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Abstract: The collision avoidance warning system is an emerging technology designed to 

assist drivers in avoiding red-light running (RLR) collisions at intersections. The aim of 

this paper is to evaluate the effect of auditory warning information on collision avoidance 

behaviors in the RLR pre-crash scenarios and further to examine the casual relationships 

among the relevant factors. A driving-simulator-based experiment was designed and 

conducted with 50 participants. The data from the experiments were analyzed by 

approaches of ANOVA and structural equation modeling (SEM). The collisions avoidance 

related variables were measured in terms of brake reaction time (BRT), maximum 

deceleration and lane deviation in this study. It was found that the collision avoidance 

warning system can result in smaller collision rates compared to the without-warning 

condition and lead to shorter reaction times, larger maximum deceleration and less lane 

deviation. Furthermore, the SEM analysis illustrate that the audio warning information in 

fact has both direct and indirect effect on occurrence of collisions, and the indirect effect 

plays a more important role on collision avoidance than the direct effect. Essentially, the 

auditory warning information can assist drivers in detecting the RLR vehicles in a timely 

manner, thus providing drivers more adequate time and space to decelerate to avoid 

collisions with the conflicting vehicles. 
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1. Introduction 

With the rapid growth of the number of passenger cars, traffic safety-related issues have attracted 

worldwide attention. For example, in 2001 a goal for reducing road accidents was set up by European 

countries [1]. Among all types of traffic accidents, red-light running (RLR) has been identified as a 

major cause of crashes occurring at intersections, and it was estimated to account for 20% of all 

accidents [2]. In addition, the severity level of accidents caused by RLR seems to be higher [3]. More 

specifically, Retting et al. [4] found that the injury rate of drivers in RLR accidents is 47%, whereas 

the rate in other types of accidents is only 33%. The RLR collisions typically occur between legal 

vehicles traveling during the green light phase and the illegal RLR vehicles unexpectedly crossing the 

intersections from the conflict directions.  

Due to the heavy damage produced by intersection collisions, the concept of intersection collision 

avoidance systems (ICAS) has emerged to solve this issue of traffic safety. Three representative 

initiatives that provide ICAS solutions were organized by the U.S. Intelligent Transportation Systems 

Joint Program Office, namely the Intelligent Vehicle Initiative (IVI), the Vehicle Infrastructure 

Integration (VII) initiative, and the Cooperative Intersection Collision Avoidance System (CICAS) 

Program. Through these programs, the potential ICAS will use both vehicle-based and  

infrastructure-based technologies to help drivers approaching intersections understand the state of 

activities occurring in that location [5]. Intersection collision warning systems (ICWS) which can 

provide warning information to the drivers entering the intersection have been widely used to facilitate 

collision avoidance. Generally, the intersection collision warning system (ICWS) can detect the 

approaching vehicles and evaluate their arrival time to an intersection with sensors in the vehicles and 

devices located at the intersection [6].  

Studies which were focused on the key technologies [7,8] and the structural design [9–11] of ICWS 

have been conducted recently. For instance, Yang et al. [12] designed a kind of intersection collision 

warning system using wireless communication technology which is capable of estimating specific 

collision points according to the geometric positions, directions, speed and other parameters of 

vehicles. Then, the warning information will be delivered to drivers in case of potential collisions by 

the system. Dedicated short-range communication technology has been accepted as one of the wireless 

technologies most suitable for automatic crash prevention because it enables direct vehicle-to vehicle 

and vehicle-to-infrastructure communications in very short time frames [13]. The emergence of vehicle 

infrastructure integration (VII) provides ideas and methods designed specifically for reducing the 

chance of being involved in RLR collisions. With such a system, warning technologies for addressing 

RLR collision problems are being developed, which allow drivers to monitor the road situation by 

means of a series of detection and sensing devices. If the system detects any possible RLR vehicles, 

warning information is then posted to drivers in order to promote their attention to the hazards from 

RLR vehicles. The posted warning information is committed to provide effective suggestions and thus 
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assist drivers in taking appropriate response actions for avoiding the potential collisions with the RLR 

vehicles. Nekoui et al. [14] presented a design of intersection collision warning systems based on VII. The 

systems consist of roadside and on-board units, in which appropriate alarm messages are disseminated by 

the roadside unit. It was designed to predict a potential collision at the intersection and notify endangered 

vehicles of the moving car which is about to cross the red light. The experimental results showed that the 

system is effective at avoiding RLR collisions.  

However, the ICWS on-road tests with sensors equipped in vehicles and devices at intersections, 

require a detecting radar be set up by the roadside and sensors be installed in all vehicles that pass the 

intersection. Thus, there was a high requirement for a stable and reliable manner to send warning 

signals properly [15]. Additionally, one of the impediments of experimental research of RLR warning 

technologies is that the pre-crash scenarios are dangerous for subjects due to the involved high-risk 

driving activities. Those concerns create many difficulties and make an on-road tests very complex. 

With such consideration, it was suggested that RLR collision experiments would be conducted using 

driving simulators which have advanced features in light of simpler operations, higher safety 

conditions and lower cost [16,17]. 

The warning forms used by researchers using simulating driving can be categorized into visual 

warnings, vibratory warnings, tactile warnings and auditory warnings. Experiment made by Werneke 

and Vollrath [18] showed that appropriate visual warning signals could improve driving behavior by 

shortening drivers‘ reaction times. The experiment conducted by Cristy et al. [19] studied the 

effectiveness of intuitive vibratory warning signals using a driving simulator and showed that drivers 

react faster, and the safety distance appeared to be larger with the help of warning signals. The results 

indicated that vibratory warning signals are effective at calling drivers‘ attention to potential collisions. 

Tactile warnings were also found to be an effective in-vehicle countermeasure to alert drivers to pay 

attention to traffic crash risks [20,21]. Scott and Gray [22] made a comparison of tactile, visual and 

auditory warnings, and found that tactile warnings improved driver braking response better than visual 

and auditory warnings. As to the auditory display method, Chang et al. [16] compared beep sounds and 

speech messages to alert the RLR vehicle. Shorter response times and slower speeds were found with 

an installed warning system in the vehicle. Furthermore, shorter response time and slower speeds were 

inclined to lead to lower collision rates, which were 16% and 26% with a beep warning and a speech 

warning, respectively. Inman et al. [17] proposed a concept of RLR vehicle warning system for the 

purpose of detecting the RLR vehicles and providing warning information for drivers. In more detail, 

the warning information is delivered to vehicles which are in the green phase in the format of flashing 

signs or lights in vehicles. Based on the driving simulator test results, once the subjects had noticed the 

warning information, most of them chose to apply the brakes and were more likely to successfully 

avoid collisions from RLR vehicles. Although the driving-simulator-based studies have been 

conducted for the developments and tests of RLR vehicle collision warning technologies, the research 

scope of auditory warnings for RLR vehicles is still limited and the detailed characteristics of driving 

behavior under the warning system still need to be comprehensively understood. Especially, there is a 

lack of literature which focuses on examining the differences between the effects of directional and 

undirectional information on driving behavior and crash avoidance performance. Also, no previous 

investigation of the causal relationships between warning conditions, human factors, driving behavior 

and the effectiveness of collision avoidance has been undertaken. Because driving simulators are able 
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to establish a wide variety of RLR scenarios for comparison purposes as well as enriching the test 

results, this study utilized a high-fidelity driving simulator to simulate the pre-crash scenarios of RLR 

collisions and then investigated the impact of audio warning information on crash avoidance driving 

behavior. The goal of this study is to test the working function and mechanism of an in-vehicle speech 

collision avoidance warning system under different warning conditions issued by a Time-To-Collision 

(TTC) sensor. 

2. Methodology  

2.1. Apparatus 

The driving simulator used for this study is able to simulate various road traffic environments and 

driving scenes, as shown in Figure 1. The vehicle cockpit in the simulator is designed in full accordance 

with the human body and the inside components, including the brake pedal, throttle, steering wheel and 

gear are completely identical to a real vehicle (a Ford Focus). The driving simulator can also provide 

mimetic environmental noise and the equipped vibration simulation system and one degree of freedom 

motion platform can imitate the feeling of motion in order to largely replicate the realistic situations. This 

driving simulator has a 300-degree front view of display system with simulated back mirrors. 

Meanwhile, it also comes with a set of software to meet the requirements of driving scenario design, 

virtual traffic environment simulation and virtual road design, as shown in Figure 2. 

Figure 1. Illustration of the driving simulator system; (a) Driving simulator.  

(b) Monitoring and controlling systems. 

  
(a) (b) 

Figure 2. Interface of the simulator software; (a) SimVista. (b) SimCreator. 

  

(a) (b) 
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2.2. Participants 

This experiment recruited 50 healthy participants who were divided into two groups: 24 

professional taxi drivers (15 males vs. 9 females) and 26 non-professional drivers (13 males vs. 13 

females). The age of these drivers ranged from 20 to 52 (mean = 33.79, standard deviation = 9.95). 

Each participant had a valid driver‘s license, and the time since they were issued the first driver‘s 

license ranged from 1 to 25 years (mean = 9.04, standard deviation = 6.734). The specific descriptive 

statistics of participants is shown in Table 1. 

Table 1. Descriptive statistics of participants. 

Driver Characteristics Classification Driver Numbers Proportion 

Age 
Young (20–30 years old) 24 48.0% 

Middle-aged (30–52 years old) 26 52.0% 

Gender 
Male 28 56.0% 

Female 22 44.0% 

Vocation 
Professional drivers 24 48.0% 

Non-professional drivers 26 52.0% 

Driving experience 

Primary (1–3 years) 13 26.0% 

Middle (4–9 years) 17 34.0% 

Senior (≥10 years) 20 40.0% 

2.3. Scenario Design 

The Red-light-running (RLR) collision scenario in this experiment was defined as the pre-crash 

situation of potential collisions between the host vehicle (driving simulator) entering the intersection 

during the green phase and the other simulated RLR vehicle crossing the intersection from the right 

side of the driving simulator. 

Five scenarios were designed in this paper with different combinations of warning status (yes or no), 

warning lead time to collision (3 s vs. 5 s) and warning content (with direction information vs. without), as 

shown in Table 2. Considering the time that drivers need to identify potential risk and take the 

corresponding collision avoidance maneuvers, the warning lead time design should ensure that the drivers 

have adequate brake reaction time and action time of collision avoidance for the RLR vehicle. In this study, 

3 s is defined as late warning lead time and 5 s is defined as early warning lead time. The difference in the 

warning content is whether there is directional information provided in the audio information. The 

directional audio warning information was delivered as ―alert to the red-light running vehicle from right 

side‖ while the non-directional warning information is ―alert to the red-light running vehicle‖.  

Each subject needs to complete three rounds of tests for the five scenarios along an arterial road in 

the same simulated urban-environment road network, which is composed of a series of signalized 

intersections. The arterial road segment has one lane only per direction and its speed limit is 80 km/h. 

The intervals between adjacent intersections are 400 m. For each round of test drive, the signal at every 

intersection was always green along the driving route and the driver would encounter the unexpected 
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RLR vehicle at one or two test intersections that were randomly selected in the network. The five 

scenarios were randomly assigned to the test intersections in order to counterbalance the 

temporal/spatial order effect during the experiment operation. 

Table 2. Experimental scenarios based on different warning conditions. 

Intersection Warning Status Warning Strength Warning Lead Time 

1 

Warning 

With direction  
3 s 

2 5 s 

3 
Without direction  

3 s 

4 5 s 

5 Without warning none none 

The RLR pre-crash scenario design at the test intersections is shown in Figure 3. In this study, the 

TTC sensors were used to monitor the approaching time of driving simulator to the conflict point at the 

intersection. When the approaching time was 7 s at the illustrated point A, the TTC sensor would 

trigger the RLR vehicle on point C started to cross the intersection with a velocity of 60 km/h. Because 

the approach time of the RLR vehicle to the conflict point was also designed as 7 s, the collision of 

these two vehicles will occur exactly at the conflict point as long as the velocity of the host vehicle did 

not change from the point A. Then, once the approaching time of driving simulator to the conflict point 

satisfies a predefined warning leading time value (3 or 5 s), the audio information will be released to 

alert the driver to the conflicting RLR vehicles.  

Figure 3. RLR pre-crash scenario design at the test intersections. 

 

2.4. Procedure 

Upon the subjects arrival, the basic personal information such as age, gender, vocation and driving 

experience were collected first. Before the scenario tests, they were required to take a training process 

to become familiar with the basic operations of the simulator, including straight driving, acceleration, 

deceleration, left/right turn for at least 5 min until they adapted to the simulator operation. The training 

process also required the subjects to comply with traffic laws and behave just as they would normally 
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drive in s real road environment. In the three formal experimental tests, each participant took a rest of 

10 min between the two tests. In addition, the subjects may quit the experiment at any time if they feel 

uncomfortable or experience any motion sickness and their results from these suspended tests would 

be removed from the dataset.  

2.5. Dependent Variables  

Driving behaviors generally refer to drivers‘ responsiveness and control skills [23], including the 

abilities to regulate vehicle speed, control lane deviations and the response to potential hazards. In the 

HASTE research project [24], driving behaviors were characterized by the control ability of driving 

longitudinally and laterally. Specifically, the longitudinal control ability refers to the speed control and 

lateral control ability refers to the lateral lane deviation control. In order to analyze the impact of warning 

information on the effectiveness of collision avoidance, three parameters were defined in this study to 

reflect driving behaviors. The first parameter is brake response time (BRT) which is defined by the time 

between the appearance of RLR vehicle in the scenario (7 s approaching time to the conflict point) and the 

time that the host driver treads the brake pedal. It should be noted that BRT is a relative time to reflect how 

fast drivers will take actions to avoid collision based on the same time baseline, but not an absolute time 

value to measure drivers‘ reaction times after seeing the conflicting vehicle. The second parameter reflects 

the action of decelerating and defined by the maximum deceleration during the collision avoidance period 

from the time that the driver starts to tread the brake pedal to the time that avoidance was made or the 

driver passed the conflict point. The third parameter is the mean lane deviation during the collision 

avoidance process. 

2.6. Structural Equation Modeling for Crash Avoidance Behavior Analysis 

The previous analysis illustrates the relationships between warning conditions and the collision 

results. It also examines the impact of warning conditions on several measures of driving behaviors. 

Even so, it is still complicated and difficult to understand the underlying mechanism of collision 

avoidance because the traditional regression models are only capable to reveal simpler structure of 

relationship between the response and each explanatory variable, while the associations inspected by 

these models lack inference of causal explanations. Therefore, structural equation modeling (SEM) 

approaches which have been widely used in social science, economics, marketing and other research 

areas are gained more attentions in the transportation areas for understanding complicated causal 

relationships among important variables. A complete SEM consist two sub-models: measurement 

model and structural model. The measurement model describes the measured or operationalized 

relationships between latent variable and the manifest indicators which measure those latent variables, 

while the structural model aims at the causal relationship and weighting the influence between 

exogenous and endogenous variables [25]. A basic example of SEM is shown in Figure 4 with the 

definition of related symbols listed in Table 3 [26]. 
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Figure 4. The basic example of SEM. 

 

Table 3. Definition of symbols in Figure 4.  

 Symbol Definition 

Measurement model X q × 1 column vector of observed variable or manifest indicator of ξ 

Y p × 1 column vector of observed variable or manifest indicator of ƞ 

ξ n × 1 column vector of latent exogenous variables 

ƞ m × 1 column vector of latent endogenous variables 

δ q × 1 column vector of measurement error terms for observed variables X 

ε p × 1 column vector of measurement error terms for observed variables Y 

Structural model γ The matrix (m × n) of regression effects for exogenous latent variables to 

endogenous latent variables 

β The coefficient matrix (m × m) of direct effects between endogenous latent variables 

δ m × 1 column vector of the error terms 

SEM indeed is a linear-in-parameter multivariate statistical modeling technique which combines 

factor analysis and simultaneous equation models. The relationship among observed variables, latent 

variables (measured or described by some manifest indicators) and disturbance variables/error 

variables can be examined, thus making it possible to capture the indirect, multiple, and reverse 

relationships among numerous variables [27]. Actually, as a variable can be an explanatory variable in 

one equation but a dependent variable in another equation, ‗endogenous‘ variable and ‗exogenous‘ 

variable are applied to differentiate them. In SEM graph, paths that are symbolized by arrows point 

toward exogenous variables and depart from the exogenous variables [28]. Endogenous variables can 

be influenced by exogenous variables directly or indirectly [29,30]. 

In this study, the SEM approach was adopted to further investigate the causal relationships between 

warning condition, human factors, driving behavior and the effectiveness of collision avoidance. The 

software package Analysis of Moment Structures (AMOS) 20 as part of SPSS was adopted to perform 

SEM analyses due to its advantage in exchanging data files completely from SPSS and the convenient 

graphical interface [31]. 
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3. Results and Discussion 

3.1. Collision Rate and Collision Severity 

According to the results of experiments, the collision rate is calculated for different groups of 

participants in terms of their age, gender, vocation and other factors, as shown in Table 4. Among the 

250 completed tests, 66 collisions happened and the remaining 184 trails successfully avoided the 

collisions. Therefore the overall collision rate in this experiment is 26.4%. Logistic regression analysis 

is then applied to investigate the impacts of independent variables on outcome of collision avoidance, 

and the hypothesis testing of the coefficients was based on a 0.05 significance level. 

Table 4. Descriptive statistics of collisions in experiments. 

Driver 

Characteristics 
Classification 

Collision 
Total 

Count 
No Yes 

Count Row N % Count Row N % 

Age 

Young (20–30  

years old) 
87 72.5% 33 27.5% 120 

Middle-aged (30–52 years old) 97 74.6% 33 25.4% 130 

Gender 
Male 109 77.9% 31 22.1% 140 

Female 75 68.2% 35 31.8% 110 

Vocation 
Professional  91 75.8% 29 24.2% 120 

Non-professional 93 71.5% 37 28.5% 130 

Driving 

experience 

Primary (1–3 years) 45 69.2% 20 30.8% 65 

Middle (4–9 years) 63 74.1% 22 25.9% 85 

Senior (≥10 years) 76 76.0% 24 24.0% 100 

Warning 

conditions 

Without 17 34.0% 33 66.0% 50 

3 s without direction 38 76.0% 12 24.0% 50 

3 s with direction 33 66.0% 17 34.0% 50 

5 s without direction 47 94.0% 3 6.0% 50 

5 s with direction 49 98.0% 1 2.0% 50 

Total 184 73.60% 66 26.40% 250 

Age, gender, vocation, driving experience and warning information were used as independent 

variables in the logistic regression analysis and the results indicates that only warning information  

(P < 0.05) has a significant impact on the occurrence of collision. Thus, the final model contains only 

the variables of warning information and the estimation results are presented in Table 5. Generally, 

with the help of warning system, collisions are less likely to happen than the situation without any 

warning information. The result is in line with the study conducted by Suetomi et al. [32]. Referring to 

different warning lead times, a setting of 5 s has lower collision occurrence likelihood than the 

situation of 3 s. Further, the effects from combined characteristics of warning content and warning 

leading time are also different in resulting to the effectiveness of collision avoidance. Under 5 s 

warning lead time, the chance of collision is lower for the warning information with direction whereas 

if the warning lead time is 3 s, collisions are less likely to occur for the warning information without 

direction. For the longer warning lead time (5 s), drivers in host vehicles may have sufficient time to 
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process the information. The warning information with information about the direction of the RLR 

vehicle can narrow the field of vision of a drivers' attention. In such a situation, the driver can quickly 

locate the RLR vehicle and take avoidance measures. However when the warning lead time is shorter 

(3 s), the warning information with direction may increase the driver‘s mental workload and delay the 

mental processing of the warning information. 

Table 5. Results of the logistic regression analysis. 

Warning Status B S.E. Wald Df Sig. Exp(B) 

Constant –3.892 1.010 14.843 1 0.000 0.020 

Without warning 4.555 1.053 18.701 1 0.000 95.118 

3 s without direction 2.739 1.063 6.639 1 0.010 15.474 

3 s with direction 3.229 1.053 9.394 1 0.002 25.242 

5 s without direction 1.140 1.173 0.946 1 0.331 3.128 

5 s with direction —— —— 44.389 4 0.000 —— 

Table 6. The descriptive statistics of BRT and ANOVA results. 

Independent 

Variable 
Classification 

Reaction Time  ANOVA 

Mean Count Min Max S.D. P-value 

Age 
Young (20–30 years old) 4.60 107 6.50 2.10 1.28 

0.845 
Middle-aged (30–52 years old) 4.57 109 6.50 2.10 1.20 

Gender 
Male 4.63 120 6.50 2.30 1.22 

0.578 
Female 4.54 96 6.50 2.10 1.27 

Vocation 
Professional 4.56 101 6.50 2.10 1.21 

0.718 
Non-professional 4.62 115 6.50 2.10 1.26 

Driving 

experience 

Primary (1–3 years) 4.67 58 6.50 2.10 1.38 

0.838 Middle (4–9 years) 4.58 75 6.50 2.10 1.18 

Senior (≥10 years) 4.54 83 6.50 2.40 1.20 

Warning 

conditions 

Without 5.80 32 6.50 4.20 0.62 

<0.001 

3 s without direction 5.42 44 6.40 4.20 0.43 

3 s with direction 5.38 46 6.50 4.40 0.49 

5 s without direction 3.32 45 5.20 2.10 0.84 

5 s with direction 3.47 49 5.70 2.10 0.76 

3.2. Driving Behavior 

3.2.1. Brake Reaction Time 

Brake reaction time (BRT) was analyzed for the drivers taking brake action during the crash 

avoidance process in this study. It is observed that when the subjects encountered the conflicting RLR 

vehicle, three kinds of maneuvers were taken to avoid the potential crash occurrence, namely 

decelerating, accelerating and no reaction to the RLR vehicle. Among the 250 crash avoidance 

observations, there were in total 216 decelerating maneuvers, which are dominant behaviors in crash 

avoidance. The descriptive statistics of BRT among different types of drivers are reported in Table 6. 

In order to determine the impacts of personal characteristics, including age, gender, vocation, driving 
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experience and audio warning information on driving behavior, the analysis of variance (ANOVA) 

model was conducted for BRT. Results provided in Table 6 show that only the warning condition has a 

significant impact (P < 0.001) on reaction time. Figure 5 also indicates that the participants without 

warning information took a longer time to respond to RLR vehicles than those with the warning 

information. It suggests that the audio warning information can effectively reduce the BRT to which in turn 

can assist drivers in avoiding collisions with RLR vehicles, which is consistent with the previous  

study [33]. In addition, BRT is much shorter for the situations with early warning lead time (5 s) comparing 

to the late warning lead time (3 s). Similar patterns have been discovered by Lee et al. [34]. Thus, early 

warning is advanced in terms of the shorter BRT [35]. However, respecting to the warning content, 

there is no significant difference between the warning information with and without direction. 

Figure 5. Mean BRT under different warning conditions. 

 

3.2.2. Maximum Deceleration 

The basic descriptive analysis and ANOVA results of maximum deceleration are listed in Table 7. 

It is found that all the effects of age (P = 0.416), gender (P = 0.780), vocation (P = 0.952) and  

driving experience (P = 0.849) are insignificant, indicating the observed effects of these personal 

characteristics on deceleration cannot be discovered through this experiment. As the study aims at 

evaluating the effect of warning information on driving behavior, the comparison of maximum 

deceleration under different warning conditions is of the primary interest. 

Table 7. The descriptive statistics for deceleration and ANOVA results. 

Independent 

Variable 
Classification 

Maximum Deceleration ANOVA 

Mean Count Max Min S.D P-value 

Age 

Young (20–30 years 

old) 
5.52 107 8.45 0.08 2.26 

0.416 
Middle-aged (30–52 

years old) 
5.27 109 10.38 0.11 2.30 

Gender 
Male 5.43 120 10.38 0.08 2.32 

0.780 
Female 5.35 96 8.45 0.26 2.24 
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Table 7. Cont. 

Independent 

Variable 
Classification 

Maximum Deceleration ANOVA 

Mean Count Max Min S.D P-value 

Vocation 
Professional 5.40 101 10.38 0.11 2.22 

0.952 
Non-professional 5.39 115 8.45 0.08 2.34 

Driving experience 

Primary (1–3 years) 5.33 58 8.31 0.35 2.18 

0.849 Middle (4–9 years) 5.52 75 10.38 0.08 2.43 

Senior (≥10 years) 5.33 83 8.54 0.11 2.22 

Warning condition 

Without 3.46 32 7.74 0.08 2.39 

0.000 

3 s without direction 6.28 44 8.52 0.33 2.09 

3 s with direction 4.69 46 10.38 0.11 2.52 

5 s without direction 5.55 45 8.46 1.50 1.66 

5 s with direction 6.39 49 8.54 2.55 1.57 

Figure 6. Maximum deceleration comparisons; (a) Under different warning conditions.  

(b) According to collisions and without collisions. 

 

(a) 

 

(b) 

According to the results, warning conditions in fact have a significant impact on maximum 

deceleration (P < 0.001). Detailed maximum deceleration comparisons under five warning conditions 

are shown in Figure 6a. It indicates that the maximum deceleration in the cases without warning 

information was significantly smaller than in those with warning information. It also shows a trend  
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that as the warning leading time increases, the maximum deceleration increases. Figure 6b further 

illustrates the results under five warning information conditions divided into groups of collision and no 

collision. It is found that compared to the collision group, the maximum decelerations applied by 

drivers in the no-collision group are consistently larger, indicating that essentially within a limited time 

and distance to the conflicting point, only the drivers who can slow down quickly can avoid collisions 

from the conflicting vehicle successfully. The maximum deceleration tends to be increased as the 

warning lead time is early and the warning content includes the directional hazard information. 

Interestingly, it is found that the deceleration rate for the 3 s undirectional warning condition is an 

exception from the other warning conditions, as it is much larger than the 3 s directional warning 

condition and even close to the 5 s directional warning condition. One possible reason is that because 

the 3 s warning leading time is quite late, drivers do not have sufficient time left to process the 

information when they receive the warning. Thus, a simple undirectional warning can advise drivers to 

brake harder more immediately than the directional warning, which may delay the mental processing 

of the warning information and cause drivers not to decelerate as much as possible. Referring to the 

result of collision occurrence rate, the 3 s lead time warning condition without direction information 

contributes to a lower collision rate than the 3 s lead time warning condition with direction 

information. Therefore, the pattern in the maximum deceleration is consistent with the result of 

collision occurrence rate. 

3.2.3. Lane Deviation 

Lane control is another feature to reflect driving behavior and this study used the lane deviation 

from lane centerline as a measurement. Table 8 provides the descriptive statistics of departure distance 

and ANOVA results across other variables. It is observed that only the effect of gender (P = 0.030) and 

warning conditions (P = 0.055) are significant.  

Table 8. Descriptive statistics of lane deviation characteristics and ANOVA results. 

Independent 

Variable 
Classification 

Lane Deviation ANOVA 

Mean Count Max Min S.D. P-value 

Age 
Young (20–30 years old) 0.31 107 0.74 0.01 0.18 

0.768 
Middle-age (30–52 years old) 0.31 109 0.84 0.00 0.20 

Gender 
Male 0.29 120 0.72 0.01 0.16 

0.030 
Female 0.34 96 0.84 0.00 0.21 

Vocation 
Professional 0.32 101 0.84 0.00 0.20 

0.613 
Non-professional 0.30 115 0.74 0.01 0.18 

Driving experience 

Primary (1–3 years) 0.30 58 0.74 0.00 0.17 
 

0.189 
Middle (4–9 years) 0.29 75 0.66 0.01 0.18 

Senior (≥10 years) 0.34 83 0.84 0.01 0.20 

Warning condition 

Without 0.38 32 0.75 0.10 0.15 

0.055 

3 s without direction 0.29 44 0.66 0.02 0.18 

3 s with direction 0.35 46 0.84 0.00 0.20 

5 s without direction 0.29 45 0.82 0.01 0.22 

5 s with direction 0.27 49 0.66 0.01 0.17 
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Figure 7 shows the mean lane deviations for different warning conditions. The lane deviation 

distance in the case of without warning is the largest among the five warning conditions. If drivers 

received the warning information in advance, they may have sufficient time to finish the deceleration, 

and thus do not need to rely on the steering wheel to avoid a collision. The horizontal deviation 

distance by steering was found to be smaller with early warning lead time compared to late warning 

lead time in general. The result indicates that the early warning can help drivers more confidently take 

a braking action to avoid collisions than the late warning. Additionally, for 3 s warning lead time, 

warning without direction information makes lane deviations smaller than the directional one (0.29 vs. 

0.35 m). This was consistent with the maximum deceleration analysis as maximum deceleration with 

directional information is smaller than without in the case of the 3 s warning condition. 

Additionally, Figure 8 shows the difference was affected by gender. It was found that lane deviation 

of the female group was larger than the male one (0.34 vs. 0.29). The result suggests that the female 

drivers may panic more than male drivers in case of an emergency.  

Figure 7. Mean lane deviation comparison under different warning conditions. 

 

Figure 8. Mean lane deviation comparison between males and females. 
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3.3. Analysis of Collision Avoidance Based on Structural Equation Modeling 

According to the structure of SEM, the basic structural correlation among all the variables is shown 

in Figure 9, in which rectangle labels are used to represent observed variables while ellipse labels are 

used to represent latent variables. Measurement model is investigated with two important latent 

variables: person characteristics and driving behavior. In this model, the warning condition is an 

exogenous variable, driving behavior is an intermediate variable, and the final collision rate is the 

endogenous variable. Table 9 shows descriptions and input codes for the observed variables adopted in 

the following analysis. 

Table 9. Definition of variables in SEM models. 

Observed Variables 
Coding of Input Value 

Name Description 

Age Age group 
0→Young 

1→Middle-aged 

Vocation Participants‘ vocation 
0→Professional 

1→Unprofessional 

Driving_exp Driving experience Continuous variable 

Gender Gender 
0→Male 

1→Female 

Warning Warning or not 
0→Without warning 

1→Warning 

Max_dec 
The maximum deceleration during 

decelerating process 
Continuous variable 

Lane_dev 
Lateral position deviation distance to 

avoid the RLR vehicle 
Continuous variable 

BRT 
Time between warning messages 

released and driver take a brake 
Continuous variable 

Collision 
Whether there is a collision between 

two cars 

0→No 

1→Yes 

Figure 9. The SEM model. 

  

Behavior

Human_fac

Warning

Age Gender Vocation
Driving_

exp

BRT

Collision

Max_dec

Lane_dev

e6 e7 e8 e9

e2

e3

e5

e4e1

 -0.41
(-6.556,***)

 -0.50
(-4.011,***)

-0.01
(-0.101,0.920)

-0.05
(-0.432,0.666)

-0.83
(-4.184,***)

-0.11
(-1.087,0.277)

0.96

 -0.16
(-2.766,0.006)

-0.08 -0.97 0.79

0.51

-0.18

R2=0.77
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In order to analyze the causal relationships between BRT and the other two variables of the driving 

behavior as well as the entire interaction among warning conditions, BRT and results of collision 

avoidance, a SEM was built for this purpose. In the SEM model, brake reaction time is assumed as a 

variable directly influenced by the warning conditions and that further affects the behavior. According 

to the output results of SEM model shown in Figure 8, it was found that the effect of warning on the 

final collision rates was divided into direct effect and indirect effect. Behavior is the most significant 

factor that negatively affects the collision (factor loading = −0.83, P < 0.001). Warning has a negative 

impact on BRT (factor loading = −0.41, P < 0.001), which indicates BRT can be decreased with 

warning information provided in the vehicle. Therefore, BRT was found to have a negative direct 

impact on behavior, suggesting shorter BRT leads to larger maximum deceleration and smaller lane 

deviation indirectly. It therefore implies that shorter BRT would lead to drivers‘ action of decelerating 

and lateral lane control, and larger maximum deceleration and smaller lateral lane deviation are able to 

effectively decrease the chance of collisions with RLR vehicles. In addition, warning also has a direct 

effect on collision occurrence (factor loading = −0.16, P = 0.006). Compared to the indirect effect of 

warning on collision occurrence (from warning to BRT to behavior then to collision), the most impact 

of warning condition on final collision occurrence or not was mostly contributed by the indirect effect. 

Finally, with the warning information, chance of collisions can be greatly reduced, which is consistent 

with the previous studies [32,34].  

However, personal characteristics is an exogenous variable and has no direct effect on BRT and 

collisions according to the model (factor loading = −0.01, P = 0.920; factor loading = −0.11, P = 0.277 

respectively). Although different attributes such as age and gender may lead to different behaviors, the 

observed differences in terms of BRT and driving behaviors were relatively small in magnitude. Such 

a finding is in fact consistent with the previous study [36]. On the whole, the SEM model explained 

77% of total variance in the results of collision avoidance. 

In order to examine data fitting performance, a widely series of Goodness of Fit criteria were 

adopted in the structural equation models. If the model fits the data well, the Chi-square value should 

be smaller and p > 0.05 [37,38]. However, the Chi-square value is inclined to increase if the sample 

size grows [28,39]. As a result, several alternative criteria are commonly applied to examine the fitness 

of model. Referring to prior studies, the conditions that CMIN/DF < 2, GFI, AGFI, CFI and NFI are all 

greater than 0.9, or RMSEA smaller than 0.1, also indicate that the model has an acceptable fitness 

with the data [26,40]. Accordingly, the model adopted in this study can reach an acceptable fitness 

level. Table 10 presents these criteria for measuring the goodness of fit in this model. 

Table 10. Fit statistics for SEM models. 

Fit Index Acceptable Fit Model  

CMIN/DF <2 1.559 

P-value >0.05 0.057 

GFI (Goodness of Fit Index) >0.9 0.973 

RMSEA 

(Root Mean Square Error of Approximation) 
<0.1 0.051 

AGFI (Adjusted Goodness of Fit Index) >0.9 0.937 

CFI (Comparative Fit Index) >0.9 0.987 

NFI (Normed fix index) >0.9 0.965 
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4. Conclusions 

Technologies for effectively reducing traffic collision are important. Considering the rapid progress 

in the area of information technologies, audio warning information is suggested to address this issue. 

However, the causal relationships between warning information and driving behavior, as well as the 

correlation between driving behavior and occurrence of collisions are still ambiguous and require 

further understanding on the influencing mechanism(s). This study focused on audio warning 

information which is delivered to remind drivers who are approaching intersections during the green 

phase to be alert to conflicting illegal RLR vehicles. A high-fidelity driving simulator was used to test 

the effectiveness of the warning system under different warning lead times and warning contents.  

A comparison between the conditions with warning information and without warning information 

shows that audio warning information has an explicit positive effect on reducing collision rates. The 

collision rates under the two conditions are 66% and 16.5%, respectively for with-warning and without-

warning. As a result, RLR collisions can be dramatically decreased by 75% if warning information is 

presented. The experiment results also indicated there was a tendency that the warning information leads to 

shorter BRT, larger deceleration and less lane deviation compared to the no-warning condition. In 

comparison between different warning lead times, early warning has a better effect on collision avoidance 

as lower collision occurrence likelihood, shorter BRT, larger deceleration and less lane deviation were 

found. As for warning content, it was found that there was no significant difference in drivers‘ crash 

avoidance behavior and result between directional and undirectional information for the early warning. 

However, an interesting finding is that for the late warning conditions, the effect of undirectional 

information on collision avoidance was better than the directional information. It implies that in a very 

emergent situation, the advantage of simple warning content over complex one is helping drivers reduce 

mental workload and take timely crash avoidance actions.  

Furthermore, the casual relationships between warning information and the results of collision 

avoidance were investigated by a SEM model. The findings reveal that warning information has both 

direct and indirect impacts on collision occurrence. The indirect impact produced by affecting BRT  

behavior then to the collision is much larger than the direct effect. The SEM model demonstrated that 

shorter BRT leads to larger deceleration and smaller lane deviation that caused a lower collision rate. 

In the examination of personal characteristics, although drivers‘ personal attributes are different, 

results also show that these personal characteristics do not affect BRT or driving behaviors 

significantly. Therefore, the occurrence of collisions may not be influenced by these personal 

characteristics (e.g., age and gender). 

In conclusion, before identifying and developing the mature vehicle-based and infrastructure-based 

technologies to be applied to intersections, driving simulators can serve as a useful tool to test these 

technology concepts, investigate human factors involved in the application of these technologies, and 

evaluated the effectiveness of the systems on driver behavior and intersection safety. This study 

conducted an interactive simulation to test the effectiveness of function and mechanism of in-vehicle 

speech collision avoidance warning system. The scenario design and simulation results are helpful to 

direct researchers in better developing and realizing the relevant sensors-related technologies in 

practice. The experimental results show that audio warning information has a positive effect on 

reducing the RLR collision rate at intersections.  
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Based on the findings in this study, some further works have been identified for the near future. 

Firstly, drivers‘ psychological and physiological measures were not collected and analyzed in this 

study. The collection of data from eye trackers and EEG instruments is suggested to examine drivers‘ 

cognitive behaviors and physiological variations under different warning conditions. Secondly, this 

experiment only designed two levels of warning lead times (3 s vs. 5 s), which clearly indicated that 

the early warning is more effective on crash avoidance than the late warning. However, the more early 

the warning time is, the greater the possibility that the warning system will make a false predication of 

crash occurrence. It is suggested that more warning leading times should be tested to explore the 

optimal warning time in order to balance safety effectiveness of warning and power of crash prediction. 

Finally, if test vehicles and sites are available, under the assumption that the subjects‘ safety can be 

ensured, a field study is suggested to test the functions of the warning system and validate the 

experimental results of this driving simulator experiment.  
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