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Abstract: Image corner detection is a fundamental task in computer vision. Many 

applications require reliable detectors to accurately detect corner points, commonly 

achieved by using image contour information. The curvature definition is sensitive to local 

variation and edge aliasing, and available smoothing methods are not sufficient to address 

these problems properly. Hence, we propose Mean Projection Transform (MPT) as a 

corner classifier and parabolic fit approximation to form a robust detector. The first step is 

to extract corner candidates using MPT based on the integral properties of the local 

contours in both the horizontal and vertical directions. Then, an approximation of the 

parabolic fit is calculated to localize the candidate corner points. The proposed method 

presents fewer false-positive (FP) and false-negative (FN) points compared with recent 

standard corner detection techniques, especially in comparison with curvature scale space 

(CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), 

is introduced. AR combines repeatability and the localization error (  ) for finding the 

probability of correct detection in the target image. The output results exhibit better 

repeatability, localization, and AR for the detected points compared with the criteria in 

original and transformed images. 

Keywords: corner detection; contour-based corner detector; mean projection transform; 

polygonal approximation 
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1. Introduction 

Feature detection is a fundamental issue in image processing and computer vision that is directly 

related to interest points. Corner points are considered important features for feature extraction [1]. 

Corner detection is a low-level image processing technique that is widely used in different computer 

vision applications [2], such as camera calibration [3], target tracking [4], transformed image 

identification (TII) [5], image registration [6], 3D polyhedral building modelling from aerial imagery [7], 

multi-scale feature extraction from LIDAR data [8], 2D and 3D building extraction [9,10], and 

automotive applications [11]. However, different approaches require a different perspective for the 

corner definition. Historically, the terms of the corner point refer to the terms of both the interest point 

and the region of interest [12]. Generally, the corner detection in an image is the point on the contour 

at which two straight edges meet at a particular angle or the location at which the direction of the 

contour changes significantly [2]. 

Numerous corner detection methods have been introduced over the last several decades. These 

methods can be divided into three main categories: intensity-based detectors [13–17], model-based 

detectors [18,19], and contour-based detectors [1,4,20–25]. Each category has its own competencies 

for different types of areas and images. Recently, the third category has received more attention in 

terms of robustness and efficient computational cost. Model-based detectors extract the corner points 

by matching a predefined corner model to the image and calculating the similarity for detecting corner 

points. Their algorithms limit the detection to specific tasks, such as finding chessboard corners [3]. 

For general and flexible corner detection, defining a general corner model is difficult and does not 

cover all types of corners for different image types with different scene properties. Intensity-based 

detectors attract more attention than model-based detectors [1]. Intensity-based detectors use the  

grey-level information of the image to detect the corner points by applying the first- or second-order 

derivative on the images. The second-order derivatives of intensity-based methods are noise sensitive 

and are rarely used in the literature [1]. In 1977, Moravec [14] introduced the idea of finding the corner 

points as „points of interest‟ that have high-intensity variations in the vertical and horizontal directions. 

Harris and Stephen [15] proposed the most famous corner detector method, known as the Harris 

(Plessey) method, to improve upon Moravec‟s idea. The Harris method is based on approximates of 

the auto-correlation of the gradient in different directions. The Harris method is the most well-known 

method in the literature, but it cannot detect high-order corners [1]. A high-order corner is a point at 

which three or more contour regions meet [1]. The Harris method uses the Gaussian filter to reduce the 

FP corners in noisy images and increases the localization accuracy of the detector. Noble [26] proved 

that the Harris corner detector is only robust in „L‟-type corners. Based on these weaknesses, Shi and 

Tomasi [13] improved the Harris detector with a minor correction and calculated the minimum 

eigenvalues. Smith and Brady [16] introduced the Smallest Uni-value Segment with an Assimilating 

Nucleus (SUSAN), which used a gradient convolution of a circle mask called the USAN area to detect 

the corner points on a grey-level image. Yang et al. [27] improved the SUSAN method using a  

self-adoptive threshold and a rotating coordinate system, but the method was not sufficient for high 

accuracy of localization. Several improvements have been proposed for the Harris and SUSAN 

methods [28–36]. Grey-scale methods are sensitive to noise and are not as accurate for detecting the 

exact corner point location. 
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Robustness to noise is an important issue for contour-based detectors [37], and researchers have 

proposed several algorithms over the last decade to address this problem. Contour-based detectors 

consist of three main steps: edge detection, contour extraction, and decision making on the contour [1]. 

The basic idea of contour-based methods was proposed by Rosenfeld and Johnston [23] in 1973 to 

calculate the angle of the curves on digital imagery. Subsequently, Kitchen and Rosenfeld [38] 

introduced their corner detector based on the change in direction of the gradient (first- and second-order 

derivatives) on the contour. This method is considered the first cornerness measure of the edge map in 

the literature. Coeurjolly et al. [39] extended the Worring and Smeulders [40] corner classification to a 

discrete method based on an estimation of the discrete osculating circle. Nguyen and Debled-Rennesson [41] 

extended the estimator proposed in [39] using blurred segments. Malgouyres et al. [42] introduced a 

discrete binomial convolution for a convergent estimator to reduce the noise effect. Kerautret and 

Lachaud [43] subsequently introduced a discrete curvature estimation-based method to calculate the 

curvature radius passing from the corner points.  

Over the last two decades, curvature scale space (CSS) methods have been widely used as corner 

detectors in the literature due to their high performance. CSS-based detectors exhibit some 

weaknesses, which are considered in this paper. They generally use second-order derivatives, which 

can cause an increase in the FP rate because of contour variation. Additionally, they require a Gaussian 

scale selection to smooth the curve area, which is application based and a difficult task. The basic idea 

was introduced by Rattarangsi and Chin [44] in 1992, and the basic CSS-based methods were proposed 

by Mokhtarian and Suomela [20] in 1998 and modified by Han and Poston [21] in 2001. CSS-based 

detectors use several planar curves that are smoothed using multi-scale Gaussian functions to calculate 

the local curvatures. Thresholding is used to remove the FP corner points from the candidate corners. 

CSS-based detectors are sensitive to noise on the contour, and the curvature estimation uses high-order 

derivatives to reduce the localization accuracy and high false rate [37]. A large-scale Gaussian function 

reduces noise but affects the corner localization, whereas a small-scale Gaussian function is sensitive 

to noise. To address these problems, Awrangjeb and Lu [37] proposed chord-to-point distance 

accumulation (CPDA) using the adoptive threshold method based on Han and Poston‟s idea [21]. The 

CPDA method uses a discrete curvature estimation that is more robust to the local variation. These 

authors used three chords of different lengths to estimate three normalized discrete curvature values at 

each point of the smoothed curve. They then multiplied the normalized values to achieve the curvature 

product. The candidate corners were selected from the maximum of the absolute curvature products. 

Because intensity variation information is not effective for extracting the corner candidate [1], a 

universal corner model (UCM) was proposed in [1] using the anisotropic directional derivative 

(ANDD) filter to improve the CPDA method to reduce the effect of the intensity variation of the contour 

and improve the localization accuracy. The proposed kernel in the ANDD filter is a Gaussian-based 

kernel based on sampling the continuous anisotropic functions with ρ as the anisotropic factor and σ as 

the scale parameter. Because the ANDD method is based on an anisotropic Gaussian kernel for 

smoothing, it changes the contour to the curve, and it is difficult to select an appropriate Gaussian  

scale [45]. Thus, ANDD is insufficient for detecting corners with both a high detection rate and 

repeatability with an acceptable   . Elias and Laganiere [25] proposed a method named JUDOCA, 

which defined the junctions as a meeting point of two or more ridges in the gradient domain. The 

region of a circle mask to measure the cornerness is used after edge detection and Gaussian filtering to 
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detect the corners. An edge extraction process in CSS-based detectors is a sensitive operation that may 

cause the original corner point in the contour to be missed and the diagonal lines to be aliased on the 

edge. Anti-aliasing filters cannot affect the edge map. These problems affect the FP rate and 

localization accuracy of the detectors. Some studies combine corner detection categories to achieve 

better performance. Escalera and Armingol [3] used a hybrid corner detection to extract corners on a 

chessboard using the Hough transform for the contour and then established the chessboard corner 

models, but this method is limited to a specific task. 

In this paper, a new projection transform, called mean projection transform (MPT), is proposed to 

extract the corner candidates and address the aliasing problem. Next, a parabolic fit approximation is 

used to determine the corner points in the extracted candidates. This method reduces problems related 

to the existing CSS-based algorithms. The proposed method is compared to the detectors presented  

in [1,25,37] because these detectors claim to provide better detection performance compared to the 

other available methods. 

This paper is organized as follows: Section 2 discusses the MPT method for selecting corner 

candidates. Section 3 presents the parabolic fit approximation to confirm corner points from the MPT 

candidates and localize them. Section 4 discusses the evaluation results and proposes a new corner 

detection evaluation method called AR, which addresses the limitations of the current evaluation 

metrics for FP and FN points; the proposed corner detector is then assessed using   , repeatability,  

and AR.  

2. Mean Projection Transform 

A new projection transform based on the mean of integral values in both the horizontal and vertical 

directions is proposed. Contour-based detectors use contour information to extract the corner 

candidates and corner points. Based on CSS problems regarding contour aliasing and variation, the 

MPT method is proposed to extract the corner candidates. MPT representation guarantees that the 

detector only selects candidates that have high curvature, and it addresses the aforementioned problems. 

2.1. Global Mean Projection Transform 

MPT is a transform that consists of the integrals over straight lines in a digital image. If  

            is a function of the image signal     in   , then MPT is a transform of L, where the 

mean of the integrals in vertical and horizontal directions is calculated using Equation (1): 

                     
  

          
  

  (1)  

The arc-length   on the line ( ) can be written as Equation (2): 

           

  
 

 
                                            

                                           

(2)  

http://en.wikipedia.org/wiki/Integral_transform
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where   is the Euclidean distance from the origin to  ,   is the angle of the vector, and   is in the 

Cartesian coordinate system.       are the transform parameters on    for all lines, and MPT can be 

represented in the aforementioned coordinates according to Equation (3): 

         
 

 
                                 

 

  

 

  

  (3)  

This equation can also be written as: 

         

  
 

 
                                                

 

  

                                                
 

  

  

(4)  

The MPT that considers the multi-directional integral can be formulated as Equation (5): 

                 
 

 
(     

 

  
              

 

  
            (5)  

where   is the slope of line  , and   is the intercept factor. 

MPT calculates the mean of the integrals in an input image in both the vertical and horizontal 

directions of line  . The parameters of MPT can detect the available angular contours from a straight 

contour on the edge map of the objects in an image. The MPT of the sample image is shown in Figure 1. 

The image contains at least a corner where the MPT representation of the image includes more than a 

segment or peak. 

Figure 1. Chessboard image as (a) original image; (b) MPT result. 

 

(a) 

 

(b) 

MPT calculates the integral of        for each line and the mean of the vertical and horizontal 

integrals in all directions           . The output of MPT has more than a peak for each significant 

change in the contour direction. The coordinate of a corner point may not be extracted using the MPT 

function, but the corner candidates can be extracted to address the aliasing problem of CSS-based 

detectors and reduce the FP rate significantly.  
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2.2. Projection of the Corner 

A projection of universal corner model (PUCM) describes all corner types. The basic corner model 

(BCM) of a curve is the area in which the horizontal and vertical integrals are significantly different 

than the non-corner model (NCM). In the polar coordinate system, the BCM and NCM can be defined 

by Equation (6) [1]: 

          
                                  

                                                                                            
  (6)  

where   is the radial coordinate, and   is the polar angular coordinate.      is the lower band, and 

      is the upper band of  . In Figure 2, the BCM and PUCM are presented graphically. Considering 

the integral projection, PUCM can be defined by: 

           
                           

                           

                                                                                    

  (7)  

where                denotes the polar angles, and                is the radius of three points of 

the curve. Figure 2a presents the BCM introduced by [1], and a new universal projection of the corner 

model is defined in Figure 2b. Based on Equation (7), different types of corner shapes can be described 

in polar coordinates.    is assumed as the middle point in the polar coordinate system in terms of  . 

The value   in the same coordinate system follows Equation (7) to satisfy the corner properties. The 

PUCM representation of a corner point is the mean integral projection of the local values of the image. 

This process employs the MPT of the BCM to obtain the analytic expression of the PUCM projection 

representation. The projection of the input can identify whether there is angular contour. 

Figure 2. (a) Illustration diagram of the BCM [1]; (b) Diagram of the PUCM. 

 

(a)      (b) 
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The MPT representation of the BCM is presented in Equation (8): 

            

                  
   

  

                    

  
 

  
 

            

                              

 
            

                              
  

(8)  

Equation (8) has two zero values for         and two extremes for      and       . The 

results for different directions are the projection of the object for both the vertical and horizontal views 

simultaneously. Some corner models and non-corner models are manually extracted from the contour 

of the object, and their MPT representations are shown in Figure 3. 

Figure 3. Contour models: (a) NCM of double line model (top) with its MPT 

representation (bottom); (b) Diagonal NCM (top) and its MPT representation (bottom);  

(c) Diagonal NCM (top) and its MPT representation (bottom); (d) UCM (top) and its 

PUCM representation (bottom); (e) UCM (top) and its PUCM representation (bottom);  

(f) UCM (top) and its PUCM representation (bottom); (g) UCM (top) and its PUCM 

representation (bottom). 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

(a)    (b)    (c)  (d)   (e)     (f)   (g) 

As shown in Figure 4b, the PUCM of the corner models has at least two separated peaks in the MPT 

representation because the integral values in the horizontal and vertical directions are calculated. In 

contrast, the straight line has only one peak in the MPT model, as Figure 4a demonstrates. The input 

image is swept by a moving window to select all candidates using MPT. The default moving window 

is    , but the size of the moving window is an initial parameter that can be adjusted based on the image 

size. In large-scale images, the moving window size should be large enough to detect corners properly. 



Sensors 2014, 14 4133 

 

 

Figure 4. Different MPT representation peaks in (a) NCM (top), its MPT representation 

(bottom-right) and MPT plot (bottom-left); (b). PUCM (top), its MPT representation 

(bottom-right) and MPT plot (bottom-left). 

  

 

 

 

 

(a) (b) 

3. Corner Point Detection: Approximation of the Parabolic Fit 

Curvature extraction and angle estimation are the key features of the contour-based corner detection 

methods. CSS detectors extract the curve, analyze the curvature properties of the contour map, and 

then detect the corner points.   is considered the curvature at a point, as presented in Equation (9) [44]: 

   
  

  
 (9)  

where   is the change rate of angle, and the corresponding   can be defined as the arc-length. Curve 

smoothing reduces sensitivity to the local variation of the contour [20]. The CSS-based detectors, 

which use contour smoothing, are not sufficient to detect the corner points based on their evaluation 

results. However, selecting a general   value for smoothing is a difficult task and can affect the 

localization performance of the detectors. To address these problems, a multi-scale curvature estimator 

using parabolic fit approximation to detect the corner points is presented.                   is the   

points on the curve                  with a given distance function         ,                    

is a parabola with the radius  , and center   and    are the points inside the area, as shown in Figure 5. 

Orthogonal lines meet at the center point of the parabola  , which are defined as   . If    

denotes        , then      is a segment            if      intersect at             , and the parabola 

radius passing the points is: 

  
    

  

  
 

 
 

 
  

 
   

    
  (10)  
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where    and    are extracted using     to    points inside the parabola area. Additionally, the 

proposed method is adjustable for detecting the low- and high-order corners in different image scaling 

by adjusting the values of   as the focal control parameter. The general definition for   is: 

  
   

 
   (11)  

where   is the focal control parameter, and   is the moving window width. The truth condition in 

Equation (11) guarantees that the   value does not exceed the curve radius.   and   are input 

arguments that are adjustable by the user to support high scaling images.   and   are 5 and 9 by 

default, respectively, for a 512 × 512 image.  

Figure 5. Approximation of the parabolic fit estimation technique. 

 

Generally, the approximation of the parabolic fit is robust to the local variation [46]. Therefore, it 

can estimate the curvature without the curve-smoothing process. Compared to other CSS-based 

estimators, the proposed method is not sensitive to the aliasing of the edge map; thus, it detects the 

corner points with higher performance.  

4. Experimental Results and Evaluation Metrics 

To evaluate the proposed method, a dataset called “image database and corner detection” [47] and 

some standard images that are commonly used in the corner detection assessments are applied. The 

compared criteria are CPDA [37], ANDD [1], and JUDOCA [25], which claim to have the most 

accuracy among the current standard methods. The repeatability,   , and AR are employed as the 

performance comparison metrics. All dataset images are transformed with different types of attacks for 

use as test inputs. Eighteen different rotated images have angle    in             at     apart, 

excluding   . The combined transformations, including rotation and scale transform with different 

rotations   in           at     apart and scale factors        in          , are used for assessment. 

Figure 6 presents some sample results of the different methods in a normal image situation. Some FP 

corners are detected due to an aliasing issue on contours, especially in the ANDD method, as shown in 

Figure 6c.  
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Figure 6. Results of the different corner detection techniques. (a) JUDOCA; (b) CPDA;  

(c) ANDD; (d) Proposed method. 

 

 

 

             

              (a)                 (b)                    (c)                    (d) 

In addition to the simple images, the proposed method indicates good performance in complex 

shapes. Figure 7 shows two commonly used grayscale images, a 512 × 512 Lab and 1,600 × 1,163 

checkerboard used in the experiment as samples. Accurate chessboard corner detection is quite useful 

for camera calibrations, as used in [3]. 

Figure 7. Corner detection results (a) Lab and (b) Checkerboard. 

 (a) (b) 
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4.1. Receiver Operating Characteristic (ROC)  

In detection theory, the receiver operating characteristic, or ROC, is a graphical plot that illustrates 

the performance of the system based on detection rates to provide a more appropriate comparison [48]. 

In this section, we used the ROC to compare the performance of different methods based on FP and 

true-positive (TP) rates to calculate sensitivity and specificity. Specificity relates to the detector‟s 

ability to identify negative results. Sensitivity is the ability of a detector to identify positive results. 

Higher sensitivity shows few FNs, and low specificity shows many FPs. Figure 8 illustrates the ROC 

plot of four detectors. 

Figure 8. ROC plot comparison of the proposed method, ANDD, JUDOCA, and CPDA. 

 

When comparing the performance of the detectors considering the ROC plot, a detector is better 

when its plot points are located on the top-left side of the plot area, which shows higher sensitivity and 

specificity. To determine the FNs and FPs, human judges generate the ground truth [49]. 

Among the detectors, CPDA attains comparable detection performance with the proposed method. 

The proposed method concentrates in the top-left of the graph, which indicates higher TPs and few 

FPs, indicating higher performance. JUDOCA provides the lowest FPs in comparison with the others, 

whereas ANDD shows many FPs and fewer FNs. 

4.2. Localization Error 

The    is a common evaluation method for a corner detector [50].    can measure the robustness 

and accuracy of the detected corners and can be defined by: 

    
 

  
           

           
  

  

   

  (12)  

where     and     are the ground truth coordinates of the corners,     and     are the coordinates of the 

i-th detected corner, and    is the total detected points of the detector. Figure 9 presents the 

comparative results of the different methods under   . Four types of input are selected to calculate the 
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error. On average for all inputs, the proposed method indicates the best    result, followed in 

descending order by JUDOCA, ANDD, and CPDA.    is not a reliable evaluation metric to rank the 

detectors, as we discuss in Section 4.4. According to Figures 10 and 11, CPDA provides better results 

than ANDD and JUDOCA, but the    result for CPDA is lower than the others because    does not 

consider FPs and FNs directly.    only considers the detected points (TPs) and their locations in the 

target image.  

Figure 9. Comparative results of the different methods under   . 

 

4.3. Average Repeatability 

Average repeatability        is another evaluation method in the literature related to the corner and 

interest point detectors [1,51]. This method is more reliable than    to show the robustness of the 

detector because it automatically calculates the average number of detected corners in the original and 

transformed images. This method is easier to implement, can be completely automatic without human 

operations and is more secure in terms of human mistakes. Average repeatability measures the 

robustness of the detector for different transformations and can be defined by: 

     
  

 
 

 

  
 

 

  
   (13)  

where    is the number of corners in the ground truth, and    is the number of detected corners.    is 

the repeated corners between two results within a maximum three-pixel error rate. Figure 10 presents 

the comparison results of repeatability for different detectors and image attacks.  

To compare the proposed method with other methods, the same dataset with the same conditions is 

used to evaluate the results. The proposed method outperforms the other methods in different 

conditions. For the combined rotation and scale transform, after the proposed method, the best results 

are achieved by CPDA [37]. The worst average repeatability for all of the methods is for the combined 

rotation and scale transforms. The proposed method indicates higher average repeatability results for 

different effects compared to the other methods. This average repeatability is achieved because the 

powerful MPT method for candidate selection is applied to detect the initial candidates from the 

original image. Therefore, the aliasing problem, which causes several FP detections, is addressed, and 
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the approximation of the parabolic fit method supports the localization performance by finding the 

point coordinates of the corners.  

Figure 10. Average repeatability under rotation, uniform scale change, non-uniform scale 

change, and the combined rotation and scale effect of the different methods. 

 

4.4. Accuracy of Repeatability  

When comparing the effect of the transformation on the results, the repeatability and localization 

parameters are not sufficient because they do not directly consider FPs and FNs. FPs and FNs are quite 

important in corner detection methods and should directly affect the evolution result. Moreover, 

average repeatability does not consider the ground truth information, which means that it does not 

determine whether the detected points in the original image are localized correctly. Therefore, a new 

comparison method based on both the    and the repeatability is proposed. The new comparison 

method, known as AR, is sensitive to FNs and FPs and thus significantly affects the FNs and FPs given 

in the results. Therefore, AR is a good measurement technique for corner detection methods. 

In the proposed comparison method, each corner point is analyzed to provide a probability of   , 

and the mean of probability for all points generates the AR, as defined in: 

   
 

 
   

 

   

   (14)  

where   is the largest number of corner points of either the result image from the corner detector or the 

ground truth image. Let us assume that the ground truth corner points are   , and the result points 

are   . Each    has a corresponding         . The value „1‟ exhibits the highest probability that is a 

TP, and the value „0‟ exhibits the lowest probability of the corner point that is either an FN or FP. The 

number of points in the ground truth and result image is   and   , respectively. For the two points in 

the ground truth and result image, the distance is calculated by: 

              
 

          
   (15)  
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where     and     are the ground truth corner coordinates, and     and     are the coordinates of the i-th 

detected corner of the detector. A matrix   is      , as shown in Equation (16). It is defined to save 

the Euclidian distances between the corresponding points in the ground truth and result images: 

   
        

   
        

  (16)  

In the first step,                is obtained. Then, column   and row   corresponding to     

are eliminated. Therefore, matrix   is          . This process continues until all elements in 

matrix   are eliminated. In each step,                is the closest distance between the ground 

truth    and the result point   . For each point, the probability is calculated using the maximum size 

of the ground truth or result image, as defined in Equation (17). The maximum distance in an image is 

its diagonal, which is the maximum error in localization. Thus, dividing by the maximum error gives a 

normalized     between 0 and 1 that can be assumed as the correctness probability of the TP location: 

      
   

                      
  (17)  

where the size of the ground truth is    , and the size of the result image is      . The result of 

   on the four input images is shown in Figure 11. In all inputs, the proposed method indicates better 

performance. Among the detectors, ANDD shows the worst AR in most of the inputs because of its 

greater FP detected corners. JUDOCA and CPDA indicate approximately the same result in AR 

comparison and have the second best result after the proposed method. 

Figure 11. Comparative results of the different methods under the   . 

 

5. Conclusions and Future Work 

This paper introduced a new corner detection method based on contour information. Candidate 

selection using a new image transformation called MPT was the basic approach of this paper. MPT 

calculates the mean of the integral of the image contour in both the horizontal and vertical directions. 

After selecting the corner candidates by MPT, an efficient curvature estimation based on parabolic 

approximation was used to confirm and localize the corner points in the candidates. The results were 
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evaluated by   , repeatability, and AR, which indicate the robustness and accuracy of the proposed 

method. AR was proposed as an evaluation metric that highlights FP and FN more than other metrics 

in the assessment results. The proposed method outperforms the other standard methods in terms of   , 

repeatability, and   . Future work may research the projection of the corners in different aspects and 

may result in better corner candidate selection and a higher repeatability and AR. An efficient corner 

detection algorithm can be used in different computer vision applications, such as point matching, 

mobile robot vision, and image registration. 
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