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Abstract: In the current open society and with the growth of human rights, people are 

more and more concerned about the privacy of their information and other important data. 

This study makes use of electrocardiography (ECG) data in order to protect individual 

information. An ECG signal can not only be used to analyze disease, but also to provide 

crucial biometric information for identification and authentication. In this study, we 

propose a new idea of integrating electrocardiogram watermarking and compression 

approach, which has never been researched before. ECG watermarking can ensure the 

confidentiality and reliability of a user‟s data while reducing the amount of data. In the 

evaluation, we apply the embedding capacity, bit error rate (BER), signal-to-noise ratio 

(SNR), compression ratio (CR), and compressed-signal to noise ratio (CNR) methods to 

assess the proposed algorithm. After comprehensive evaluation the final results show that 

our algorithm is robust and feasible.  
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1. Introduction 

The Internet is not only brings us convenience, but also risks. The topic of individuals‟ privacy is 

attracting more and more attention. Electrocardiograms as personal data are being applied more and 

more as a biometric [1] and deserve to be protected. At the same time, the use of the Internet is 

ncreasing and its carrying capacity is being tested like never before. Therefore, in this paper we 

propose a method based on wavelets to add watermarks to electrocardiograms and compress them. We 

expect to reduce the pressure on the Internet and preserve the ECG characteristics while protecting the 

security of ECG data in network transmission [2]. 

An ECG reflects the process of the electrical activity of the heart, which can be taken as a reference 

for the study of cardiac function and cardiac pathology [3]. With an ECG signal, we can analyze and 

identify various arrhythmias, and understand the degree and development of myocardial damage, as 

well as the structure and function of the atrium and ventricle. Besides, it is necessary to decrease the 

demand for the ECG data storage capacity and data transmission bandwidth [4]. Accordingly, we 

integrated the quantization based digital watermarking with a new compression method, which is used 

to watermark the ECG signal and compress the data, while allowing the watermark to be verified. The 

watermark can ensure the security of the ECG signal and enable it to be restored to its original state. At 

the same time, we proposed a wavelet compression method to achieve lossy compression of the ECG 

signal. By removing the high frequency portion under different wavelet basis, we can ensure the 

compression rate and accuracy. The compression rate is around 1.96. After watermarking and 

compression, it can be aligned for transmission. On the receiving side, the data decompression and the 

watermark extraction can then be finished. In summary, we make the following contributions: we 

integrate electrocardiogram digital watermark encryption and a compression algorithm based on an 

orthogonal wavelet domain, which has never been researched before.  

This study is organized as follows: in Section 2, we introduce background knowledge and related 

research. In Section 3, we introduce the architecture and the basic algorithm of the proposed method, 

including the digital watermark, wavelet transform and compression formulas. In Section 4, we introduce 

the evaluation method. This is mainly a comparison of the watermarked and compressed object before and 

after, as well as comparison of the correlation peaks. Some conclusions are drawn in Section 5.  

2. Background and Related Work  

2.1. ECG Algorithm Review 

There are currently no ECG studies which include research on both watermarks and compression. 

However, there are some studies looking at compression or watermarking individually, so based on 

existing research, we surveyed watermarking and compression as two separate aspects. 

At present, from the watermark point of view, research on the protection of ECG information is still 

in its infancy, although there are some research studies, shown in Figure 1, related to the watermarking 
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of ECG signals, and with the use of wavelet transform based digital watermarking encryption 

technology [5]. Therefore, research in this field has great potential for the researcher. The existing 

research may be divided several categories. 

The first application is the digital watermark technology used in medical images. This application 

proposes a novel blind watermarking method, by embedding a secret key into the medical image of ECG 

signals. The second is a sensor network-based ECG monitoring system. ECG signals are watermarked with 

patient biomedical information to confirm patient/ECG linkage integrity [6]. The third application is 

wavelet transform-based ECG digital watermarking technology. In ECG signals, the energy is 

concentrated in QRS complex waves [7], so the selection of wavelet coefficients for concealment 

should avoid causing the QRS complex waves to distort obviously. The last application is ECG 

transmission in a wireless network. This paper proposes the use of digital watermarking to ensure the 

safe transmission of ECG signals in a wireless network [8]. A low frequency chirp signal is used to 

embed the watermark, which is a 15-bit digital code assigned to the patient. The characteristic of the 

proposed watermarking scheme is that the embedded watermark can be fully removed by the receiver 

due to the blind recovery feature of the watermark [9]. Dey et al. [10] proposed a novel session based 

blind watermarking method with a secret key by embedding a binary watermark image into the ECG 

signal. In addition, the “P Q R S T”-peaks are marked and stored over the entire ECG signal and the 

time interval between two consecutive „R‟-peaks, and intervals between other peaks, are measured to 

detect anomalies in the behavior of the heart. However, these two methods are non-blind. Ayman and 

Ibrahim proposed a wavelet-based steganography technique which combines encryption and 

scrambling technique to protect patient confidential data. The proposed method allows the ECG signal 

to hide its corresponding patient confidential data and other physiological information [11]. 

Figure 1. Related works. 

 

In the aspect of ECG compression, the ECG is a dynamic signal. It will continue to produce new signals. 

For example, Holter monitoring technology has been applied more and more, and there are patients for 

whom more than 24 h of ECG data has to be collected, which greatly increases the amount of data you 

need to record. With the advent of an aging society, the number of patients with heart disease will grow, 

and cardiac care will become a social problem. Remote transmission of ECGs can allow real-time 

monitoring; it is conducive to diagnosis and first aid instructions. Therefore, the remote transmission of 
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ECGs has a good economic and market outlook [12]. ECG signal compression is a key technology for 

remote ECG transmission. It directly determines the practicality and effectiveness of the system. 

For example, in a wireless communication network which is employed for data transmission, long term 

ECG guardianship generates a huge amount of data that will make wireless communication costs 

unacceptable, and raise issues of transmission speed and bandwidth. ECG signal compression technology 

will guarantee that none of the information of the ECG signal is lost and will minimize the amount of data 

that needs to be transmitted, reduce transmission costs, and increase transmission speed. 

With the intervention of computer technology, ECG data compression technology is increasingly 

showing its importance. The Holter data compression algorithm is one of the most fruitful hotspots of 

current international research in the field of biomedical signal processing [13]. Data compression is 

possible with a variety of methods. Early predictive coding methods, such as Differential Pulse Code 

Modulation (DPCM), directly encode the amplitude variation of the adjacent sample values. The 

principle of these methods is simple and easy to implement, but the compression rate is relatively low. 

Run-length coding (RLC) uses the correlation among the symbols, by recording the length of each 

symbol to achieve compression. Shannon-Fano codes and Huffman codes are based on the frequency 

with which each signal appears [14]. Then they assign the most economical code length so as to 

achieve compression. With a flat distribution of the signal in the time domain, after orthogonal 

transformation, the energy will be concentrated on the low-frequency component so the high-

frequency component can be omitted, or we can use only a few bits to encode them. These transform 

compression methods include the Karhunen-Loeve transform (KLT), Fourier Transform (DFT, FFT), 

and discrete cosine transform (DCT) [15]. New compression techniques include the neural network 

and wavelet transform (DWT) methods and others [16]. Two algorithms are described that are suited 

for real-time biomedical signal compression, these being amplitude threshold compression and SQ 

segment compression [17]. 

2.2. Discrete Wavelet Transform 

Wavelets are obtained by a single prototype function (mother wavelet) ψ(x) which is regulated with 

a scaling parameter and a shift parameter. It maps the function in L2(R) onto a scale-space plane. The 

discrete normalized scaling and wavelet basis function are defined as 

  2
, 2 (2 )

i
i

i n it h t n    (1) 

2
, 2 (2 )

i
i

i n ig t n    (2) 

where i and n are the dilation and translation parameters; hi and gi are the low-pass and high-pass 

filters. Orthogonal wavelet basis functions not only provide simple calculation in coefficients 

expansion but also span L2(R) in signal processing. As a result, any digital signal S(t)L2(R) can be 

expressed as a series expansion of orthogonal scaling functions and wavelets. More specifically: 

     
0 0

0

, ,( ) ( )j j t j j k

k jt j

S t c t d k tt  




    
(3) 

where: 
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  ,( ) ( )j jc S t t dt    (4) 

  ,( ) ( )j j kd k S t t dt   (5) 

They denote the sequences of low-pass and high-pass coefficients, respectively; j0 is the integer 

which defines an interval on which S(t) is piecewise constant [18]. Throughout this paper, the host 

digital ECG signal S(n), nR, denoting samples of the original ECG signal S(t) at the nth sample time, 

is cut into segments where DWT will be performed. This can be done by exploiting the Haar wavelet 

with an orthogonal basis to implement DWT through a filter bank. Figure 2 demonstrates how the 

input digital ECG signal S(n) is decomposed into eight non-overlapping multi-resolution sub-bands by 

the seven-level DWT decomposition. 

Figure 2. Decomposition level. 

 

3. Proposed Architecture and Algorithm  

This section introduces the proposed architecture and algorithm. The first is data preparation of the 

ECG signal. Digital watermark insertion and extraction are discussed in Section 3.2. The proposed data 

compression is introduced in Section 3.3. 

3.1. Data Preparation 

ECG refers to the heart in each cardiac cycle, in which tracings of the pacemaker, atrial and 

ventricular function successively excited one by one, along with the bioelectrical changes monitored in 

the ECG, lead to the graphics of the various forms of potential changes detected from the surface 

(referred to as ECG) [19]. The ECG provides objective indicators of when the heart is excited about an 

occurrence, its spread and the recovery process. The ECG shows the electrical activity of the excited 

heart, and it has an important reference value in basic functions of the heart and pathology research. 

The ECG can be used to analyze and identify a variety of arrhythmias; it can also reflect the extent and 

development of myocardial damage and atrial and ventricular function and structural condition [20]. It 

has reference value in guiding cardiac surgery and suggests the necessary drug treatment.  The standard 

ECG leads to electrocardiogram waves, named by the Dutch physiologist W. Einthoven, the inventor 

of the ECG [21]. He divided one cardiac cycle into P, Q, R, S, and T waves. 
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There are currently three internationally recognized ECG databases which can be used as a 

standard, namely, the Massachusetts Institute of Technology‟s MIT-BIH Arrhythmia Database, the 

AHA database of the American Heart Association (AHA) and the European ST-T ECG database [22]. 

In this paper, we selected the ECG data from the MIT-BIH Arrhythmia database. This database 

includes 48 groups, with two-lead ECG recordings for half an hour, a total of up to 24 h of 

information. This database contains 47 individuals‟ ECG information (datasets ID 201 and 202 are 

duplicated, so we select different signal segments for our test); the subjects consist of 25 men aged 

between 32 to 89 and 22 women aged from 23 to 89. These ECG data have a sampling rate of 360 Hz 

and a 12-bit binary representation. Each ECG signal is first adjusted to have zero mean to eliminate 

any DC offset.  

3.2. Digital Watermark Insertion and Extraction 

Digital watermarking technology refers to directly embedding some identifying information (digital 

watermark) into the digital carrier (including multimedia, documents, software, etc.) so that it does not 

affect the usage value of the original carrier and is hard to be perceived or noticed with by people‟s 

perception systems (such as visual or auditory systems) [23]. The information hidden in the carrier can 

help us confirm the content creators, buyers, carriers transmitting secret information, and determine 

whether the carrier has been altered. Digital watermarking is an important research direction in 

information-hiding technology.  

ECGs have high accuracy requirements for heart disease diagnosis. It is necessary to maintain the 

shape of the ECG waveforms in watermarking since the ECG diagnosis mainly depends on the PQRST 

waves. To achieve this goal, we use quantization-based digital watermark encryption technology on 

the electrocardiogram (ECG) to protect patient rights and information. First of all, the ECG signal is 

cut into several segments. The segment length depends on the level of wavelet decomposition. As 

shown in Figure 2, we then perform seven levels of wavelet decomposition on each segment so that the 

input ECG signal is decomposed into eight non-overlapping sub-bands. Taking into account the robust 

performance of the low-pass filtering, we embedded the watermark sequence with patient‟s 

information into the lowest frequency wavelet coefficients in level seven. The watermark sequence 

with patient‟s information { im } is embedded by the following rule: 

[ 
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i
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c TT m
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c TT m

T

     
 

   
   

 ] 

 

(6) 

where {ci} and {ci'} are the original and the watermarked DWT coefficients; T is the embedding 

strength. After embedding the watermark sequence with patient‟s information into the DWT  

lowest-frequency sub-band of the processed ECG signal, then the watermarked ECG signal is obtained 

through inverse DWT. Figure 3 shows the embedding model. 
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Figure 3. Watermark embedding model. 

 

In order to adjust a proper embedding strength T, we consider the signal to noise ratio (SNR) which 

is defined by [24,25]: 

[
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(7) 

where ( )S n and ( )S n are the original and the watermarked audio.  

Due to the fact that the DWT coefficients are implemented with orthogonal wavelet bases and 

according to Parseval‟s theorem, the energy in a signal is given as follows: 

[
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(8) 

Since the high frequency sub-band in Equation (8) are neglected by the proposed embedding 

algorithm, only the lowest DWT coefficients are adjusted. That is 

[
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] (9) 

We use this formula to adjust the embedding strength T.  

When extracting the hidden data, we first divide the watermarked ECG signal into the same 

segments in the embedding manner. Then, we perform DWT on each segment which has been 

embedded with a watermark. The watermark is extracted from the DWT lowest-frequency sub-band as 

follows. Suppose { *

ic } is the coefficient of the lowest-frequency sub-band; we use the following rule 

to extract watermark sequence { *

im } from{ *

ic }: 

[
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(10) 

After we determine the location of the watermark sequence, we can extract the hidden information. 

The extraction model is shown in Figure 4. 
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Figure 4. Watermark extraction model. 

 

3.3. Wavelet Transform of Data Compression 

Signal processing has become an important topic in contemporary science and technology. The aims of 

signal processing are accurate analysis, diagnosis, compression coding and quantization, storage, and signal 

recovery [26]. Currently, the ideal tool for stationary signal analysis is still the Fourier transform [27]. 

However, in practical applications, the vast majority of signals are non-stationary, so Fourier analysis is not 

suitable. The ECG signal mentioned in this study is a typical non-stationary signal, and wavelet theory of 

multi-resolution analysis for ECG signal processing is a new idea. Compared with other time-frequency 

analysis, the advantages of wavelet theory are that it cannot only adapt to the time-frequency resolution 

characteristics of non-stationary signals, but also decompose signals on an orthogonal basis. It is also easy 

to describe the non-stationary signals‟ time-frequency characteristics with a small number of parameters. 

These all constitute excellent features for an extraction algorithm. Figure 5 is a compression flow diagram 

of the ECG signal.  

Figure 5. Data compression model. 

 

In the first compression, we use the wavelet function bior1.1. In the second compression, we use the 

wavelet function bior3.7. Therein, bior can also be expressed as bior Nr. Nd. Nr and Nd are related 

parameters for remodeling and decomposition filter length. The bior wavelet is a biorthogonal wavelet. 

c1 (n)(n∈Z) is the input of the filter, i.e., a watermark signal. After the conversion, the middle output is: 

[  0 1(2 ) ( )
n

c k h k n c n  ] (11) 

[  0 1(2 ) ( )
n

d k g k n c n  ] (12) 

Based on the output of the filter group: 

[      1 0 0[ 2 (2 ) ( )]
k

c m h k m c k g k m d k     ] (13) 
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With merger and exchange, we can get the following formula: 

[      1 1[ 2 2 (2 ) (2 )] ( )
n k

c m h k m h k n g k m g k n c n      ] (14) 

In order to fully reconstruct, even with the expression: 

[     1 1c m c m m Z    ] (15) 

we need the following equation to be established: 

[        2 2 2 2 ( )
k

h k m h k n g k m g k n m n         ] (16) 

The wavelet method for compression plays a role in optimizing the waveform of the electrocardiogram. 

We choose to remove the high frequency components. The change in the generated waveform has no effect 

on the doctor‟s diagnosis. Instead, it is possible to make the waveform more easily identifiable. In this way, 

we reduce not only the transmission volume, but also the noise of the ECG. 

4. Evaluation 

In this section, we execute watermark encryption and compression on each ECG signal with length 

4,096 sampled from 47 datasets in the MIT-BIH arrhythmia database. Each ECG signal is first 

adjusted to have zero mean to eliminate the DC offset and then the Haar wavelet transform is applied 

to each signal with 7-level decomposition. Evaluation of the watermarked and compressed ECG 

signals is presented in the following sections. 

4.1. Embedding Capacity 

The embedding capacity refers to the number of bits which are embedded in the ECG signal. Since 

we embedded the watermark sequence with patient information into the lowest frequency wavelet 

coefficients in level seven, the embedding capacity is calculated as 74096 2 32  (bits).  

4.2. Robustness Testing under Fixed SNR 

After the embedding process, some common attacks are applied to test the robustness, which will be 

measured by the bit error rate (BER). The BER, that is the ratio of bit errors to the total transferred 

errors during a tested time interval, is usually expressed as a percentage and can be formulated as: 

BER 100%error

total

B

B
   (17) 

where errorB  and totalB  denote the numbers of error binary bits and total binary bits during a tested 

period. In general, the performance of a watermarking system is analyzed in terms of SNR and BER. 

However, there is a tradeoff between them. Accordingly, we compare our results with reference [10] 

which used a spread-spectrum technique under the same SNR = 32 dB conditions. In order to maintain 

the consistency of the watermarked signal and the original signal to the maximum extent possible since 

the insertion of the watermark will affect the original ECG signal, we use the formula in Equation (9) 

to obtain the proper embedding strength T = 4,000. Figure 6a shows that the original and watermarked 
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signals for data set ID 100 look almost indistinguishable. Here the blue curve represents the original ECG 

signals; and the green curve represents the watermarked ECG signals. We enlarge the portion in Figure 6a 

and b around the first second and plot both on the same graph as drawn in Figure 6c which indicates that 

the difference before and after watermarked signals is almost negligible in the time domain.  

Figure 6. The original and watermarked ECG. (a) Watermarked signal (b) Original signal; 

(c) Waveform comparison between 0.09 and 1.09 (s). 
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The results of testing three attacks are discussed in the following section: 

(1) Noise corruption: Since the ECG data may be transferred using a network, we first consider the 

white noise attack to test the robustness, i.e., *

i ii
S ys    where  is  is the watermarked 

signal and  *

iS  is the attacked signal which is influenced by the white noise  iy  with zero 

mean and standard deviation one. Here  is considered as the strength of the white noise, i.e., 

 iy  is zero-mean white noise with standard deviation . Table 1 describes the robustness of 

the watermarked ECG signal under white noise attack with different standard deviations.  

(2) Low-pass filtering: Table 2 shows the effect of using a low-pass filter with a cutoff frequency 

of 90, 100 or 140 Hz. The proposed method has lower robustness against the low-pass filter 

attack than the reference [10] at 90 and 100 Hz. 
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(3) Re-sampling: The sampling rate of the watermarked ECG signals was down-sampled from  

360 Hz to 180 Hz and then back to 360 Hz using interpolation. Besides, we also adjust the 

sampling rate from 360 Hz to 90 Hz, 45 Hz, respectively, and then back to 360 Hz. Table 3 

shows the results of these re-sampling processes, which indicate that the proposed scheme is 

more robust than that described in reference [10]. 

Table 1. Testing Results via White Noise Attack with various strength. 

Strength  
The Proposed 

Algorithm 
Reference [10] 

150 0 0 

200 0 3.125 

250 0 6.25 

Table 2. Testing results via low-pass filtering attack with various cut-off frequencies. 

Cut-off Frequency 

(Hz) 

The Proposed 

Algorithm 
Reference [10] 

140 0 6.25 

100 11.76 9.375 

90 11.76 9.375 

Table 3. Testing results via resampling attack with various sampling rates. 

Sampling Rate The Proposed Algorithm Reference [10] 

1/2 0 0 

1/4 0 0 

1/8 0 3.125 

4.3. The Quality Evaluation of Compression 

We perform the proposed ECG signal compression using the MATLAB numerical simulation 

software. Figure 7 shows the ECG signal after compression. Some indices including compression ratio 

(CR), compressed-signal to noise ratio (CNR), and are utilized to evaluate the quality of compression.  

Figure 7. The ECG signal after compression. 
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The compression ratio (CR) is defined as the size (data storage bytes) ratio of the original signal to 

that of the compressed signal [28]: 

[
   

CR
   

Data size before compression

Data size after compression
 ] 

(18) 

The CR of the first compression (CR1) and the CR of the second compression (CR2) are listed in 

the Table 4. Compressed-signal to noise ratio (CNR) is proposed to evaluate the quality of compressed 

ECG signal and is defined as follows: 

2

1

2

1

[ 10log[ ]
( )

n

ii

n

i ii

s
CNR

s D











] 

(19) 

where S represents the source data and D represents the data after compression. The CNR of the first 

compression (CNR1) and the CNR of the second compression (CNR2) are listed in Table 4. Figure 8 

shows the original, watermarked, and compression ECG signal. The blue curve indicates the original, 

the green curve represents the watermarked, and the red curve represents the compressed. As shown in 

the figure, the differences among the original signal, the watermarked signal and the decompression 

signal are so small as to be almost negligible. 

Table 4. Testing Results of CR1, CR2, CNR1, and CNR2. 

CR1 CR2 CNR1 CNR2 

1.28 1.96 16.2563 14.7179 

In addition to the previous evaluation methods, verification evaluation is proposed to measure the 

similarity between the original ECG signal S1 and the watermarked (or compressed) ECG signal S2. 

First, we obtain watermarked and compression ECG data and then perform ECG verification for the 47 

individual data sets for a fair comparison. The evaluation process can be divided into the following 

three steps: 

Figure 8. The original, watermarked, and compression ECG signal; the blue curve 

indicates the original, the green curve represents the watermarked, and the red curve 

represents the compressed. 
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First, we must preprocess the evaluation data from the previous watermarking and compression 

approaches. It first segments the previous watermarking and compression ECG signals, and processes 

them into a binary signal for length consistency. This uses a sampling rate of 360 with four cycles as a 

group, and every four groups form a sequence. If the cycle is insufficient, it makes a copy of the first 

cycle for the insufficient cycle. Moreover, if the ECG signal of each cycle is not consistent, we also 

perform a stretch or shrink for length consistency. 

In the second step, we perform the DWT on the previously preprocessing data, respectively. In each 

level of the wavelet transform, we take its lowest-frequency part, and do the next level wavelet 

transform with it, until eight layers of transformation are completed. At this point, we have the data 

that we will deal with. In the final step, we want to compare the similarity of two processed ECG data 

sets. Assuming two ECG signal segments
1 1E S  and 

2 2E S  are in different sections, we designed a 

method to determine their similarity. Here is our weighted distance formula used to determine the 

similarity of signals E1 and E2: 
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where E represents an ECG segment of one group, which is the basic unit for data analysis ; s 

represents the relative coefficients from DWT respectively; R represents the rank of i in the sequence 

E; i is 1 or 2. 

Figure 9. The ECG verification success rate. 

 

Figure 9 shows the verification success rate in a different sample rate, team and cycle. The final 

selection of grouping is 4, the period is 4, and the sampling rate is 400. In Figure 9, the highest success rate 

obtained is 0.9901, where s-t is the sampling rate, c represents the cycle, t indicates the team. 

5. Conclusions 

In this study, we have designed and implemented a wavelet analysis of an ECG watermark and 

compression algorithm. This technology can be used to protect ECG transmission security, and reduce the 

transmission volume, while optimizing the ECG shape. In order to guarantee the security of the watermark 

embedded in the signal wavelet decomposition, the watermark was embedded in the lowest-frequency 

coefficients. For a uniform robustness test, we ran 48 datasets from the same database. In comparison with 
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other methods, our method not only provides a better SNR after embedding the watermark, but also has 

stronger robustness than the other. For compression, we chose another wavelet function, and then we 

removed the high-frequency part of the wavelet decomposition. Its impact on the ECG shape is small. In 

addition to the integrated watermarking and compression idea, our proposed approach has the obvious 

advantages of robustness and ECG verification evaluation. 
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