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Abstract: This paper proposes a practical low-complexity MAC (medium access control)
scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor
networks (UASN), in which the provision of differentiated QoS is required. In such a
network, underwater sensors (U-sensor) in a cluster are divided into several classes, each
of which has a different QoS requirement. The major problem considered in this paper
is the maximization of the number of nodes that a cluster can accommodate while still
providing the required QoS for each class in terms of the PDR (packet delivery ratio). In
order to address the problem, we first estimate the packet delivery probability (PDP) and
use it to formulate an optimization problem to determine the optimal value of the maximum
packet retransmissions for each QoS class. The custom greedy and interior-point algorithms
are used to find the optimal solutions, which are verified by extensive simulations. The
simulation results show that, by solving the proposed optimization problem, the supportable
number of underwater sensor nodes can be maximized while satisfying the QoS requirements
for each class.

Keywords: supportable number of nodes; QoS; optimization; underwater acoustic
sensor network
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1. Introduction

As an emerging technique, underwater acoustic sensor networks (UASN) have a wide range of
applications, such as oceanographic data collection, environment monitoring, undersea exploration,
disaster prevention, assisted navigation and tactical surveillance [1–5]. In order to implement
these applications, underwater nodes communicate with each other via acoustic channels that have
unique characteristics, including the limited available bandwidth and a high and variable propagation
delay [6–9].

In this paper, we consider a UASN that has a cluster-based network topology, in which each cluster is
governed by a clusterhead (or gateway node), since it makes the network scalable and can readily provide
network connectivity in a harsh communication environment [5,10–13]. In addition, the considered
UASN consists of different types of underwater sensor nodes, some of which generate more important
data than others, i.e., the sensing data from some sensors may need to be delivered to the clusterhead
with a higher PDR (packet delivery ratio). Therefore, the network needs to provide the sensor nodes
with differentiated QoS (quality of service) in terms of PDR based on the QoS class to which the sensor
nodes belong.

In such a network, an important problem is to maximize the number of nodes that the network can
accommodate while still providing the required QoS for each class. In addition, as a related problem,
when the operators deploy a UASN, they would want to know the achievable PDR value given the
number of sensor nodes in the network. Intuitively, if the number of nodes in a UASN increases beyond
a specific amount, the network may not be able to provide the demanded QoS, due to a high level of
network traffic.

In order to address the problem of maximizing the supportable number of nodes, we focus on
the MAC (medium access control) layer, since it plays a key role for providing QoS and dominates
the overall performance of the network [14]. In particular, contention-based MAC protocols have
received a lot of attention, due to the simplicity and applicability in UASNs [15–29]. Among various
contention-based MAC protocols, Aloha-CS (Aloha with carrier sensing) is a potential low-complexity
protocol for UASNs, since it offers a high throughput and low latency in a low network load without
requiring time synchronization or a handshaking mechanism [18–20].

In this paper, we design a practical low-complexity QoS-aware MAC scheme and an optimization
formulation for maximizing the supportable number of sensors in UASNs. We first estimate the packet
delivery probability (PDP) in the MAC layer. Then, based on the PDP estimation, an optimization
problem is formulated for maximizing the supportable number of sensors in a specific QoS priority
class. The main idea of the formulation is to find optimal values of the maximum packet retransmissions
for each QoS class, such that the number of nodes in a specific QoS class is maximized and every node
can achieve the required QoS.

The custom greedy and interior-point algorithms are used to find the solutions to the optimization
problem. Furthermore, extensive simulations are performed to verify the solutions. The simulation
results show that our optimization formulation can maximize the supportable number of underwater
sensor nodes, while satisfying the QoS requirement for each class.
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The rest of this paper is organized as follows. Section 2 presents the related studies and compares
them with the proposed scheme. The system model and problem definition are described in Section 3.
Section 4 first discusses the packet delivery probability approximation, then describes the optimization
problem formulation. We also discuss the approximation of the background traffic. The performance
analysis using various scenarios is presented in Section 5, in which we also discuss solutions and the
simulation setup. Finally, Section 6 concludes the paper.

2. Related Work

MAC protocols for UASN can be categorized into contention-free and contention-based protocols.
The contention-free protocols include time division multiple access (TDMA), frequency division
multiple access (FDMA) and code division multiple access (CDMA), in which different time slots,
frequency bands or codes are assigned to different users to avoid collisions among transmissions.

FDMA divides the available frequency band into several sub-bands and assigns each sub-band to a
node. Due to the limited available bandwidth of underwater channels, FDMA is not suitable for UASNs
that consist of a large number of underwater sensors.

In TDMA, in order to avoid the collision of packets from adjacent time slots, guard times are added
to the time slot. The high propagation delay in underwater acoustic communication channels requires
long guard times, which limit the efficiency of TDMA [30]. Moreover, TDMA systems require precise
synchronization for proper utilization of the time slots.

It is also known that CDMA-based protocols require a high complexity design for UASN. In addition,
it is a challenging problem to assign pseudo-random codes to a large number of sensor nodes [2].

On the other hand, contention-based protocols have received significant attention for UASN, due to
their simplicity, acceptable throughput and energy efficiency [15–23]. For example, the authors of [15]
studied the performance of Aloha-based protocols in underwater networks and proposed two enhanced
schemes that take advantage of the long propagation delay in the underwater acoustic channel and do not
require handshaking or time synchronization.

It was also shown that, under the high and varying propagation delay in underwater acoustic channels,
the performance of slotted Aloha becomes similar to that of pure Aloha [23]. The study in [16] proposed
a propagation delay-tolerant Aloha protocol, where the authors address the space-time uncertainty by
adding guard times to slotted Aloha.

Another simple yet practical Aloha-based protocol, Aloha-CS (Aloha with carrier sensing), was also
studied and evaluated in [15,18–20]. In Aloha-CS, a node senses the carrier on the channel before it
transmits data. The intended receiver sends an acknowledgment (ACK) packet to the source node to
announce the successful reception. For unsuccessful transmissions, the retransmission mechanism with
an exponential backoff can be also applied, i.e., the data packet can be retransmitted up to a maximum
limit of retries unless an ACK packet is received at the source node. According to the results presented
in these studies, Aloha-CS (Aloha with carrier sensing) [18–20] can achieve high throughput and low
latency without requiring time synchronization or handshaking.

The authors of [21] proposed an extension of the FAMA protocol [31] for UASN, namely slotted
FAMA. Slotted FAMA is also based on carrier sensing and handshaking prior to data transmission. The
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new idea of slotted FAMA is that it uses time slotting to eliminate the requirement for excessively long
control packets. The study in [22] proposed a reservation-based MAC protocol, T-Lohi, where a node
sends a short tone to count the number of contenders. If it does not receive any other tones, it starts data
transmission. Otherwise, it goes to the backoff mode.

Although our work is also based on channel contention, those studies differ from ours since they do
not consider the provision of QoS or optimality.

There are few MAC protocols that address QoS provision in UASNs. However, there have been
several MAC protocols that considered QoS provision for wireless sensor networks [32–39].

In particular, the authors of [37] proposed I-MAC, a hybrid TDMA/CSMA-based MAC protocol for
wireless sensor networks. The I-MAC protocol is composed of two phases: the setup and transmission
phases. During the setup phase, neighbor node discovery, slot assignment, local framing and global
synchronization operations are successively performed. If a node owns assigned slots, it transmits data
using those slots. If a node does not own any slot, it uses CSMA to access the channel. By using a
different value of the CW (contention window), some groups of nodes can have a higher priority for
accessing the channel.

As another example, the study in [38] proposed a MAC protocol that supports QoS in wireless
sensor networks. It also uses a hybrid scheduling technique where dedicated time slots are assigned
for data packet transmissions, and CSMA/CA-based random access periods are used for control packet
transmissions. The MAC protocol consists of four phases: time synchronization, request for time slots,
reception of slot schedules and data transfer.

However, the studies in [37,38] do not consider satisfying a given QoS requirement. In addition,
they require tight time synchronization and overheads for slot requests and assignments. In contrast,
the objective of our work is to design a low-complexity MAC scheme that supports differentiated QoS
without requiring time synchronization or scheduling overheads.

There also have been attempts to design a QoS-aware MAC protocol based on channel contention
for a wireless sensor network. For example, the study in [39] considered a transmitter-only network
and proposed a MAC protocol to provide QoS using an optimal number of transmissions. That work
also differs from ours, since it considered a network of nodes without an RFreceiver or packet queuing
and a fixed number of transmissions of each packet in a given time interval. Moreover, the objective is
different from that in our paper.

3. System Model and Problem Definition

In this paper, we consider a cluster-based UASN, where each cluster is governed by a clusterhead
(or gateway node). As shown in Figure 1, each underwater sensor node (or, simply, U-sensor or
node) belongs to one cluster. The clusterhead collects sensing data from U-sensors, performs data
aggregation/fusion and then forwards the data to the underwater sink node. Clusterheads are equipped
with two communication interfaces, so that they can use different channels for communicating with
U-sensors and other clusterheads, respectively.

It is assumed that communications in a cluster do not interfere with communications in other clusters,
due to the use of different carriers, and U-sensors transmit sensed data to the clusterhead using a direct
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acoustic channel [40]. Assigning channels to adjacent clusters or nodes has been considered in several
studies [41–45].

Figure 1. Cluster-based underwater acoustic sensor network.

U-sensors in a cluster are classified into several QoS classes, each of which has a required packet
delivery ratio (PDR). In this paper, required PDR values are used to determine QoS classes. Every
node generates a data packet at a predetermined rate and transmits them to the clusterhead. U-sensors in
each QoS class are allowed to retransmit each data packet up to the maximum number of retransmissions,
unless they receive the corresponding ACK packet from the clusterhead within the ACK timeout interval.
Before a U-sensor transmits data, it first performs carrier sensing to assure that the channel is idle. It
also performs exponential back-offs when collisions occur.

The considered optimization problem is the maximization of the number of nodes in a specific QoS
class, which will be selected by the operators of the network, while providing the QoS for every node in
each class.

In order to facilitate discussion, suppose that a set of N nodes in a cluster is divided into m QoS
classes, (Q1,Q2, ...,Qm), where class Qi contains ni nodes (1 ≤ i ≤ m). Nodes in each QoS class have
a packet size, si, and the corresponding packet transmission delay, t i

d . Each node in class Qi is allowed
to retransmit each data packet up to xi times and requires a minimum PDR of pi, where xi denotes the
maximum number of retransmissions. Suppose also that class Qk is selected to maximize the number of
nodes in the class, where 1 ≤ k ≤ m.
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Therefore, in order to achieve the objective, while providing differentiated QoS to nodes, the core
problem is to determine an optimal value of xi for each class, Qi, such that nk is maximized and every
node in each class can achieve a PDR of at least pi.

4. Maximization of the Supportable Number of Sensors

In this section, we first describe the approximation of the packet delivery probability. Then, we present
the formulation of the optimization problem. In addition, we discuss algorithms for finding solutions.

4.1. PDP Approximation

We first define the packet delivery probability (PDP) as the probability that a packet is successfully
delivered at the clusterhead when it can be retransmitted up to x times.

In a UASN, the packet generation rate is usually low, due to the limited bandwidth. In such a network,
very few packet losses result from the buffer overflow, since available space is likely when a new packet
is generated. Consequently, PDP values can approximate PDR values in a UASN. Therefore, PDP is
used in the optimization formulation for PDR.

Now, we discuss the approximation of the PDP of nodes in each class, Qi, where a node can retransmit
a packet up to xi times. In order to approximate the PDP value, we first assume that the packet arrival
in a UASN follows a Poisson process, which will also be verified in the following discussion. Then, the
probability of k packet arrivals during an interval of time t is given by:

P[n = k] = e−λ t (λ t)k

k!
(1)

where λ represents the arrival rate of background traffic in a time interval of t [46].
A U-sensor node in each class, Qi, transmits to the clusterhead a data packet in every interval, T .

Suppose that a data packet arrives at the clusterhead at time t0 with the transmission delay of t i
d . In order

to avoid collisions for a packet that is transmitted from a node in class Qi, no packets from the other
N − 1 nodes should arrive at the clusterhead during the interval [t0 − t i

d, t0 + t i
d], i.e., there should be no

packet arrival during the interval of 2t i
d .

Let Pi
s and Pi

f denote the probabilities of the successful and failed packet transmissions of a node in
class Qi at the clusterhead, respectively, where Pi

f = 1−Pi
s . Furthermore, let λb denote the arrival rate of

the background traffic for a node in an arbitrary class. Then, the probability that a data packet, which is
transmitted from a node in class Qi, is successfully delivered at the clusterhead is given by:

Pi
s = e−2λbt i

d (2)

In order to verify the assumption of Poisson distribution of the packet arrival in a UASN, where a node
performs carrier sensing and exponential back-offs, we conduct a simple simulation using Aloha and
Aloha-CS protocols. The considered cluster in the network consists of 50 U-sensors and one clusterhead
that are randomly deployed over an area of 1,555 m × 1,555 m. In this example, for simplicity, we
assume that there is only one QoS class, Q1. Each U-sensor node is equipped with a half-duplex acoustic
transceiver that has a data rate of 14 Kbps. Every U-sensor periodically generates a data packet of
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160 bytes and sends it to the clusterhead. Each node is allowed to retransmit one data packet up to
three times, unless it receives the corresponding ACK packet from the clusterhead. We calculate the
probability of successful packet transmission in class Q1, P1

s , according to Equation (2), and determine
the actual successful individual packet transmission ratio from simulation. Then, we compare the value
of P1

s from analysis and that from simulation.

Figure 2. Approximation of the successful packet transmission ratio. Aloha-CS, Aloha with
carrier sensing.
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(a)For the case of Aloha
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(b)For the case of Aloha-CS

As shown in Figure 2, over different network loads from 1 Kbps to 6 Kbps, the approximation of Pi
s is

fairly similar to the actual successful individual packet transmission ratio. Therefore, in our work, we use
the assumption that packet arrivals follow a Poisson process to design the optimization formulation. Now,
we define Pi, j

s and Pi, j
f as the probabilities of the successful and failed delivery of the j− th transmission

of a packet of nodes in class Qi, respectively. Furthermore, let P(xi) denote the PDP that the nodes in
class Qi can achieve, and recall that one data packet can be retransmitted up to xi times. Then, P(xi) can
be expressed as:
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P(xi) = Pi,1
s +Pi,1

f Pi,2
s + · · ·+Pi,1

f · · ·Pi,xi−1
f Pi,xi

s (3)

Since each packet transmission can be regarded as an independent event based on the assumption of
a Poisson process, Pi, j

s = Pi
s and Pi, j

f = Pi
f for all j ( j = 1...xi). Therefore, P(xi) becomes:

P(xi) = Pi
s
1− (Pi

f )
xi

1−Pi
f

= 1− (Pi
f )

xi

= 1−
(
1− e−2λbt i

d
)xi (4)

In the following section, we present an optimization formulation for maximizing the number of
sensors in UASN, while satisfying the QoS requirement.

4.2. Optimization Problem Formulation

In this subsection, we describe the proposed optimization problem formulation that is a non-linear
optimization problem.

Recall that the nodes in each class, Qi, need to guarantee their PDR requirement of at least pi. In
other words, the approximated PDP of the nodes in each class needs to be at least pi. Specifically, the
constraint function is expressed as:

1−
(
1− e−2λbt i

d
)xi ≥ pi (5)

The actual arrival rate of background traffic for a node in an arbitrary class, λb, is the total number of
packet arrivals from the other N−1 nodes in the time interval. It is a challenging problem to calculate the
exact value of λb, since the actual number of retransmissions for one data packet at a given time depends
on the network traffic and status. Therefore, to simplify the problem, we use the maximum arrival rate
of background traffic generated by all nodes in the network, λmax. In the following discussion, we prove
that the required PDR can be satisfied by using λmax.

In order to calculate the value of λmax, we use the maximum number of retransmissions for each class,
Qi, which is denoted by xi. Then, the maximum arrival rate of background traffic is given by:

λmax =
m

∑
i=1

nixi

T
(6)

Then, the constraint function in which we use the maximum arrival rate, λmax, is given as:

1−
(
1− e−2λmaxt i

d
)xi ≥ pi (7)

Lemma 1. Suppose that we use the maximum arrival rate of background traffic, λmax, to formulate the
optimization problem. If we can determine an optimal value of xi that satisfies the constraint function in
Equation (7), then we can assure that xi also satisfies the constraint function in Equation (5).
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Proof. When we use the actual arrival rate of background traffic for calculating Ps, then
Pi

s(λb) = e−2λbt i
d . Similarly, when we use the maximum arrival rate of background traffic to calculate Pi

s ,
then Pi

s(λmax) = e−2λmaxt i
d . From the fact that λmax ≥ λb, we have 1− e−2λmaxt i

d ≥ 1− e−2λbt i
d . Note that

the value of xi is a positive integer. Therefore, we have the following relation:

1−
(
1− e−2λmaxt i

d
)xi ≤ 1−

(
1− e−2λbt i

d
)xi (8)

According to the constraint function in Equation (7), if we can find a value of xi that satisfies
Equation (7), then the inequality 1 − (1 − e−2λmaxt i

d)xi ≥ pi is always true. Combining the relation
represented in Equation (8) and the constraint in Equation (7), we can achieve the following relation:

pi ≤ 1−
(
1− e−2λmaxt i

d
)xi ≤ 1−

(
1− e−2λbt i

d
)xi (9)

As a result, since xi satisfies the constraint function in Equation (7) in which the maximum arrival rate
of background traffic, λmax, is used, then it also satisfies the constraint function in Equation (5) that uses
the actual arrival rate of background traffic, λb.

Therefore, we have the formulation of P(xi) for each class as follows:

P(xi) = 1−
(
1− e−2λmaxt i

d
)xi (10)

Now, we describe our optimization problem formulation.
The objective of our optimization problem is to maximize the supportable number of nodes in a class,

Qk, nk, where k is a given integer number from one to m. Note that Qk has the PDR requirement of pk. In
order to maximize nk, we determine the relationships between nk and other variables. More specifically,
from the fact that P(xk)≥ pk, we have:

1−
(
1− e−2λmaxtk

d
)xk ≥ pk (11)

We replace λmax based on Equation (6) to show:

1−
(
1− e

−2tkd
T (n1x1+...+nkxk+...+nmxm)

)xk ≥ pk (12)

From Equation (12), we obtain the following inequality:

nk ≤− 1
xk

(
T

2tk
d

ln
(
1− (1− pk)

1
xk
)
+

m

∑
i=1
i̸=k

nixi

)
(13)

Then, the optimization formulation is that, given ni (i ̸= k) and p1, p2, ..., pm, find x1,x2, ...,xm,
such that:

max
[
− 1

xk

(
T

2tk
d

ln
(
1− (1− pk)

1
xk
)
+

m

∑
i=1
i̸=k

nixi

)]
(14)

subject to:
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(
1− e−2λmaxt i

d
)xi − (1− pi)≤ 0 , i = 1...m (15)

1 ≤ xi ≤ l , i = 1...m (16)

The constraint in Equation (15) is based on the requirement that the value of xi should guarantee
P(xi) ≥ pi, where P(xi) is calculated according to the Equation (10). In addition, the value of xi is
limited by an upper bound, l, as impressed in constraint Equation (16).

4.3. Finding Solutions

In order to find solutions to the proposed optimization formulation, we use a custom developed greedy
algorithm and the interior-point method.

In the greedy algorithm, for each solution vector x = (x1,x2, ...,xm), the maximum value of nk is first
calculated by using Equation (13). If all PDR constraints are met using the vector and the value of nk,
it stores those values and checks other vectors. Otherwise, nk is decremented until all constraint are
satisfied. Among all possible nk values, the maximum is selected as nmax

k , and the corresponding vector,
x, is returned as a solution. The detailed algorithm is presented in Algorithm 1. Since there are m QoS
classes, the vector of the optimum variable has m elements. Each xi can be one integer value from one
to l (the upper bound of xi). Then, we have lm possible solutions. Furthermore, for each solution, up to
nk times need to be evaluated. As a result, the worst-case computational complexity becomes O(Ulm),
where U represents the upper bound of the node number in the system.

It is also worthwhile to note that even though the greedy algorithm seems to be expensive in terms of
computational complexity, it may be affordable in a practical scenario. For example, when there are 3
QoS classes and l = 7, in most cases, less than 7,000 iterations are needed in our experiments, which is
fairly acceptable, considering the computing power of modern computing systems.

In addition, the interior-point algorithm is used to find the solutions. The interior-point algorithm has
been developed to solve linear or non-linear convex optimization problems with inequality constraints
in a short amount time. The basic idea of this algorithm is to decompose the problem into a sequence
of equality constrained problems and apply Newton’s method to each problem [47]. There are a lot of
variations of the interior-point method, and many of them have been shown to have a polynomial time
complexity [48]. In this paper, we use the MATLAB optimization toolbox for the interior-point method
with the assumption that each xi is a real number. Then, for simulation, we take the ceiling of xi after the
solution is obtained, since the xi value should be an integer number in the real world. Note that, due to
the real number relaxation and non-convexity of the objective function, it is possible that the solutions
may not be the global optimal or may not even satisfy the required constrains. However, according to
the simulation results, in most cases, the observed solutions are close to the global optimal values.
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Algorithm 1 The Custom Greedy Algorithm
Inputs:
m: number of QoS classes
T : packet interval
t i
d(i = {1...m}): transmission delay in class Qi

ni(i ̸= k, i = {1...m}): number of nodes in each class except class Qk

pi(i = {1...m}): PDR requirement in class Qi

l: maximum number of retransmissions
U : MAX NODE (upper bound of the node number in the system)
Outputs:
The maximum supportable number of nodes nmax

k in class Qk and the corresponding optimal number of
retransmission for each class xopt

i

1: λmax = 0;
2: xopt

i = 0; ∀i = {1...m}
3: nk = 0;
4: nmax

k = 0;
5: for each (xi, ...,xm) ∈ {1...l} do

6: nk = min
(⌊

− 1
xk

(
T

2tk
d

ln
(
1− (1− pk)

1
xk
)
+∑m

i=1
i ̸=k

nixi

)⌋
,U −∑m

i=1
i̸=k

ni

)
;

7: while nk > nmax
k do

8: λmax = ∑m
i=1

nixi
T ;

9: P(xi) = 1−
(
1− e−2λmaxt i

d
)xi; ∀i = {1...m}

10: if P(xi)≥ pi ∀i = {1...m} then
11: nmax

k = nk;
12: xopt

i = xi; ∀i = {1...m}
13: break;
14: end if
15: nk = nk −1;
16: end while
17: end for
18: return : nmax

k , xopt
i ∀i = {1...m}

5. Performance Study

In this section, we first describe the simulation setup and then analyze the results of the simulations.

5.1. Simulation Setup

In order to evaluate the performance of the proposed protocol, we first consider a cluster with three
QoS classes. Then, we extend our discussion to the case of four QoS classes. Finally, we consider a case
where each QoS class has a different packet size.
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When there are three QoS classes, the nodes in a cluster are partitioned into three QoS (in terms
of PDR) classes (Q1,Q2,Q3), where Q3 is the selected QoS class in which we want to maximize the
supportable number of sensors (i.e., k = 3). It is assumed that the required PDR values for Q1 and Q2 are
p1 = 0.95 and p2 = 0.8, while the PDR requirement for Q3 (p3) is a variable parameter. Furthermore,
we suppose that the numbers of sensor nodes in classes Q1 and Q2 are five and 15, respectively (i.e.,
n1 = 5,n2 = 15).

In case of four QoS classes, the nodes in the cluster are divided into four QoS classes, and Q4 is the
selected QoS class (i.e., k = 4). The required PDR values for Q1, Q2 and Q3 are p1 = 0.95, p2 = 0.9 and
p3 = 0.8, respectively. The PDR requirement for Q4 (p4) is a variable parameter. The numbers of sensor
nodes in classes Q1, Q2 and Q3 are five, 15 and 20, respectively.

In this paper, for practical simulation, we used the DESERTunderwater simulation framework [20],
which incorporates spreading loss and various underwater noises, such as turbulence, shipping, wind and
thermal noises. The observed solutions to the optimization formulation in Equations (14)–(16) are used
as inputs for the simulations. The value of the maximum number of sensor nodes in the selected class
is calculated using the solution. Then, this obtained value is also used for simulations as the number of
nodes in the selected class.

Each node is equipped with a half-duplex acoustic transceiver that has a data rate of 14 Kbps and a
transmission range of 1,100 m. The speed of the underwater acoustic signal is assumed to be 1,500 m/s.
The data generation rate applies to every node in the network. The upper bound of the maximum number
of retransmissions is set to seven.

5.2. Performance Analysis

In this subsection, we first present simulation results for a case with three QoS classes and discuss the
results. Then, in order to show that our approach can support an arbitrary number of QoS classes, we
extend our discussion to the case where a cluster has four QoS classes. Finally, we present the simulation
results and analysis for a case where each of three QoS classes has a different packet size.

5.2.1. Analysis of Results for Three QoS Classes

In this case, we consider a cluster that has three QoS classes. We first discuss the effects of the PDR
requirement for a QoS class on PDR and on the maximum number of nodes in that QoS class. Then, we
continue our discussion for the effects of the network load on the network performance. We assume that
the PDR requirement of Q3 varies and the PDR requirements of Q1 and Q2 are given.

The effects of PDR requirement for class Q3:
In this case, every node transmits a data packet of 160 bytes to the clusterhead in every interval of

T = 64 s, which leads to the transmission rate of 20 bps. The PDR requirement for class Q3 is varied
from 0.7 to 0.86.

Tables 1 and 2 show the effects of the PDR requirement for class Q3 on the PDR and on the maximum
supportable number of nodes in class Q3, when the greedy and interior-point algorithms are used,
respectively. The tables show required PDR values (Preq), a solution, x, calculated PDR values using
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optimal solutions (Panal), PDR values collected from simulations (Psim) and the maximum number of
nodes in Q3 (nmax

3 ), calculated using the solution, which is also used for simulations.
As shown in Table 1, when the required PDR for class Q3 varies from 0.7 to 0.86, the maximum

supportable number of sensor nodes in this class decreases from 84 to 50. The results indicate that,
when the PDR requirement for the selected class decreases, the considered cluster in the network can
accommodate a larger number of nodes, while satisfying the required PDR. For instance, if the PDR
requirement for the nodes in class Q3 is 0.86, the considered cluster in the network can support 50 nodes
in this class. However, if class Q3 is required to provide a PDR of 0.7, the considered cluster can support
84 nodes in class Q3. It is intuitive that the number of supportable nodes becomes greater as the required
PDR decreases. However, one interesting point is that the supportable number of nodes is very sensitive
to the PDR requirement. More specifically, when the PDR requirement of Q3 is lowered from 0.86 to
0.7 (e.g., 18.6% decrease), the supportable number of nodes in Q3 increases by approximately 68%.

Table 1. The effects of the packet delivery ratio (PDR) requirement for class Q3 on the PDR
achieved from the greedy algorithm and the maximum number of nodes in class Q3 (with
n1 = 5, n2 = 15, p1 = 0.95, p2 = 0.80).

Preq
1 Preq

2 Preq
3

Opt. Solut.
Panal

1 Psim
1 Panal

2 Psim
2 Panal

3 Psim
3 nmax

3x1 x2 x3

0.95 0.80 0.70 5 3 2 0.951 0.965 0.836 0.875 0.701 0.729 84
0.95 0.80 0.72 5 3 2 0.959 0.970 0.852 0.896 0.721 0.750 78
0.95 0.80 0.74 5 3 2 0.965 0.977 0.868 0.908 0.741 0.774 72
0.95 0.80 0.76 5 3 2 0.972 0.982 0.883 0.919 0.761 0.803 66
0.95 0.80 0.78 4 2 2 0.960 0.972 0.800 0.850 0.800 0.819 64
0.95 0.80 0.80 4 2 2 0.960 0.972 0.800 0.850 0.800 0.819 64
0.95 0.80 0.82 4 2 2 0.967 0.977 0.820 0.866 0.820 0.847 58
0.95 0.80 0.84 5 3 3 0.953 0.981 0.840 0.913 0.840 0.904 55
0.95 0.80 0.86 5 3 3 0.962 0.986 0.860 0.927 0.860 0.919 50

Now, we discuss the selection of optimal x values to maximize the n3 and meet the requirements using
examples in Table 1. As shown in Table 1, when preq

3 is 0.76, the achievable panal
3 is only 0.761 with

x3 = 2. This indicates that when preq
3 becomes 0.78, panal

3 cannot meet the requirement any longer with
x3 = 2, i.e., 0.761 is less than 0.78. From Equation (11), there are two ways to increase panal

3 (suppose that
k = 3). One way is to increase the value of xk in the left-hand side (lhs) of Equation (11). As xk increases,
the lhs increases accordingly. Another way is to reduce λmax. It is clear that the lhs decreases as λmax

decreases. It can be seen that, from Equation (6), the value of λmax depends on xi, where 1 ≤ i ≤ m.
Note that our greedy algorithm tests all possible cases. In this particular case, it appears that reducing

λmax results in a larger n3, i.e., x1 and x2 values are decreased to reduce λmax. This can be also regarded
as follows. In order to increase panal

3 , panal
1 and panal

2 are sacrificed by reducing x1 and x2. This also
agrees with the results in Table 1 when preq

3 is 0.78, panal
1 and panal

2 values have lower values with less x1

and x2 values than when preq
3 is 0.76.
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It is also possible in some cases that the greedy algorithm selects a higher x3 value with which a
maximal n3 value can be obtained, while satisfying the requirements. For example, when preq

3 values are
varied from 0.82 to 0.84 in Table 1, the algorithm selects an increased value of x3 to maximize n3. In
this case, x1 and x2 are also increased to meet preq

1 and preq
2 , respectively. Note that when x3 increases,

λmax also increases. However, in this case, the preq
3 gain from raising x3 is higher than that lost from

increasing λmax. Therefore, preq
3 increases when a greater x3 value is used.

Another point to note is that when preq
3 varies from 0.8 to 0.82, nmax

3 also changes from 64 to 58, even
with the same xi values. This is because nmax

3 depends on preq
3 , as shown in Equation (13). Furthermore,

note that Psim
1 , Psim

2 and Psim
3 values increase, since nmax

3 has a lower value with the same xi values.
The results in Table 1 also show that, in all cases, both Panal and Psim are greater than Preq, i.e.,

the required PDR is always satisfied for all classes. This indicates that, by using the solution to the
optimization formulation, the maximum number of nodes in a specific class can be obtained while
satisfying the required PDR for all classes.

Table 2 shows the results based on the solution obtained using the interior-point algorithm. The results
are close to those in Table 1, except that xi and nmax

3 are real numbers. Recall that the ceilings of xi and
the floor of nmax

3 values are used for simulations. When the PDR requirement of class Q3 varies from 0.7
to 0.86, the maximum number of nodes in class Q3 decreases from 87 to 53.

Table 2. The effects of the PDR requirement for class Q3 on the PDR achieved from the
interior-point algorithm, and the maximum number of nodes in class Q3 (with n1 = 5,
n2 = 15, p1 = 0.95, p2 = 0.80).

Preq
1 Preq

2 Preq
3

Opt. Solut.
Panal

1 Psim
1 Panal

2 Psim
2 Panal

3 Psim
3 nmax

3x1 x2 x3

0.95 0.80 0.70 4.321 2.321 1.737 0.950 0.962 0.800 0.865 0.700 0.716 87.6
0.95 0.80 0.72 4.321 2.321 1.836 0.950 0.967 0.800 0.884 0.720 0.739 82.8
0.95 0.80 0.74 4.321 2.321 1.943 0.950 0.970 0.800 0.896 0.740 0.751 78.3
0.95 0.80 0.76 4.321 2.321 2.058 0.950 0.956 0.800 0.838 0.760 0.821 73.9
0.95 0.80 0.78 4.321 2.321 2.184 0.950 0.956 0.800 0.860 0.780 0.843 69.6
0.95 0.80 0.80 4.322 2.322 2.322 0.950 0.963 0.800 0.882 0.800 0.862 65.5
0.95 0.80 0.82 4.322 2.322 2.474 0.950 0.970 0.800 0.891 0.820 0.881 61.5
0.95 0.80 0.84 4.322 2.321 2.643 0.950 0.974 0.800 0.908 0.840 0.897 57.5
0.95 0.80 0.86 4.322 2.322 2.836 0.950 0.982 0.800 0.917 0.860 0.911 53.6

Furthermore, note that, as shown in Tables 1 and 2, there are differences between Panal and Psim

values, and in all cases, Psim values are greater than Panal values. In particular, we can observe these
phenomena more clearly in Table 1, where there is no distortion, due to the ceiling effect. The reason
for these phenomena is that the maximum arrival rate of background traffic, λmax, is used to calculate
Panal , which results in a lower value of Panal . Therefore, this value can be considered as the lower
bound of the PDR that can be achieved, and the results also agree with Lemma 1. In terms of nmax

3 , the
greedy algorithm and interior-point algorithm show similar results, i.e., interior-point algorithm outputs
three more nodes on average. Note that the greedy algorithm shows a higher PDR for the highest
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priority group, i.e., Psim
1 with the greedy algorithm shows a 0.0091 higher value than with interior point

algorithm. Since the greedy algorithm shows a comparable performance in terms of nmax
3 and it shows a

higher PDR, which is important for guaranteeing QoS, from now on, we focus on the results from the
greedy algorithm.

Effects of Node Load

In this case, the PDR requirement for class Q3 is fixed to 0.7. Each underwater sensor periodically
generates data packet of 160 bytes. Every node in the cluster transmits data at the rate from 20 bps to
50 bps to the clusterhead, i.e., every node transmits data at every interval from T = 25.6 s to 64 s.

Table 3 shows the PDR requirements for each class (Preq
1 , Preq

2 , Preq
3 ) and the various node loads in

the network. It also shows the solution (x1, x2, x3) and the maximum supportable number of nodes in
class Q3 (nmax

3 ) determined from the optimization formulation. The greedy algorithm is used to find the
solutions in Table 3.

Table 3. The solutions from the greedy algorithm with various node loads (n1 = 5, n2 = 15).

Node load Preq
1 Preq

2 Preq
3

Opt. Solut.
nmax

3(bps) x1 x2 x3

20 0.95 0.80 0.70 5 3 2 84
25 0.95 0.80 0.70 5 3 2 60
30 0.95 0.80 0.70 5 3 2 44
35 0.95 0.80 0.70 5 3 2 33
40 0.95 0.80 0.70 5 3 2 24
45 0.95 0.80 0.70 5 3 2 18
50 0.95 0.80 0.70 5 3 2 12

As shown in Table 3, all solutions have the same vector, x. Note that the node load is controlled by
varying the packet transmission interval, T . Then, from Equation (13), it can be seen that nk is inversely
proportional to the node load. In other words, nk and T are linearly dependent with given pi and xi values,
which indicates that nk depends more on the change of the T value than on the change of xi values.

In order to facilitate understanding, we show and compare Preq, Panal and Psim over different node
loads in Figure 3. Furthermore, to show the confidence level of simulations, we present the standard
deviation of Psim values along with mean values in Figure 3.

From Figure 3, we can see that, when the node load is high, a smaller number of nodes in class Q3 can
be supported. On the contrary, when the node load becomes lower, the considered cluster in the network
can accommodate a larger number of nodes in class Q3, while meeting the PDR requirements.

More specifically, Figure 3 shows that the nodes in all classes can satisfy their PDR requirements
over various node loads. However, when the node load increases from 20 bps to 50 bps, the maximum
supportable number of nodes in class Q3 shows a sharp decline from 84 to 12. In particular, up to the
30 bps node load, the supportable number of nodes in Q3 decreases sharply. Figure 3 also indicates that,
by using the optimal value of the maximum number of retransmissions, the average PDR value of nodes
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in all classes are above their PDR requirements as the node load increases. For example, in Figure 3a,
which shows obtained PDR values for class Q1, the average PDR values from both the analytical model
and simulation are always equal to or greater than the required PDR value, 0.95. This also applies to
class Q2 and class Q3 in Figure 3b,c, respectively.

Figure 3. Effects of node load on the PDR (mean +/- standard deviation) achieved from the
greedy algorithm and from simulations, and the maximum number of nodes in class Q3 with
n1 = 5, n2 = 15. (a) For class Q1; (b) For class Q2; (c) For class Q3.
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5.2.2. Analysis of Results for Four QoS Classes

In this section, we show that the proposed scheme can support four QoS classes. The greedy
algorithm is used to find the solution in this experiment.

Effects of PDR Requirement for Class Q4

Similarly to the case of three QoS classes, every node transmits a data packet of 160 bytes to the
clusterhead in every interval of T = 64 s, which leads to the transmission rate of 20 bps. The PDR
requirement for class Q4 is varied from 0.7 to 0.86.

Table 4 shows the effects of the PDR requirement for class Q4 on the PDR values of the nodes in each
QoS class, which are obtained from the greedy algorithm and simulations. It also shows the obtained
maximum supportable number of nodes in class Q4 using the optimal x values.

As shown in Table 4, when the required PDR for class Q4 varies from 0.7 to 0.86, the maximum
supportable number of sensor nodes, nmax

4 , in this class decreases from 46 to 25 or, equivalently, the
maximum supportable number of sensor nodes in the considered cluster decreases from 86 to 65. More
specifically, if the required PDR for class Q4 is 0.7, the considered cluster can support 46 nodes in this
class. On the other hand, if the PDR requirement for the nodes in class Q4 is 0.86, the cluster can support
only 25 nodes in class Q4.

Note that, in some cases, nmax
4 remains the same even when Preq

4 increases. For example, when Preq
4

varies from 0.74 to 0.80, nmax
4 keeps the value of 36. This is because the effect of the Preq

3 ’s change
is not enough for changing the nk value in Equation (13). Furthermore, Panal

3 = 0.83 is sufficient for
Preq

3 values from 0.74 to 0.80, which results in the same xi values and nk. The results also indicate that,
among all feasible solutions, the solution x = {4,3,2,2} can achieve the maximum number of nodes in
Q4 in the given Preq

4 range.

Table 4. The effects of the PDR requirement for class Q4 on the PDR achieved from the
greedy algorithm and the maximum number of nodes in class Q4 (with n1 = 5, n2 = 15,
n3 = 20, Preq

1 = 0.95, Preq
2 = 0.90, Preq

3 = 0.80).

Preq
4

Opt. Solut.
Panal

1 Psim
1 Panal

2 Psim
2 Panal

3 Psim
3 Panal

4 Psim
4 nmax

4x1 x2 x3 x4

0.70 5 4 3 2 0.95 0.97 0.91 0.94 0.83 0.90 0.70 0.77 46
0.72 5 4 3 2 0.96 0.98 0.92 0.96 0.85 0.91 0.72 0.80 40
0.74 4 3 2 2 0.96 0.97 0.91 0.93 0.80 0.84 0.80 0.83 36
0.76 4 3 2 2 0.96 0.97 0.91 0.93 0.80 0.84 0.80 0.83 36
0.78 4 3 2 2 0.96 0.97 0.91 0.93 0.80 0.84 0.80 0.83 36
0.80 4 3 2 2 0.96 0.97 0.91 0.93 0.80 0.84 0.80 0.83 36
0.82 6 4 3 3 0.97 0.99 0.90 0.95 0.82 0.91 0.82 0.91 32
0.84 5 4 3 3 0.95 0.98 0.91 0.96 0.84 0.91 0.84 0.91 30
0.86 5 4 3 3 0.96 0.98 0.92 0.96 0.86 0.93 0.86 0.92 25
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Effects of Node Load

In this case, the PDR requirement for class Q4 is fixed to 0.7. Every node in the cluster transmits data
at the rate from 18 bps to 30 bps to the clusterhead with the data packet size of 160 bytes, i.e., every node
transmits data at every interval from T = 42.67 s to 71.11 s. Figure 4 compares Preq, Panal and Psim over
different node loads for all QoS classes.

As shown in Figure 4, the case of four classes shows a similar pattern to the three-class case. When
the node load is small, a higher number of nodes in class Q4 can be supported. When the node load
becomes higher, the considered cluster in the network can accommodate a smaller number of sensor
nodes in class Q4, while satisfying the PDR requirements. Furthermore, the nodes in all classes can
meet their PDR requirements over various node loads.

Figure 4. The effects of node load on the PDR (mean +/- standard deviation) achieved from
the greedy algorithm and from simulations and the maximum number of nodes in class Q4

with n1 = 5, n2 = 15, n3 = 20. (a) For class Q1; (b) For class Q2; (c) For class Q3; (d) For
class Q4.
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5.2.3. Analysis of Results for Three QoS Classes with Different Packet Sizes

In this subsection, we consider a case where each QoS class has a different packet size. The sensor
nodes in class Q1, Q2 and Q3 periodically generate data packets of 300 bytes, 200 bytes and 150 bytes,
respectively. The PDR requirement for class Q3 is varied from 0.7 to 0.9. We discuss the effects of the
PDR requirement for class Q3 on the maximum number of sensor nodes in class Q3.

From Table 5, we can see that the nodes in all classes satisfy their PDR requirements, i.e., the Psim

and the Panal values are greater than Preq values. As the required PDR for class Q3 increases from 0.7 to
0.9, the maximum supportable number of sensor nodes in this class decreases from 51 to 27 nodes. The
results also implicate that, in order to satisfy the required PDR for all classes, the maximum number of
nodes in selected class decrease as the required PDR for this class increases.

Table 5. The effects of the PDR requirement for class Q3 on the PDR achieved from the
greedy algorithm and the maximum number of nodes in class Q3 (with n1 = 5, n2 = 15,
p1 = 0.95, p2 = 0.80 and a different packet size for each QoS class).

Preq
1 Preq

2 Preq
3

Opt. Solut.
Panal

1 Psim
1 Panal

2 Psim
2 Panal

3 Psim
3 nmax

3x1 x2 x3

0.95 0.80 0.70 5 2 1 0.979 0.989 0.879 0.897 0.716 0.719 51
0.95 0.80 0.72 4 2 1 0.970 0.987 0.903 0.924 0.748 0.750 42
0.95 0.80 0.74 6 2 2 0.970 0.994 0.813 0.878 0.873 0.893 40
0.95 0.80 0.76 6 2 2 0.970 0.994 0.813 0.878 0.873 0.893 40
0.95 0.80 0.78 6 2 2 0.970 0.994 0.813 0.878 0.873 0.893 40
0.95 0.80 0.80 6 2 2 0.970 0.994 0.813 0.878 0.873 0.893 40
0.95 0.80 0.82 6 2 2 0.970 0.994 0.813 0.878 0.873 0.893 40
0.95 0.80 0.84 6 2 2 0.970 0.994 0.813 0.878 0.873 0.893 40
0.95 0.80 0.86 6 2 2 0.971 0.993 0.817 0.886 0.876 0.890 39
0.95 0.80 0.88 6 2 2 0.981 0.996 0.845 0.909 0.895 0.921 32
0.95 0.80 0.90 5 2 2 0.977 0.995 0.873 0.929 0.915 0.938 27

Another point to note in Table 5 is that in many cases, nmax
3 keeps the same value of 40. When Preq

3 is
0.74, the algorithm selects x = {6,2,2} with which the obtained values of nmax

3 = 40 and Panal
3 = 0.873.

When Preq
3 becomes 0.76, nk is calculated again using Equation (13). In this case, it appears that the

effect of the Preq
3 ’s change is not significant to change the new nk value. Moreover, Panal

3 = 0.873 is
sufficient for new Preq

3 = 0.76. Therefore, the nk remains at the same value. The phenomenon continues
until Preq

3 becomes 0.86, which has a sufficient impact on changing the nk value in Equation (13). When
Preq

3 varies from 0.88 to 0.9, Panal
3 = 0.895 does not meet the new Preq

3 = 0.9. Therefore, as shown in
Equation (11), x3 should be increased or λmax should be reduced. In this case, the algorithm chooses to
reduce λmax by decreasing the x1 value from six to five, since it leads to a larger value of nmax

3 .

6. Concluding Remarks

In this paper, we have proposed a practical and low-complexity MAC scheme that does not require
time synchronization or scheduling overhead, for QoS-aware and cluster-based underwater acoustic
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sensor networks (UASN). In particular, we have considered an optimization problem to maximize the
supportable number of sensor nodes in UASNs that are required to provide differentiated QoS in terms
of PDR. In order to address the problem, the packet delivery probability (PDP) has been estimated, and
based on the estimation, an optimization formulation has been designed to determine optimal values
of the maximum number of packet retransmissions for each QoS class. The greedy and interior-point
algorithms are used to find the solutions, which are verified by simulations. The simulation results have
shown that, by solving the proposed optimization formulation, the supportable number of underwater
sensor nodes can be maximized, while satisfying the QoS requirements for each class.
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