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Abstract: To realize the efficient data capture and accurate analysis of pitting corrosion of 

the reinforced concrete (RC) structures, we first design and implement a wireless sensor 

and network (WSN) to monitor the pitting corrosion of RC panels, and then, we propose a 

wavelet-based algorithm to analyze the corrosion state with the corrosion data collected by 

the wireless platform. We design a novel pitting corrosion-detecting mote and a 

communication protocol such that the monitoring platform can sample the electrochemical 

emission signals of corrosion process with a configured period, and send these signals to a 

central computer for the analysis. The proposed algorithm, based on the wavelet domain 

analysis, returns the energy distribution of the electrochemical emission data, from which 

close observation and understanding can be further achieved. We also conducted test-bed 

experiments based on RC panels. The results verify the feasibility and efficiency of the 

proposed WSN system and algorithms. 

Keywords: reinforced concrete structures; corrosion monitoring; wireless sensor and 

networks; electrochemical emission; wavelet 
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1. Introduction 

Corrosion of reinforcing steel, generally caused by carbonation or Cl
−
, is the most important factor 

causing severe degradation of the durability of reinforced concrete (RC) structures. Especially, Cl
−
 

from the concrete itself or the environment leads to pitting corrosion which will quickly result in a 

remarkable reduction of the cross section of the reinforcing steel [1,2]. The durability deterioration of 

RC structures finally leads to very high repair costs, sometimes much greater than the initial 

construction cost, and in some extreme situations, can result in the collapse of the structure [3]. With 

the development of global warming and further deterioration of the environment, the service condition 

of RC structures has recently become much harsher. 

Over the past two decades, structural health monitoring (SHM) has gained worldwide acceptance as 

an affordable way to obtain real-time data on the health, and consequently, on the safety and the 

serviceability of civil infrastructure systems [4]. There have been many sensing technologies applied in 

earthquake engineering, wind engineering and life-cycle performance evaluation, such as the fiber 

optic sensing technique [5], the wave propagation-based piezoelectric ceramic (PZT) sensing 

technique [6–9] and the smart cement-based sensing technique, etc. [10,11]. Recently, future trends in 

the development of sensing technologies and SHM in civil engineering have been critically reviewed 

and put forward [12–14]. 

Considering the severity of the reinforcing steel’s corrosion, it is very urgent to recognize the 

corrosion status of the steel bar, and then to provide early warning information before the RC 

structures reach an unsafe condition in the field. Unfortunately, although the corrosion mechanism of 

reinforcing steel has been investigated extensively in the past few decades, the corrosion monitoring of 

RC structures has still not been well addressed till now. Some significant challenges related to the 

corrosion monitoring methods and sensors, therefore, should be carefully considered and seriously 

clarified for the actual SHM systems. Firstly, the purpose of corrosion monitoring is to actively 

identify the corrosion status according to the electrochemical characteristics of RC structures. In 

contrast to the traditional works implemented by most researchers in laboratories, corrosion monitoring 

is the inverse process of the electrochemical characterization of RC structures. Secondly, the evolution 

of the reinforcing steel’s corrosion will be influenced by the environmental conditions over time. 

Therefore, in-situ, real-time and on-line identification of the corrosion status is another key issue. 

Furthermore, the foregoing engineering practice indicates that the distribution of large amounts of 

conducting wires, demanding massive labor and financial resources represent annoying problems in 

SHM for civil engineering. 

The pitting corrosion, known as ―steel cancer‖, significantly deteriorates the durability of RC 

structures and greatly degrades their serviceability. The electrochemical emission spectrum (EES) can 

be used as the most intrinsic feature of the pitting corrosion caused by Cl
−
 [15]. Electrochemical 

emissions, generally considered as the ―fingerprints‖ of pitting corrosion, reflect the information of the 

initial, metastable, repassivation and stable stages during the corrosion process [16,17]. Therefore, the 

pitting corrosion status could be identified effectively via this intrinsic information by passively listening 

to the reinforcing steel to determine how the corrosive media intrudes into the RC structures [18–21]. On 

the other hand, the emergence of wireless sensors and networks (WSNs) provides an excellent 

opportunity to finally realize the in-situ, real-time and on-line corrosion monitoring [22–27]. WSNs 
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enable the engineers to remotely collect and transmit the electrochemical data through wireless 

channels, even under the most severe conditions, avoiding a large amount of wiring, and thus saving 

large amounts of labor and financial resources. In the future, WSNs should be able to support the 

corrosion monitoring and control as the hardware platform based on the concept of the Internet of 

Things. Considering the great advantages of WSNs and electrochemical emission spectra, we first 

attempted to design a novel pitting corrosion-detecting sensor device and a feasible, effective wireless 

monitoring platform to monitor the pitting corrosion at the nucleation stage; next, we propose a 

wavelet-based algorithm for analyzing the electrochemical emission data; finally, we evaluate the 

feasibility and efficiency of the wireless corrosion monitoring system working on RC panel test-beds. 

2. Wireless Corrosion Monitoring Sensor and Network 

Compared with the traditional corrosion monitoring approaches, wireless technology-based 

monitoring is very efficient in terms of cost, convenience, and human-operation overhead, and thus has 

attracted much attention in the past few years. In this work, we design a WSN to monitor the corrosion 

of RC structures. The advantages of our WSN-based test-beds are as follows. First, the designed 

corrosion-detecting device can be built using commercial off-the-shelf wireless motes, such as the 

Crossbow Mica mote and the Berkeley Telosb mote, so the hardware costs are very low, and the 

network is easily extended. Second, once the corrosion-detecting device is attached to the wireless 

mote, we can control the sampling rate by dynamically setting its parameters in an over-the-air fashion. 

2.1. Corrosion-Detecting Sensor Mote Design 

In designing the corrosion sensing mote platform, we have to address the following three problems: 

(1) what sensing device will be used in corrosion signal detection, (2) which kind of wireless mote is 

appropriate for our objectives in terms of cost and extensibility, and (3) how to connect the  

corrosion-detecting device to the wireless mote. We will present the designed corrosion-detecting 

devices in the later sections. Next, we will introduce the MicaZ mote in use and the designed circuit 

connecting the corrosion-detecting device with the MicaZ mote. 

As a general wireless embedded platform, the MicaZ mote can not only measure 0–3 V with  

0.01 mV resolution, but also be extended to monitor diverse other signals (such as temperature, 

humidity and vibration, etc.), so we used the MicaZ mote in our test-bed to support a closer monitoring 

of corrosion of RC structures. In our design, we consider mainly two issues related to the WSN 

platform: one is how to connect the corrosion-detection device to the MicaZ mote, and the other one is 

how to implement a wireless communication algorithm to effectively collect the corrosion data. Figure 1 

shows the architecture of our test-bed. The sensing layer consists of a set of sensor motes, which will  

self-organize into a wireless network. The laptop, data server, or other Internet-accessing devices 

belong to the gateway layer which is responsible for collecting all the data sent by the sensing layer. 

The back-end application layer provides a visual interface for users as well as domain experts. As long 

as users can access the Internet, they can browse the data and the corresponding analysis results, or 

even download them. 

Even though the MicaZ mote is fitted with a 51-pin connector for external sensing devices, it  

cannot directly read the signal output of our corrosion-detection devices. This is because MicaZ’s  
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analog-to-digital conversion (ADC) interface (channel) cannot directly measure the current. However, 

the corrosion current is what we are very concerned about in corrosion evaluation. We therefore 

designed a connecting circuit between the corrosion-detecting device and the MicaZ mote, and the 

circuit functions by transforming the current output of the corrosion events into a voltage that can be 

measured by the MicaZ. We have to map each voltage reading of ADC channel of MicaZ into a current 

reading. Figure 2 shows the kernel part of the circuit [28]. The accuracies of the potential and current 

measurements are 10
−5

 V and 10
−7

 A, respectively. 

Figure 1. The architecture of the wireless corrosion monitoring system. 

 

Figure 2. Schematic of the connecting circuit for the wireless corrosion sensor. 
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corrosion potentials, and this makes the circuit be able to measure at the 0.1 μA level, the precision of 

which is completely sufficient for our scenario. 

2.2. Wireless Corrosion-Monitoring Network 

For the corrosion-monitoring sensor mote platform, another challenge is how to collect the 

corrosion data from all the motes with as little human intervention as possible. Using the TinyOS 

operating system for MicaZ and the Xserve communication framework, we propose a many-to-one 

routing protocol, to transport data from all sensor motes to a central mote (also called sink). The sink, 

storing all the corrosion data, can display it visually, and domain scientists can then well understand 

and predict the progress of the corrosion process. In the proposed routing algorithm, the sensor motes 

are organized into a multi-hop network which can work in the following two ways: (1) the sink 

broadcasts a query message, and the motes receiving this message send data back to the sink, and  

(2) all the motes report their data to the sink regularly, e.g., once per day. In our experiments, we use 

the latter one. To guarantee the reliability of the data transmission, two schemes are adopted in our 

work. First, as shown in Figure 3a, we employ the Acknowledgement (ACK) scheme of the IEEE 

802.15.4 protocol [29] to improve the link quality with multiple transmissions. Second, a mote always 

chooses the mote with maximal link quality as its forwarder (the link quality is generally measured by 

the reception ratio of packets over the link). For example, the mote B in Figure 3b has two possible 

forwarders, D and E, but it will select D as the next hop if the link to D has higher quality. Based on 

the CC2420 radio chip used by MicaZ, the link quality can be calculated at the hardware level as the 

bit error rate (BER) value and consequently, needs no extra codes. Even though the link quality is 

obtained at the receiver, it can be piggy-backed by the ACK messages from the receiver to the 

transmitter. By doing so, the transmitter has information about the qualities of links to all the potential 

forwarders. Figure 3c presents the detailed control logics of our routing algorithm. Note that these 

control programs can be updated over the air, even if they have been deployed in motes. Such a 

reprogramming method without recycling motes facilitates the deployment of the new monitoring 

tasks. The experiments results show that only two packets are lost due to link failure within two hours 

in our routing scheme. 

3. Energy Distribution Algorithm of EES in Wavelet Domain 

The fast wavelet transform algorithm for electrochemical emission signals is illustrated in Figure 4. 

The energy accumulated in the subspace  n

jU n Z can be calculated by: 
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Figure 3. Routing algorithm for the wireless corrosion monitoring network. 
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Figure 4. Schematic of the fast wavelet transform algorithm. 

 

To eliminate the influence of the trend in the electrochemical emission signal, the decomposed 

signal ,

n

J kD  is removed in the reconstructed data in J  level to dimensionlessly normalize the energy 

accumulated in  n

jU n Z  as follows: 
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Then, we can obtain the energy distribution of the discrete electrochemical emission signals 

  , 1,2,...,nx t n N  on each scale as follows: 

1 2, , , JE E E E   
 (4) 

where 1E , 2E  and JE  are the dimensionless normalized energy accumulated on the 1, 2 and  

J scales, respectively. 
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4. Experiments 

Two kinds of typical RC panels which represent the passive and active state were used to verify the 

effectiveness of the proposed WSN for corrosion monitoring. One RC panel was poured with plain 

concrete, and the other was formed with concrete containing 3.5% NaCl by weight of mixing water. 

The mix proportions of C30 concrete is listed in Table 1. The cement is P.O.42.5 Portland cement 

(Yatai Group Harbin Cement Co., Ltd., Harbin, China). The content of polycarboxylate water reducing 

agent UNF-5 (Kanghua Chemical Co., Ltd., Jilin, China) is 1.0% by the weight of cement. After curing 

the panels for 2 months with 17 ± 3 °C and 70% ± 10% relative humidity (RH) condition as controlled 

by a SEEKE SP-30AT6DT system (Jiedi Electronic Equipment Manufacturing Co., Ltd., Nanjing, 

China), the WSN-based corrosion monitoring tests were performed. 

Table 1. C30 concrete mixture proportions (units: kg/m
3
). 

Components Cement Aggregate Sand Water NaCl UNF-5 

Passive 390 800 1035 180 0 3.9 

Active 390 800 1035 180 6.3 3.9 

Figure 5 illustrates the geometry of the RC panels and the distribution of the sensing motes. To 

recycle the MicaZ motes in the future, the sensing elements including the comb-shaped electrodes and 

the solid-state reference electrodes (SSREs) prepared by electron-beam vapor deposition are directly 

embedded in the concrete surrounded by the steel-bar mesh, and these electrodes are wired with the 

MicaZ motes installed on the surface of the reinforced concrete panels. 

Figure 5. The schematic plan of the wireless corrosion monitoring system for RC panels. 

 

The wireless mote entitled ―SN0‖ is mounted on the plain RC panel to monitor the electrochemical 

emission data as the reinforcing steel is passivated. The other wireless motes entitled ―SN1‖, ―SN2‖ 
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and ―SN3‖ are connected sequentially to the corresponding sensing elements embedded in the RC 

panel with 3.5% NaCl to monitor the corrosion status in the active state. It must keep in mind that the 

sensing elements and the MicaZ motes could be integrated and implanted into the concrete in practical 

engineering, and the power could be also supplied by the energy scavenged from wind, solar, concrete 

batteries or the electrochemical reactions happening during the corrosion process. The components of 

the comb-shaped electrode here include one graphite counter electrode and one Q235 carbon steel 

working electrode. The solid-state reference used as the baseline to monitor the change of the potential 

of the working electrode is developed based on NiFe2O4 electrochemical functional materials [30]. Its 

balance potential is −238 mV ± 5.0 mV (vs. Ag/AgCl/KClsat) in the simulated concrete pore solution 

(SCPS) at 25 °C. The sampling frequency of the electrochemical emission data is set to be 2 Hz. 

5. Results and Discussion 

The electrochemical emission signals collected by the wireless corrosion monitoring sensor SN0 of 

the passive state reinforced concrete panel, including the potential and the current data, are presented 

in Figure 6a,b, respectively. According to Figure 6a, the potential emission is within a narrow band 

whose amplitude is no more than 3 mV (vs. SSRE). Besides, the current emission also shows a  

narrow-band-like distribution, and the amplitude is no more than 2 × 10
−7

 A/cm
2
. Which is close to the 

resolution of the wireless mote itself. The signal could be caused by the white noise of the acquisition 

system implanted in MicaZ mote or the passive steel/concrete system itself. These results indicate that 

the amplitude of potential or current emission of the reinforcing steel at passive state is very low, and 

the high pH value of the hydrated products of cement provides a safe environment to keep the r steel 

bar immune to chloride ions. Also, the wireless mote SN0 obtains the effective data correctly. 

Figure 6. Electrochemical emission data of the passive state reinforced concrete panel.  

(a) and (b) are the electrochemical potential emission and the electrochemical current 

emission of the wireless mote SN0, respectively. 

  

Figure 7 exhibits the potential and the current emissions of the wireless motes SN1, SN2 and SN3 

located along the diagonal line of the RC panel in Figure 5 with 3.5% NaCl solution. Lots of potential 

and current transients appear in the data. The amplitude of the potential emission transients and  
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current emission transients achieve even hundreds of millivolts (vs. SSRE) and several of  

10
−4

 A/cm
2
, respectively. 

Figure 7. The electrochemical emission data of the active state RC panel. (a1), (a2), (a3) 

and (b1), (b2), (b3) are the electrochemical potential emission and electrochemical current 

emission of the wireless motes SN1, SN2 and SN3 located along the diagonal line of the RC 

panel in Figure 6, respectively. 

  

  

  

The typical attenuation life of electrochemical emission ranges from tens of seconds to a few 

hundreds of seconds. Note that the pitting corrosion presents stochastically on the surface of the 

working electrode. Generally, the pitting corrosion process of the steel bar in Cl
−
 solution includes four 
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steps as follows: the adsorption of Cl
−
, the nucleation of metastable pits, collapse of the metastable pit 

and the formation of the new pit, and the formation and development of the stable pit. The measured 

current embodies the superimposed effect of the pitting process. This process simultaneously includes 

the nucleation of the metastable pit and the repassivation processes. During the developing stage of the 

pitting corrosion caused by Cl
−
, two of the typical events emerge on the surface of the specimen: one 

part is the passivating film and the other part is the active pits. In the later part, the active steel directly 

contacts with solution, and then the anode current becomes much larger. As such a large current flows 

through the solution in the pit, there exists a large voltage drop. According to the point defect model [31], 

the aggressive anion Cl
−
 is able to enhance the flux of cation vacancies through the barrier layer during 

the pitting corrosion process. With the favorable conditions (voltage, pH, [Cl
−
]), vacancy condensation 

will occur at the metal/barrier layer interface, and hence passivity breakdown will is confirmed, so the 

fresh surface of the metal will generate an electrochemical potential and current transients. We can 

also see that the wireless corrosion monitoring sensors and networks could effectively capture and 

transmit these electrochemical emission signals. 

Figure 8. Energy distribution plots of the electrochemical emission signals in wavelet 

domain. (a) and (b) are the energy distribution plots of the electrochemical potential 

emission and electrochemical current emission, respectively. 

  

To identify the pitting corrosion qualitatively, the energy distribution algorithm of the 

electrochemical emission signal in wavelet domain described in Section 3 of this paper is applied to 

analyze the potential and current emission data in Figures 6 and 7. The orthogonal Sym4 wavelet is 

utilized to decompose the electrochemical emission data in depth of 8-level, and the approximation 

signal in 8-level is removed as the harmful trend. Then, the decomposed signal in each level is 

reconstructed and the energy distribution plots are obtained based on the equation (3). Figure 8a,b 

illustrates the energy ratio on each level of the potential and current emission data, respectively. 
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energy condensed on these levels is no less than 80% of the total energy. The frequency of the levels 

from 5 to 8 is no more than 2–5 Hz. The condition of electrochemical current emission in  

Figure 8b is similar with that of the electrochemical potential emission in Figure 8a. According to the 

change of the energy distribution on the different crystal, the pitting corrosion is verified. The energy 

which is distributed on the level 5–8 is the intrinsic characteristics of pitting corrosion of the 

reinforcing steel in concrete. The energy distribution plot of the electrochemical emission signal can be 

applied as the benchmark to qualitatively identify the presence of the pitting corrosion. Actually, the  

in-situ, real-time and on-line corrosion monitoring information of the electrochemical emission 

spectrum could be applied to drive the 3-D cellular automata to quantitatively predict the development 

of the corrosion pit. Considering the aim of this paper, we do not discuss this point in detail here. 

6. Conclusions 

We have employed a WSN to realize a corrosion monitoring platform, which can acquire 

electrochemical emission signals during the pitting corrosion process, in an in-situ, real-time, and 

reliable way. Additionally, we have designed a wavelet-based algorithm to characterize the corrosion 

process of the RC structures, with the corrosion data collected by the WSN platform. We find that the 

amplitudes of the electrochemical current and potential emission are a few millivolts (vs. SSRE) and 

10
−7

 A/cm
2
 degree in the passive state of the reinforcing steel, respectively. However, they increase to 

several hundreds of millivolts (vs. SSRE) and 10
−4

 A/cm
2
 degree in the active state. In particular, the 

energy distribution plot of the electrochemical emission signal returned by the proposed wavelet 

algorithm can serve as the benchmark to qualitatively verify the presence of pitting corrosion. 
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