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Abstract: We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs 

Schottky diode and antenna under the direct injection and irradiation condition. The 

conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was 

achieved. It was found that the reduction of series resistance and parallel connection of 

diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under 

direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still 

obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the 

resonant frequency between the diode and the connected antenna. Higher output voltage in 

volt range is expected to be achievable for the well-matching condition. The proposed  

on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising 

candidate to be used for application in proximity communication system as a wireless low 

power source as well as a highly sensitive RF detector. 
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1. Introduction 

In order to increase the performance of silicon (Si)-based ultra-large-scale-integrated circuits 

(ULSIs), miniaturization of complementary metal-oxide-semiconductor (CMOS) transistors is needed [1]. 

However, further miniaturization seems to be difficult due to the increase in gate leakage current [2], 

short channel effects [3], etc., although several innovations such as strained Si [4], high-k materials [5] 

and tri-gate [6] structure have been introduced. The most promising breakthrough to further increase 

the performance of ULSIs is by introducing new channel materials with higher carrier mobilities than 

Si, such as gallium arsenide (GaAs) [7,8]. Therefore, co-integration of GaAs on Si should lead to the 

realization of the so-called advanced heterogeneous integration on a Si platform [9], where this 

material is not only used for the fabrication of high speed transistor, but also for the fabrication of 

other functional devices such as on-chip low power sources [10], sensors [11,12], optical devices [13], 

detectors [14–16] and solar batteries [17]. Nowadays, there is extensive research on the growth of 

GaAs on Si [18–20], which has seemed to accelerate the realization of such technology. One of the 

potential GaAs based device structure to be integrated on Si is a rectenna device which can provide 

dual functions as wireless low power source and RF power detector [15]. An on-chip rectenna device 

is defined as a combination of an on-chip Schottky diode and a planar antenna.  

Since the 1970s, one of the major reasons for intensive research on rectennas has been due to the 

development of solar power satellites in space for energy harvesting from sunlight [21]. In recent 

years, interest has turned to the exploitation of on-chip rectennas as wireless low power sources for 

application in wireless microelectronic systems. The most common application of rectennas is in radio 

frequency identification (RFID) tags [22], proximity cards and contactless smart cards [23], which 

contain an integrated circuit (IC) which is powered by a small rectenna element. When the device is 

brought near to an electronic reader unit, radio waves from the reader are received by the rectenna, 

powering up the IC, which transmits its data back to the reader.  

In 2002, Suh et al. [24] presented a rectenna designed for over 100 milliwatt (mW) rectification and 

whose RF-to-DC power conversion efficiency was less than 20% at the 1 mW microwave input.  

Tu et al. [25] published an experimental work on a 5.8 GHz rectenna using a dipole antenna with a 

conversion efficiency of 76% at a load resistance of 250 Ω. In 2011, Harouni et al. [26] reported a  

2.45 GHz rectenna with maximum conversion efficiency of 63% at a load resistance of 1.6 kΩ. These 

reports have thoroughly discussed the results of integrated large-scale discrete diodes and antennas 

with the insertion of the matching circuits [24–29]. Consequently, due to the large dimensions, these 

concepts are not suitable for several tens of millimeter-scale on-chip systems. Thus, on-chip rectenna 

devices of small dimensions with the omission of impedance matching circuit need to be developed for 

their application in on-chip proximity communication systems.  

Recently, we reported the design, fabrication and characterization of individual n-AlGaAs/GaAs 

high-electron-mobility-transistor (HEMT) Schottky diodes [15] and planar antennas [30,31] in order to 

understand the feasibility of direct integration of both components. Direct injection of RF signals from 

a signal source were found to be well detected and rectified by the fabricated Schottky diodes which 

possessed cut-off frequencies of up to several tens of GHz, and a stable DC output voltage was 

generated. High RF-to-DC conversion efficiency of up to 50% was obtained with series connection 

between the diode and the load [15].  
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In this paper, we report the RF-to-DC characteristics of a Schottky diode where the diode and load 

are connected in parallel under direct injection of the RF signal. The rectifying characteristics of the 

Schottky diode where the signal is irradiated from different transmitting dipole antennas to the 

integrated dipole antenna are also reported. This experiment was conducted in order to understand the 

performance of the integrated devices for real practical applications. The results show the potential 

breakthrough for direct on-chip integration towards realization of low power rectenna devices for their 

advanced heterogeneous integration on a Si platform. 

2. Fabrication of the Integrated Device 

An n-AlGaAs/GaAs HEMT structure has been chosen as a substrate. This structure is capable of 

providing higher electron mobility due to its two-dimensional electron gas (2DEG) layer defined at the 

interface of the n-doped AlGaAs layer and undoped GaAs layer. Therefore, the n-AlGaAs/GaAs 

HEMT structure is promising for the fabrication of high-speed and high-frequency devices.  

Co-integration of various kinds of functional devices including rectenna devices on the same core 

material structure is more practical in terms of fabrication processes and cost. Thus, the development 

of rectenna devices based on such a structure has been considered in this study.  

In this work, we fabricated the CPW and dipole antenna structure on the semi-insulated (SI) GaAs 

layer, and not directly on the n-type HEMT structure, as shown in Figure 1a. The HEMT structures 

was etched to the SI layer during the process of mesa formation by using a mixture of sulphuric acid, 

H2SO4, hydrogen peroxide (H2O2) and deionized (DI) water at 25 °C for 18 s. Formation of CPW and 

the dipole antenna on a SI layer seems to reduce the RF losses as the signal is travelling through the 

CPW. The details of the materials and the fabrication processes have been described in [10,15,31]. 

Figure 1b shows the top-view photo of the rectenna device. Table 1 summarizes the device dimensions 

and the operating frequencies. The CPW structure was designed so that it produces the characteristic 

impedance, Z0, of 50 Ω. This CPW structure also permits direct injection of the RF signal through a 

Cascade GSG Infinity-150 microprober.  

Figure 1. (a) Schematic and (b) top view photo of the rectenna device. 
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Figure 1. Cont. 

 

(b) 

Table 1. Device dimensions and operating frequencies of the Schottky diode and antenna. 

Schottky Diode Antenna 

Distance, d 40 µm Lantenna 6 mm 

Area, A 20 µm × 20 µm Wantenna 100 µm 

Working frequency 10 MHz–10 GHz Resonant frequency 7 GHz 

3. Result and Discussion 

3.1. RF Characteristics and Conversion Efficiency of the Schottky Diode and Dipole Antenna by 

Direct Signal Injection 

In this study, a RF direct injection measurement was conducted in order to confirm several 

parameters such as: (1) the input power needed to turn on the diode; (2) the maximum input power 

generated by the signal generator; (3) the operating frequencies of the fabricated Schottky diode;  

(4) the resonant frequency of antenna; and (5) the RF characteristics of the Schottky diode. Figure 2a,b 

shows the circuit configuration of the direct injection experiment for the Schottky diode and dipole 

antenna, respectively. As shown in Figure 2a, the RF signals were directly injected at the input side of 

diode using a microprober. The load resistance, RL of 50 Ω was connected to the diode in parallel and 

grounded to the RF source. When the injected voltage is equal or larger than threshold voltage of 

diode, the diode will be turned on. The generated DC voltage across the diode which also defined as an 

output voltage is measured at the connected load using an oscilloscope. The output voltage increases 

with the increase of injected voltage. From this measurement, the turn on voltage, the operating 

frequencies and the RF characteristics of the diode were evaluated. Next, an HP8722ES Network 

Analyzer (VNA) equipped with the same microprober, as shown in Figure 2b, was used to measure 

and confirm the resonant frequency of the dipole antenna.  
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Figure 2. The circuit configuration for: (a) the Schottky diode and (b) the dipole antenna 

in direct injection experiment. 
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Figure 3 shows the DC I-V curve of the Schottky diode with series resistance of 720 Ω defined at a 

slope between 2 and 3 V. The threshold voltage was estimated to be 0.8 V as shown in the inset of 

Figure 3. The reverse leakage current for the fabricated device was 999 nA and the Schottky barrier 

height (SBH) was calculated to be 0.3857 eV. This calculated experimental barrier height is lower than 

the theoretical calculated value of 1.443 eV. The discrepancy of Schottky barrier height values was 

discussed in [15,31]. 

Figure 3. DC I-V characteristics of the fabricated on-chip Schottky diode. 
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Figure 4. Rectified output voltages as a function of input voltages at different  

frequency level. 

 

 

 

 

 

 

 

 

Figure 5. Rectified output voltages as a function of the frequencies at input power of 22 dBm. 

 

Figure 4 shows the average rectified voltages, Vout as a function of input power, Pin at different 

frequency levels. In this study, the turn-on voltage of the Schottky diode is estimated to be around 0.8 V 

as shown in the inset of Figure 3. Therefore, an input power of more than 0 dBm (=0.8 V) must be 

applied in order to turn the diode on. Furthermore, the output voltage of around 1.4 V measured at the load 

is the maximum DC output voltage obtainable across the Schottky diode at an input power of 22 dBm  

(=2 V). As expected, the output voltage increases with the increase of injected voltage. Here, the 

difference between the input voltage and output voltage is around 0.6 V, which is attributed to the loss. 

Also shown in Figure 4, it is noticed that the maximum input power that can be injected is 22 dBm due 

to the limitation of the signal generator. Figure 5 shows the rectified output voltages as a function of 
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frequency at maximum input power of 22 dBm. As shown in Figure 5, the diode shows the maximum 

output voltage at 1 GHz and the cut-off frequency is 10 GHz.  

Figure 6 shows the return loss characteristics as a function of frequency for the fabricated antenna. 

The dipole antennas have also been designed and simulated using the commercial Electromagnetic 

Sonnet Suites simulator. As shown in Figure 6, there was almost 3% difference of frequency 

bandwidth at −10 dB between the measured and simulated response for the first resonant harmonic. 

Such a small discrepancy is commonly observed [32] due to a variation in parameters such as the loss 

tangent for the fabricated device, whereas a simulator is dealing with an ideal parameter. It can also be 

clearly seen that a high return loss magnitude down to −28 dB at 7 GHz was obtained experimentally. 

This concludes that the resonant frequency for the antenna is 7 GHz and it is still in the range of the 

operating frequency of the integrated diode.  

Figure 6. Measured and simulated return loss of the dipole antenna. 

 

Using Equation (1), the RF-to-DC conversion efficiency of the fabricated Schottky diode at several 

frequencies was calculated [33]:                                                                      

 
(1) 

Here, Pout is the DC power produced at the load resistance, RL and Pin is the injected power at the 

input side of diode. Figure 7 shows the measured conversion efficiency of the diode as a function of 

input power at different frequencies. Here, it can be seen that up to 80% conversion efficiency was 

obtained at frequency of 1 GHz which has been considered as the most optimum operating frequency 

of the fabricated diode. The rectification by direct injection should give the maximum conversion 

efficiency that is obtainable in the fabricated diode due to its minimal loss. From our previous study on 

individual diodes presented in [15], only 50% of the RF-DC conversion efficiency was obtained with a 

serial configuration of the diode and load. It is noted that the total resistance of the diode presented  
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series resistance down to several Ω and (2) applying a parallel connection of diode and load may lead 

to improvement of the RF-to-DC conversion efficiency. As shown in Figure 2a, the diode is also 

modeled with a junction capacitance element, Cj. This capacitance determines the cut-off frequency of 

the diode as described in [31]. Therefore, both configurations of diode and load, i.e., series and parallel 

connection, should be able to generate RF-to-DC conversion characteristics within the range of the 

operating frequency of diode. As reported in [31], an additional external capacitor may be used to 

improve the stability of the DC output voltage. In this parallel connection, the built-in internal  

capacitor of the oscilloscope has been confirmed to be sufficient in producing stable DC output 

voltages. McSpadden et al. [29] also reported a high RF-to-DC conversion efficiency of 82% using a 

similar parallel connection of diode (5.8 GHz) and load (327 Ω).  

Figure 7. Conversion efficiency as a function of input power at several frequencies. 

 

3.2. Rectifying Characteristics of the Integrated Device by Direct Irradiation from Antenna-to-Antenna 

Figure 8 shows the measurement configuration for the irradiation by the antenna-to-antenna 
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which is used to transmit the signal to the receiving antenna of the integrated device (denoted as 
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by antenna 2. As shown in Figure 7, the resonant frequency of fabricated dipole antenna with length of 

6 mm was ~7 GHz and it was in the range of operating frequencies of diode (10 MHz to 10 GHz). 

Therefore, the rectifying operation should be feasible. The diode and load (RL = 50 Ω) were connected 

in parallel configuration and the load was grounded to the RF source. 
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Figure 8. Measurement configuration for direct irradiation from antenna-to-antenna. 

 

Figure 9. Rectified output voltages as a function of input power at distance of 2 cm. 

 

Figure 9 shows the rectified output voltages when the distance, r between antenna 1 and antenna 2 

was set at 2 cm. The maximum output voltage around 130 mV was generated at the load for a 

frequency of 7 GHz since the resonant frequency of the antenna was 7 GHz. Figure 10 shows the 

comparison of the rectified output voltages for the case of direct injection and RF irradiation at a 

frequency of 7 GHz. It can be seen that only half of the output voltage was produced by the integrated 

devices for the case of direct irradiation. Higher output voltage of up to volt (V) range is expected to 

be achievable if the resonant frequency of dipole antenna is well matched to the optimum operating 

frequency of diode that produces maximum rectified output. This seems to suggest that such a purpose 

can be achieved by replacing the present dipole antenna which is a narrow bandwidth type with an 

antenna that has wider bandwidth and high return loss so that such demerits can be eliminated. This is 

because the optimum frequency of diode which produces maximum rectified output is not controllable 

even though the ranges of its operating frequencies are predictable. The optimization of antenna 

structure is more easy and a preferable direction in order to realize maximum conversion efficiency.  
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Figure 10. Rectified output voltage at a frequency of 7 GHz. 

 

Finally, the dependence of the distance, r on the output voltage was evaluated. The distance could 

only be varied from 2 to 8 cm due to the space limitations of the measurement setup. Figure 11 shows the 

rectified output voltage as a function of frequency at an input power of 22 dBm and different distances.  

Figure 11. Rectified output voltage at input power of 22 dBm with different distance. 
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4. Conclusions  

In conclusion, the rectification by the integrated Schottky diode and dipole antenna via CPW 

transmission line under direct irradiation from antenna-to-antenna was achieved without insertion of 

any matching circuit. Higher output voltages, up to the volt range, are expected to be achievable if the 

resonant frequency of the dipole antenna is well matched to the optimum operating frequency of the 

diode that produces the maximum rectified output. Despite of the large mismatch in the frequency 

between the diode and antenna, output voltages of several tens of mV were still obtainable for a distance 

of 8 cm. This seems to suggest the feasibility of using such integrated device structures in proximity 

communication systems. 
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