform if the key-point 

number in each sector ring is the same. We can define N
i 

os in Equation (1), which denotes the target 

number of key-points when each sector ring has the same key-point number. For the ith sector ring, all 

the key-points in this sector ring will be reserved when M
i 

os is not greater than N
i 

os. On the contrary, if 

M
i 

os is greater than N
i 

os, the excess key-points will be discarded by their quality which is measured 

according to strength value and spatial dispersion. The strength value Vstr will be shown in  

Equation (16) and specifically explained in Section 3.1. With regard to spatial dispersion, it is 

computed as follows. As shown in Equation (2), Ej is the entropy of the square region used to construct 

the descriptor of the jth key-point, and ql is the probability of the lth gray level value over all the grey 

levels within the square region: 
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os os
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Supposing (xj, yj) is the position of the jth key-point in the ith sector ring. The center ( , )x y  of all 

the key-points in the ith sector ring can be computed by Equation (3): 
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where Ej is taken as the weight of the jth key-point. Supposing distj in Equation (4) is the Euclidean 

distance between the jth key-point and the center, and Dist in Equation (5) is the divergence factor of 

the ith sector ring. Then the quality of the jth key-point in the ith sector ring can be measured by its 

strength value and spatial dispersion, as given in Equation (6) where WD is weight factor: 
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(6)  

In order to acquire uniformly distributed key-points, the points with lower quality are rejected to 

make sure that the key-point number is less than N
i 

os in each sector ring. A pseudo-code description of 

the extraction of uniformly distributed features is given in Algorithm 1.  

 

Algorithm 1 Algorithm of uniformly distributed feature extraction. 

1: M
i 

os is set as the original key-point number of the ith sector ring in scale layer (s) of octave 

(o) 

2: N
i 

os is set as the key-point number of the ith sector ring in scale layer (s) of octave (o) when 

uniform distribution 

3: for (each scale layer of each octave) do 

4:       Calculate N
i 

os according to Equation (1) 

5:       for (each sector ring) do 

6:             Check whether M
i 

os is greater than N
i 

os. 

7:             if TRUE then 

8:                 Calculate the key-point quality according to Equation (6). 

9:                 Classify the key-points by their quality in descending order.  

10:               Discard the last (M
i 

os−N
i 

os) key-points. 

11:           else 

12:               Reserve all the key-points. 

13:           end if 

14:      end for 

15: end for 

3. Proposed Approaches to Feature Selection and Updating 

The feature strength is crucial in feature-based visual homing in unstructured environments where 

adequate visual features can be extracted. With respect to the features used in the homing process, 

there should be several criteria of feature selection to evaluate their strength, in addition to the feature 

distribution. Besides, the fulfillment of long-range navigation in changing environments critically 

depends on the feature updating. 

3.1. Feature Selection 

Besides the criterion mentioned above, there are three more criteria identified for selection of 

features [21,22]: (1) relevance: the relevance of a feature is defined as its importance in making 

navigational decisions; (2) distinctiveness: features should be clearly distinguishable from their 

surroundings, which means the feature configurations should be unique; (3) reliability: taking the 

invariance of feature descriptor into account, features should cope with normal image deformations, 
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which requires high robustness. What really counts is that the features should be widely visible, and 

consistently observed when the robot passes the same position every time.  

The next step is to get the quantitative characterization of the criteria, in order to assign individual 

strength value to each feature. From the relevance aspect, individual feature evaluation is based on 

their relevance to the task and relationships with other features. Relevance and relationships are 

generally characterized in terms of correlation and mutual information. The distribution quality, 

discussed in Section 2, is significant for visual homing and has been taken into account during feature 

selection process, thus every selected feature is surely relevant to the homing task. The mutual 

information has been applied for navigation tasks [6,20,25,26], however, it is used in a different way in 

this paper. The mutual information can be used to measure the quantity of information shared by two 

random variables. Therefore, it can be used to evaluate the relationships among features. The more 

information it measures, the more relevant the feature relationships are. The mutual information is 

defined as follows: 

( , ) ( ) ( | )MI X Y H X H X Y   (7)  

where the entropy H(X) measures the variability of variable X. H(XY)is the conditional entropy, giving 

the expected information in X if a measurement is taken. 

Supposing C denotes the group of all the T features in one sector ring. The mutual information 

MI(C,F) between group C and feature F in this group can be measured by Equation (7). Due to the lack 

of previous knowledge, it is supposed that p(C) has a uniform prior. Therefore, all the T features in 

group C have the same probability and the entropy of group C can be computed by Equation (8). In 

addition, the conditional entropy is given by Equation (9): 

2
( ) logH C T  (8)  

2
( | ) ( | ) ( ( | ))logH C F p C F p C F  

 (9)  

where p(CF) can be computed by the Bayes rule: 

( | ) ( )
( | )

( )

p F C p C
p C F

p F
  (10)  

Here, p(CF) is estimated by applying a kernel density estimator [27]: 

1

1
( | ) ( ( , ))

T

i

i

p F C K d F F
T 

   (11)  

In Equation (11), K(∙) is the Gaussian Kernel function with standard deviation, and d(∙) denotes the 

Euclidean distance. An efficient and accurate nearest-neighbor approximation of this estimator is done 

as follows [27]:  

( | ) max ( ( , ))i
T

p F C K dist F F  (12)  

During the navigation, the images captured at current positions are continuously matched with the 

image stored at the target. Supposing M is the number of times the target image has been matched, and 

m is the number of times that the feature F extracted from the target image has been matched. The 

mutual information of feature F can be computed according to Equation (13): 
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where Fj is the matching feature of F, dj denotes the matching distance between F and Fj, and the 

structural principle of Cj is the same as C. 

A distinctiveness selection can be on the basis that the more informative the feature is, the greater 

its distinctive power reduces. The feature distinctiveness is written as Equation (14): 
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(14)  

The contrast value indicates the reliability property directly. In addition, the power of reliability can 

also be estimated by the record times that the feature has been successfully re-observed. Thus the 

quantitative characterization of reliability can be measured according to Equation (15): 

(1 )H norm H

m
R W H W

M
    (15)  

where Hnorm denotes the normalized Hessian value (SURF key-point), and WH is the weight factor. 

The feature strength value Vstr, given in Equation (16), is obtained by adding the three quantitative 

characterizations: 

(1 )str M norm M R norm RV W MI W W D W R      (16)  

where MInorm is the normalized mutual information, Dnorm is the normalized reliability, WM and WR are 

the mutual information and the reliability weight factors, respectively.  

3.2. Feature Updating 

As for the long-range navigation in changing environments, the feature updating is a matter of 

cardinal significance. The approaches close to our work are presented in [9,10]. They are both based 

on the multi-store model of human memory [28], which is divided into three basic stores: sensory 

memory (SM), short-term memory (STM) and long-term memory (LTM). The sensory memory stores 

all information perceived by the senses, and elementary selection measures are taken to determine 

what information will be transported to the STM. Through a process of rehearsal, the information in 

STM can be transported to LTM to be retained for longer periods of time. The approach presented  

in [9] is mainly used to keep feature sets updating, and the feature upgrade or degradation is based on 

feature “hit” or “miss” rather than quantitative characterization. An adapted memory model is adopted 

to update the features in [10], where the main purpose is robot localization. 

In this paper, the feature updating is implemented by adopting the concepts mentioned above in a 

simple way. During the process of SURF feature extraction, original key-points are denoted as SM, 

and those with low contrast and large principal curvature will be rejected. Then the final features are 

classified as STM or LTM according to their strength values. For the purpose of finding the most 

suitable threshold Tstr to distinguish STM from LTM, an experiment described specifically in  

Section 5.1 is conducted to test the homing performance. When the feature strength values are  
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re-computed, the feature sets will be updated. For STM, they have four times to be transported to 

LTM, on the premise that their strength values are greater than the threshold Tstr, otherwise, they will 

be deleted. Besides, the LTM will degrade to STM if the strength values are less than the threshold Tstr. 

4. Overview of the Proposed Feature Optimization Procedure 

The outline of the feature optimization procedure of long-range visual homing is shown in Figure 2. 

The route consisting of nodes is determined when the robot enters the environments for the first time. 

When the robot retraces the environments, it follows the route using the strategies in [2–6]. During the 

retracement process, the ALV homing algorithm directs the robot towards the target node. In addition, 

the ALV homing direction is computed with the assistance from an external compass. The two-stage 

procedure is detailed as follows:  

Figure 2. Outline of feature optimization procedure. 

Feature Selection 

and Grading

Uniform 

Distribution
Starting

Feature 

Extraction

Map Building

Arrival 

Declaration

Changing 

in 

Homing 

Direction

Feature 

Updating

Retrace Phase

 

(1) Map building. The robot is manually driven in the environments and panoramic images are 

captured at particular places with approximately 2 m between each other. Each node in the route is a 

collection of optimal features, which are extracted from the panoramic image. In the first step, each 

panoramic image is divided into regular sector rings as shown in Figure 1, and features are extracted 

by standard SURF algorithm. Then the strength value is calculated for each feature, and all features are 

classified into STM and LTM according to their strength values. 

For all the LTM features, the method proposed in Section 2 is used to improve the feature 

distribution, regardless of the STM features. If the LTM feature number in one sector ring is less than 

the number required, the STM features with higher strength values compensate for the shortage of 

feature number. The uniformly distributed LTM features are used to compute the ALV vectors. 

(2) Retrace phase. When the robot follows the succession of nodes by ALV homing method, the 

feature updating approach will be adopted.  

During the navigation between two nodes, panoramic images are continuously captured and matched 

with the image taken at the target node before the robot arrives at the node. The strength values of 

features stored at the target node are re-evaluated during this process. Therefore, the feature set can be 

updated. It should be noticed that feature matching aims at re-evaluating the strength values rather than 

calculating homing direction, since there is no need of feature matching in the ALV method. 

The homing direction will be changed in two cases. One case is that, if the LTM features used to 

compute current direction of migration change by Tnum or higher, the ALV vector at current location 

will be computed to obtain new homing direction. The other case is that, if the LTM features stored at 
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the target node is updated, its ALV vector will be re-computed and the robot will move on in a  

new direction. 

With regard to route guidance using linked local visual homing, there are two issues of crucial 

importance that have to be noticed: the determination of a new node and the arrival detection at a  

node [3,7,8]. As part of autonomous navigation, the major objective of this work is to maintain feature 

optimization, thus, the determinations on at which point a new node is set and whether the robot is 

sufficiently close to the target node are not the key points. In this paper, the locations of nodes are 

manually selected at a distance of approximately 2 m. Besides, the arrival detection of nodes is 

straight. During navigation between nodes, features extracted at current position are continuously 

matched with features stored at the target node. Arrival is declared once the maximum value of the 

bearing angle differences of matching features falls below threshold Tθ. 

5. Experiments 

5.1. Robot Platform and Parameter Settings for Experiments 

Our experiments were performed with a crawler mobile robot (see Figure 3). A panoramic vision 

system, composed of a mirror with a diameter of 100 mm and a camera with a resolution of 800 × 800, 

was mounted on top of the robot. A 2 GHz Pentium (R) processor was dedicated to vision processing and 

robot control. In addition, the robot was equipped with a digital compass to acquire the global orientation. 

Figure 3. The mobile robotic platform. 

 

Table 1 shows the parameter settings. Similar to the standard SURF algorithm, the scale space 

consists of three octaves and four scale layers (O = 3 and S = 4). Because the number of features 

decreases gradually with the number of octaves, the number of sector rings nos should taper off. More 

specifically, the sector ring number in each scale layer of the first octave is 100 (5 × 5 × 4), and the 

others are 64 (4 × 4 × 4) and 36 (3 × 3 × 4). The weight factor WD in Equation (6) must be determined 

by an appropriate compromise between the spatial dispersion and feature strength value. The optimal 

value of WD was determined by a local homing experiment, where we used 60 random pairs of 

panoramic images captured in the room and corridor. When the homing error was calculated, the 

Hessian value was substituted for feature strength value in Equation (6). The value assigned to WD was 

changed from 0 to 1 in 0.1 step. By seeking the minimum average angular error of homing, 0.3 was 

determined as the optimal value. The same experiment was conducted to determine the optimal value 

of WH, and the only difference was that the reliability value was substituted for feature strength value 

in Equation (6). Finally WH was set to 0.6 through the experimental analysis. Similar to the above two 
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experiments, another experiment was performed to figure out the most suitable WM and WR values. The 

feature strength value measured according to Equation (16) was used. The minimum average angular 

error of homing was obtained when WM value was 0.5 and WR value was 0.3.  

Table 1. Parameters in the proposed approach. 

Parameters Value Parameters Value Parameters Value 

O 3 n4s 16 Tstr 0.7 

S 4 WD 0.3 Tnum 10% 

n1s 100 WH 0.6 Tθ 10° 

n2s 64 WM 0.6 
  

n3s 36 WR 0.3 
  

We conducted another experiment to find the optimal threshold to distinguish LTM features from 

STM features. The threshold Tstr must balance feature quantity and quality. A low threshold will result 

in redundant features, and the features with low relative importance will degrade the homing 

performance. On the contrary, a high threshold will prune too many features, giving rise to the lack of 

representativeness of environmental appearance. The STM features will be less accessible to turn into 

LTM ones. The experimental results are shown in Figure 4. A well-established compromise in the 

mutual contradiction mentioned earlier was reached when the threshold Tstr was set to 0.7. In addition, 

the thresholds Tnum for changing homing direction and Tθ for arrival detection were empirically set to 

10% and 10°, respectively.  

Figure 4. Average angular error versus strength value threshold. 

 

5.2. Evaluation Tests of the Uniformly Distributed Features 

To evaluate the improvement on feature distribution using the proposed approach, an experiment 

was conducted in the room with a 10 m × 5 m floor space and the corridor with a 16 m × 3 m floor 

space. Figure 5a,c show the distribution of features extracted by the standard SURF algorithm. They 

manifest that the feature distribution is non-uniform, which means that the homing performance will be 

degraded. Figure 5b,d show the feature extraction results by the proposed modified version of SURF 

algorithm. The comparison shows the feasibility of the proposed approach in the improvement on 

feature distribution. However, this is just visual inspection. The improvement on the distribution 
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quality should be judged in terms of visual homing. The chosen measure of quantitative 

characterization of distribution, similar to the one proposed in [29], is defined as: 

2

1 1 1

1
( log )

osnO S

dist i i

o s i

Q p p
O S   

 

   (17)  

where pi is the ratio of matching features in the ith sector ring over all the ones in the scale layer (s) of 

the octave (o). If the correctly matching features were uniformly distributed, a maximum distribution 

quality would be achieved (5.94 for our experiments).  

Figure 5. The distribution of features. The red circles denote feature positions. (a,c) show 

the non-uniform distribution of features extracted by the standard SURF; (b,d) show the 

uniform distribution of features extracted by the proposed approach. 

  

(a) (b) 

  

(c) (d) 

Figure 6 shows the homing error and the corresponding feature distribution quality. Homing error is 

the absolute angular error between correct homing vector and the computed homing vector. In addition, 

the homing method presented in [4] was taken for comparison, as shown in Figure 6e,f. The proposed 

approach performed as well as the method in [4], with slight performance differences. The promising 

results indicate that it is feasible to improve the homing accuracy of ALV by employing the proposed 

approach, which can decrease the impact of anisotropic feature distribution. 
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Figure 6. The homing error and distribution quality. The axes denote the positions where 

the homing errors are computed. (a,b) show the homing error in the room using features 

extracted by the standard SURF and the proposed approach, respectively; (c,d) show the 

distribution quality corresponding to the results in (a,b); (e,f) show the homing error in the 

room and the corridor, respectively using the method in [4]; (g,h) show the homing error in 

the corridor using features extracted by the standard SURF and the proposed approach, 

respectively; (i,j) show the distribution quality corresponding to (g,h). 

    

(a) (b) (c) (d) 

  

(e) (f) 

  

(g) (h) 

  

(i) (j) 

5.3. Long-Range Homing Experiments 

In this section, long-range homing experiments were conducted to demonstrate the feasibility of the 

feature optimization approach, and the standard SURF algorithm was taken for comparison. Figure 7 

shows the environment representation marked with four typical regions, where no special 

arrangements and modifications were made to facilitate the execution of visual homing. The robot was 

located upon the starting node, and sequentially passed the intermediate nodes until it arrived at the 

home node eventually. Notice that the initial orientations of the robot were roughly the same in the 

following experiments.  
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Figure 7. The experimental environments. Phase 1 denotes the visual homing process in 

the room and the junction between the room and corridor; phase 2 corresponds to the 

process in the junction between two corridors; phase 3 denotes the process in the corridor; 

phase 4 corresponds to the process in the hall. 

 

The experiments were classified into several groups according to the degree of change of the 

environmental appearance. The environments were manually changed in various manners, including 

modifying illumination conditions by control of curtains and lamps, rearranging object locations, 

adding new objects, removing existing objects and covering objects with cardboard. It should be 

noticed that temporary occlusions caused by people always existed. Here, five types of experiments 

had been conducted: in the first one, under good illumination conditions, the environmental layout 

remained the same as that in the first tour without modification; the second one was conducted under 

worse illumination conditions, compared with the first one; in the third and fourth experiments, 

environment changes were identical, and the illumination conditions were the same as that in the first 

and second, respectively; the fifth one was conducted in randomly changing environments. By means 

of the proposed feature optimization approach, the features stored in nodes updated five times via the 

five types of experiments mentioned above. 

In order to demonstrate the effectiveness of each part of the feature optimization procedure, our 

approach was compared with three other approaches. The experimental results are presented in  

Figures 8–12. The results of the proposed approach and the standard SURF are shown by red and 

violet, respectively. The blue indicates the results obtained by our approach without the procedure of 

feature selection and updating. And the results shown by green are obtained by our approach without 

the procedure of feature updating. The decrease of curvature and the improvement on smoothness can 

be chosen as criteria to the effectiveness of the proposed approach on homing accuracy. 

5.3.1. Long-Range Homing with Different Illumination Conditions in Non-Modified Environments 

Figures 8 and 9 show the homing trajectories under different illumination conditions in  

non-modified environments. Figure 8 corresponds to the results obtained at around noon with fairly 

good illumination, and Figure 9 corresponds to the results obtained in the afternoon with relatively 

poor illumination. It can be observed that the experimental results obtained under fairly good 

illumination condition are better than those obtained under relatively poor illumination conditions. 
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Observing the results of the four approaches, our approach outperforms the other three ones. The 

performance of the standard SURF is the worst, which may be caused by its poor control of the feature 

distribution and quality. The performance differences between the two experimental results are 

relatively bigger when using the standard SURF, compared with the other three approaches. This can 

be attributed to the utilization of feature selection and updating, which partially decrease the influence 

of large changes in illumination and people. Moreover, it is noteworthy that the homing performance 

in the corridor is improved apparently owing to the uniformly distributed features, compared to that in 

the room and hall. Although the performance is improved in the corridor, the homing error is bigger 

compared with that in the room and hall. Besides, a problem has been arisen that there exists 

significant degradation of homing performance in the junctions of two corridors, between the room and 

corridor, since the environmental appearance information between them is obviously different.  

Figure 8. The homing trajectories in non-modified environments with fairly good 

illumination. (a–d) show the results obtained in phase 1, 2, 3 and 4, respectively. Red lines 

correspond to the proposal. Violet lines correspond to SURF. Blue lines correspond to the 

proposal without selection and updating. Green lines correspond to the proposal without 

updating. In each figure, the robot moves from left to right, the black disks with the same 

size are intermediate nodes, and the bigger one is starting node or home node. 

  

(a) (b) 

  

(c) (d) 

5.3.2. Long-Range Homing with Different Illumination Conditions in Modified Environments 

The experimental results under different illumination conditions in modified environments are 

provided in Figures 10 and 11. Figure 10 indicates the results obtained at around noon with fairly good 

illumination, and Figure 11 is obtained at around afternoon with relatively poor illumination. The 

modifications made in the environments will result in decreasing of matching feature number, thus the 

ability of coping with the large changes in environments can be tested. Analyzing the homing 

trajectories, our approach performs well despite the changes in environmental layout. Though the 

homing error caused by anisotropic feature distribution decreases when the robot approaches the target 

node, the performance differences demonstrate that the feature optimization procedure does take effect. 

In a word, our approach maintains a better appearance representation of the changing environments.  
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Figure 9. The homing trajectories in non-modified environments with relatively poor 

illumination. (a–d) show the results obtained in phase 1, 2, 3 and 4, respectively. Red lines 

correspond to the proposal. Violet lines correspond to SURF. Blue lines correspond to the 

proposal without selection and updating. Green lines correspond to the proposal without 

updating. In each figure, the robot moves from left to right, the black disks with the same 

size are intermediate nodes, and the bigger one is starting node or home node. 

  

(a) (b) 

  

(c) (d) 

Figure 10. The homing trajectories in modified environments with fairly good 

illumination. (a–d) show the results obtained in phase 1, 2, 3 and 4, respectively. Red lines 

correspond to the proposal. Violet lines correspond to SURF. Blue lines correspond to the 

proposal without selection and updating. Green lines correspond to the proposal without 

updating. In each figure, the robot moves from left to right, the black disks with the same 

size are intermediate nodes, and the bigger one is starting node or home node. 

  

(a) (b) 

  

(c) (d) 
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Figure 11. The homing trajectories in modified environments with relatively poor 

illumination. (a–d) show the results obtained in phase 1, 2, 3 and 4, respectively. Red lines 

correspond to the proposal. Violet lines correspond to SURF. Blue lines correspond to the 

proposal without selection and updating. Green lines correspond to the proposal without 

updating. In each figure, the robot moves from left to right, the black disks with the same 

size are intermediate nodes, and the bigger one is starting node or home node. 

  

(a) (b) 

  

(c) (d) 

Figure 12. The homing trajectories in randomly changing environments. (a–d) show the 

results obtained in phase 1, 2, 3 and 4, respectively. Red lines correspond to the proposal. 

Violet lines correspond to SURF. Blue lines correspond to the proposal without selection 

and updating. Green lines correspond to the proposal without updating. In each figure, the 

robot moves from left to right, the black disks with the same size are intermediate nodes, 

and the bigger one is starting node or home node. 

  

(a) (b) 

  

(c) (d) 

5.3.3. Long-Range Homing in Randomly Changing Environments  

Figure 12 shows the homing trajectories under randomly changing environmental conditions. The 

illumination conditions were changed randomly by controlling the curtains and lamps, and the object 

positions were in disorder, posing a challenge to visual homing. Comparing the experimental results 

with those in Sections 5.3.1 and 5.3.2, it is clear that the performance differences increase as the 
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feature set updating times goes up. It is worth to note that the approach using standard SURF is 

incapable of dealing with these situations. From the experimental results, the effect of the feature 

optimization in our approach, which is the result of these performance differences, is evident. Given 

these challenging conditions, our approach performs well and demonstrates that it is of importance to 

get a suitable appearance representation of the environments.  

5.4. Analysis of Experimental Results  

From the perspective of route following, the homing trajectories in this paper are not the straightest, 

compared with those in [30–32]. Considering the simple navigation framework, the homing error tends 

to decrease as the robot is guided closer to the target node. Besides, the method of selecting node 

locations may result in the lack of features in common between consecutive nodes. Therefore, the 

homing direction will be changed frequently due to the strategy of changing mobile direction. The 

changing environments, the extreme unevenness of feature distribution in the corridor, and the 

transition from one environment to another with obviously different appearance pose severe challenges 

to visual homing. 

To quantify the performance, the mean values and standard deviations of the mobile direction 

angles during the long-range homing are listed in Table 2, where the smoother trajectory and better 

performance is indicated by lower mean value and standard deviation. From the homing trajectories 

and mobile direction angles, the feature optimization method improves the homing accuracy. However, 

it is hard to know how well the proposed method performs due to the error introduced by the digital 

compass. During the first tour when the route was determined, the images were captured when the 

robot was parallel to one side of the oblong floor tile. Therefore, the directions of translation between 

images stored at neighboring nodes are known. The homing errors between neighboring nodes can be 

computed using the feature sets obtained through the above five experiments, without impact of the 

digital compass. The results in Table 3 indicate that each part of the optimization procedure has a 

positive effect on the decrease of homing error.  

Table 2. Mobile direction angles. Experiments 1–5 correspond to the results shown in 

Figures 8–12, respectively. E (°) denotes the mean value of mobile direction angle, and  

σ (°) denotes the standard deviation of mobile direction angle. Compared with the standard 

SURF (violet trajectory), PE and Pσ denote the percentages by which mean value and 

standard deviation have been lowered through the five experiments, respectively. 

Trajectories 
Experiment 

1 

Experiment 2 Experiment 3 Experiment 4 Experiment 5 
PE Pσ 

E σ E σ E σ E σ E σ 

Violet 41.4 10.8 50.3 12.5 51.6 12.8 57.9 13.3 59.5 13.9 0 0 

Blue 29.3 6.6 34.7 7.8 33.9 7.5 37.2 8.3 40.5 8.7 32.4% 38.6% 

Green
 

23.8 5.0 27.6 5.9 28.3 6.2 32.2 6.9 34.5 7.3 43.8% 50.7% 

Red
 

18.1 3.9 20.5 4.5 21.6 4.6 23.1 4.8 25.3 5.2 58.2% 63.7% 

Despite the homing performance improvement, the equal-distance assumption is difficult to meet 

completely. This is obvious in the corridor and can be explained in the way that features are projected 

on the panoramic images [13]. In addition, the mechanisms of arrival detection and new node 
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determination in this paper do not perform very well. The robot does wrongly declare the node arrival 

in a number of cases. The set distance of 2 m between consecutive nodes does not work in every 

environment and results in lack of autonomy. 

Table 3. Average homing errors. Feature sets 1–5 correspond to the features stored at the 

nodes and obtained during the above five types of experiments. Compared with the 

standard SURF (violet trajectory), P denotes the percentage by which the homing error has 

been lowered through the five feature sets. 

Approach Feature Set 1 Feature Set 2 Feature Set 3 Feature Set 4 Feature Set 5 P 

Violet 45.1 56.3 53.7 59.8 63.4 0 

Blue 31.2 35.4 36.1 38.9 41.5 34.0% 

Green 22.6 27.1 29.5 33.9 35.4 46.9% 

Red 17.6 21.1 23.8 25.4 26.5 59.0% 

6. Conclusions 

This paper proposes an approach to feature optimization, especially for long-range feature-based 

homing in changing environments. The task-dependent optimization procedure consists of feature 

distribution, selection and updating. The method proposed in this paper shows good homing 

performance, including improvement on feature distribution quality, homing accuracy and environmental 

adaptability. Therefore, it is feasible and suitable for long-range navigation in changing environments. 

The selection of key images is significant for representing a route with fewer nodes. In addition to 

that, the arrival detection is closely related to homing accuracy. However, the locations of nodes are 

determined manually and arrival detection mechanism does not work well in this paper. As crucial 

parts of autonomous navigation, more efforts need to be spent on solving these two issues. Other 

possible improvements lie in computing the most suitable strength value threshold with an adaptive 

algorithm to distinguish STM features from LTM features, as well as exploring the possibility of 

substituting visual compass for inaccurate digital compass.  
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