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Abstract: Piezoelectric material has been emerging as a popular building block in MEMS 

devices owing to its unique mechanical and electrical material properties. However, the 

reliability of MEMS devices under buckling deformation environments remains elusive 

and needs to be further explored. Based on the Talreja’s tensor valued internal state 

damage variables as well as the Helmhotlz free energy of piezoelectric material, a 

constitutive model of piezoelectric materials with damage is presented. The Kachanvo 

damage evolution law under in-plane compressive loads is employed. The model is applied 

to the specific case of the postbuckling analysis of the piezoelectric plate with damage. 

Then, adopting von Karman’s plate theory, the nonlinear governing equations of the 

piezoelectric plates with initial geometric deflection including damage effects under  

in-plane compressive loads are established. By using the finite difference method and the 

Newmark scheme, the damage evolution for damage accumulation is developed and the 

finite difference procedure for postbuckling equilibrium path is simultaneously employed. 

Numerical results show the postbuckling behaviors of initial flat and deflected 

piezoelectric plates with damage or no damage under different sets of electrical loading 

conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, 

damage as well as initial geometric deflections on the postbuckling behaviors of the 

piezoelectric plate are discussed. 
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1. Introduction 

The use of piezoelectric materials in intelligent structures has received considerable attention in 

recent years due to the intrinsic direct and converse piezoelectric effects. Piezoelectric materials have 

been used as sensors or actuators for the control of the active shape or vibration of structures. Defects 

such as microcracks, voids, dislocations and delamination are introduced in piezoelectric materials 

during the manufacturing and poling process. The existence of these defects greatly affects  

the electric, dielectric, elastic, mechanical and piezoelectric properties of the piezoelectric materials, 

especially the service life of piezoelectric structures. When subjected to mechanical and electrical 

loads, these defects may grow in size and cracks may propagate leading to premature mechanical or 

electrical fatigue failure. Therefore, it is important to understand the growth of these defects, the 

damage accumulation and the overall effect of these defects on the average mechanical and electrical 

properties of piezoelectric structures. 

Damage in fiber-reinforced composite materials has been extensively investigated, and many 

theories have been established and used to predict the life of composite structures. Based on the 

framework of irreversible thermodynamics with internal state variables, Talreja [1] developed a 

phenomenological theory for composite laminated plates. In his study, the Helmholtz free energy was 

expanded into a polynomial in terms of elastic strains and damage variables to obtain the stiffness-damage 

relations. Utilizing a continuum mechanics approach, Allen et al. [2,3] developed a model for 

predicting the thermomechanical constitution of initially elastic composites subjected to both 

monotonic and cyclic fatigue loading. Valliappan et al. [4] established the elastic constitutive 

equations for anisotropic damage mechanics, and the implementation of these constitutive equations in 

the finite element analysis was explained. By defining damage variables as the material stiffness 

reduction, Ladeveze and Dantec [5] formulated the constitutive equations and the corresponding 

damage evolution laws of the elementary ply for laminated composites that can be used to describe the 

matrix micro-cracking and fiber/matrix debonding. Schapery and Sicking [6] discussed the 

homogenized constitutive equations for the mechanical behavior of unidirectional fiber composites 

with growing damage, and the emphasis was on resin matrices reinforced with high modulus elastic 

fiber. Zhang et al. [7] investigated a computational model for the damage evolution of engineering 

materials under dynamic loading, and two models for dynamic damage evolution of materials in 

general anisotropic damage state were presented. Moore and Dillard [8] have observed time dependent 

growth of transverse cracks in graphite/epoxy and Kevlar/epoxy cross-ply laminated at room 

temperature. Luo and Daniel [9] have shown that the macroscopic mechanical behavior of 

unidirectional fiber-reinforced brittle matrix composites can be correlated explicitly with the 

microscopic deformation and damage. 

Modeling and analysis of multilayer piezoelectric beams and plates have reached a relative maturity 

as attested by the numerous papers. Mindlin [10] presented the theory of piezoelectric crystals plate 
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considering shear and bending. Chandrashekhara and Tiersten [11] developed general piezoelectric 

nonlinear theory and detailed the vibration equations of different piezoelectric crystals. 

Chandrashkhara, Tenneti [12] and Zhou et al. [13] investigated the dynamic control of laminated 

piezoelectric plates by the finite element (FE) method. Wang and Rogers [14] presented a model for 

laminated plates with spatially distributed piezoelectric patches. Tzou and Gadre [15] analyzed thin 

laminates coupled with shell actuators for distributed vibration control. Xu et al. [16] analyzed the free 

vibration of laminated piezothermoelectric plate based on the 3D theory. Mitchell and Reddy [17] 

proposed the theory of the laminated piezoelectric plates by using classical plate theory and simple 

third-order theory, respectively. Noor and Peters [18] presented postbuckling analysis of multilayered 

composite plates subjected to combined axial and thermal loads and investigated the effects of 

mechanical and thermal loading on postbuckling behaviors of composite plates. Based on transverse 

shear-deformable theory, Librescu and Souza [19] gave the postbuckling analysis of geometrically 

imperfect flat panels under combined thermal and compressive edge loadings. Shen [20] investigated 

the postbuckling behaviors of laminated plates with piezoelectric actuators under complex loading 

conditions based on Reddy’s higher order shear deformation plate theory. Oh et al. [21] studied 

thermal postbuckling behavior of laminated plates with top and/or bottom actuators subjected to 

thermal and electrical loads. In their analysis all the static/dynamic behaviors of laminated plates were 

investigated without considering the damage effects which would greatly influence the mechanical 

behaviors of smart structures. To the best of the author’s knowledge, up to now postbuckling analysis 

of piezoelectric structures considering the damage effects has rarely been investigated and reported. 

For example, Aydin [22] studied the dynamic characteristics of functionally graded beams with open 

edge cracks, in which an analytical method was proposed to determine the free vibration of beams with 

any number of cracks. Mao et al. [23] studied the creep buckling and post-buckling of laminated 

piezoelectric viscoelastic functionally graded material (FGM) plates by adopting the Boltzmann 

superposition principle, and the nonlinear creep buckling governing equations of the laminated 

piezoelectric viscoelastic FGM plates with initial deflection were derived on the basis of the Reddy’s 

higher-order shear deformation plate theory. Hamed [24] presented a nonlinear theoretical model for 

their bending and creep buckling analysis. The model accounted for the viscoelasticity of the materials 

using differential-type constitutive relations that were based on the linear Boltzmann’s principle of 

superposition. Xu et al. [25] presented a high performance and simple structure bi-stable piezoelectric 

energy harvester based on simply supported piezoelectric buckled beam. Cottone et al. [26] 

investigated an approach for piezoelectric beams by exerting an increasing axial compression and 

demonstrated that the numerical model and experimental results were in good qualitative agreement. A 

constitutive model of fully coupled electro-magneto-thermo-elastic multiphase composites has been 

proposed by Aboudi [27]. In his works, the linear displacement, electric potential and magnetic 

potential are adopted, which can’t predict the micro fields precisely. Bansal and Pindera [28] proposed 

a unified macro-and micro-mechanics failure model with method of cells as finite-volume direct 

averaging micromechanics (FVDAM). Based on the FVDAM theory, Sun et al. [29] built a unified 

macro- and micro-mechanics constitutive model of fully coupled fields in composite materials by  

high-order displacement, electric potential and magnetic potential. 

In the present study, a new constitutive model for piezoelectric materials using the Talreja’s tensor 

valued internal state damage variables and the Helmhotlz free energy of piezoelectric material is 

http://www.sciencedirect.com/science/article/pii/S0997753813000600
http://www.sciencedirect.com/science/article/pii/S0997753811000374
http://yadda.icm.edu.pl/yadda/contributor/5b6cb412951e175c466a28eea4c71a63
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presented. This model is then applied to a specific case of postbuckling analysis of piezoelectric plates 

under in-plane compressive loads. By adopting von Karman’s plate theory and using the finite 

difference and the Newmark scheme, the damage evolution for damage accumulation is developed and 

the finite difference procedure for postbuckling equilibrium path is simultaneously employed. In the 

numerical examples, the effects of variation in the load parameters, damage influences and geometric 

parameters of the plate on postbuckling equilibrium paths are discussed. 

2. Basic Equations 

2.1. Constitutive Equations for Damaged Piezoelectric Materials 

Consider a representative volume element of a piezoelectric solid with a multitude of damage 

entities in the form of microcracks, as shown in Figure 1. As discussed in Talreja, two vectors are 

needed to define each damage entity. These are the damage influence vector ia and the in  unit normal 

to the damage entity surface. The damage influence vector represents an appropriately chosen effect of 

the damage entity on the surrounding medium. With these two vectors, a damage entity tensor 
ijd  is 

formed by taking an integral of the diad i ja n  over the surface of the damaged entity: 

ij i j
S

d a n dS   (1) 

where S  is the damage entity surface. 

Figure 1. Representative volume element with internal damage variables for piezoelectric materials. 

 

Now if there are n  distinct damage modes in the representative volume element (e.g., intralaminar 

cracks in different orientations, etc.) denoted by 1,2,k n , a damage tensor can be defined for each 

mode as: 

1
( )

k

k

k

ij ij

r

d
V




    (2) 

where rV  is the volume of the representative volume element and k represents the number of damage 

entities in the thk  damage mode. The tensor k

ij  is an unsymmetrical tensor in general. However, we 

can represent the vector ia along the normal and tangential directions at any point on the surface of the 

damage entity and write: 

1 2

ij ij ijd d d   (3) 
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where 1

ij i j
S

d an n dS   and 2

ij i j
S

d bm n dS  .in which, a and b are the magnitudes of the normal and 

tangential projections of vector
ia respectively, and vectors 

in and im are unit normal and tangential 

vectors, respectively. Thus the damage tensor
ij can be written as: 

1 2k k k

ij ij ij     (4) 

where 1 1( ) /
k

k

k

ij ij rd V


  and 2 2( ) /
k

k

k

ij ij rd V


  . 

Physically, the damage tensor 1k

ij  represents the effects of crack opening on the surrounding medium 

whereas the damage tensor 2k

ij  represents the effects of sliding between the two crack faces. In many 

situations, the sliding between the crack faces can be negligible, e.g., for intralaminar cracks constrained 

by stiff plies, and hence we assume 2 0k

ij  . This implies 1k k

ij ij  which is a symmetric tensor. 

For the case of damaged piezoelectric material without temperature effect where the damage is 

represented by internal state variables, the Helmholtz free energy of piezoelectric material can be 

written as a function of the transformed elastic strains, the electric field vector and damage internal 

variables, that is: 

( , , )k

ij i ijH H E   (5) 

The transformed stress components
ij and the electric displacement components iG at any fixed 

damage state are now given by: 

( , , )

( , , )

k

ij i ij

ij

ij

k

ij i ij

i

i

H E

H E
G

E

 




 







 



 
(6) 

When the damage induced by the cracks in the piezoelectric material has the orthotropic property, 

the irreducible integrity bases for a scalar polynomial function of two symmetric second rank tensors 

can be expressed as [30]: 

2 2 2

11 22 33 23 31 12 12 23 31

2 2 2

11 22 33 23 31 12 12 23 31

23 23 31 31 12 12 23 12 13 31 32 12 12 13 23

23 12 13 31 32 12 12 13 23

1 2 3
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, , , ( ) , ( ) , ( ) ,

, , , , , ,
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, ,
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k k k k k k

E E E

        

        

              

        

 ( 1,2, )k n   (7) 

where n  is the number of the cracks’ direction in the material. For a piezoelectric single-layer plate, 

the local coordinate system 1 2 3o   is selected, in which 1,2 denote the two principal direction of 

the piezoelectric plate, 3  is vertical to the midsurface. According to the Kirchhoff hypothesis for plate

0
2313
 and applying Voigt notation to describe strains and damage variables, the bases of 

invariants can be further written as: 

2 2 2 2

1 2 3 6 1 2 3 4 5 6

4 5 6 6 6 6 4 5

1 2 3

, , , , , , , ( ) , ( ) , ( ) ,

, ,

, ,

k k k k k k

k k k k k k

E E E

         

        , ( 1,2, )k n   (8) 



Sensors 2014, 14 4881 

 

 

Using the above stated irreducible integrity bases, the Helmholtz free energy of piezoelectric 

materials can be expressed as a quadratic expression of the strains or the electric field intensity, a 

mixture quadratic expression of strains and electric field intensity and a linear expression of damage 

variables [31] as follows: 
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(9) 

where 0( 1,2, 7)iC i  are the elastic material constants without damage, 0( 1,2, 9)ie i  are the 

piezoelectric constants without damage, 0( 1,2, 6)i i  are the permittivity matrix constants without 

damage, ( 1,2, 24)k

iC i   are the material constants with damage; ( 1,2, 30)k

ie i  are the 

piezoelectric constants with damage, ( 1,2, 18)k

i i  are the permittivity matrix constants with 

damage,  is the density of piezoelectric material, 0P is a constant, 1P is a linear function of strains, 2P is a 

linear function of damage variables and 3P  is a linear function of the electric field intensity. Then the 

stresses and the electric displacements can be expressed as: 
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where 0 0, ,k

pq pq mnC C  and k

mn are all symmetric matrixes having the forms as follows: 
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Assuming that there is only one damage mode in the representative volume element, the relations of 

the strains, the stresses, the electric field intensity and the electric displacements in Equation (10) can 

be simplified as: 

0 1 0 1

0 1 0 1

[ ] [ ]

[ ] [ ]

p pq pq q pm pm m

T

m qm qm q mn mn n

C C e e E

G e e E

 

  

   

   
 (17) 

where 0 0,pq pmC e and 0

mn are the same as before. , ,k k k

pq pm mnC e   are replaced by 1 1 1, ,pq pm mnC e  . 

In present study, consider that the matrix cracks in the piezoelectric plate are parallel to the 

coordinate plane 2 3 , all damage variables except 1  are zero, then the coefficient matrixes in 

Equations (12), (15) and (16) can be simplified as: 

1 1 13 1 19 1

1 4 1 16 1

7 1

10 1

2 0

2 0
[ ]

2 0

2

pq

C C C

C C
C

C

C

  

 





 
 
 
 
 
  

 
(18) 

1 1 10 1 19 1

1 4 1 13 1 22 1

7 1 16 1 25 1

[ ]

0 0 0

pm

e e e

e e e
e

e e e

  

  

  

 
 
 
 
 
 

 
(19) 

1 1 10 1 16 1

1

4 1 13 1

7 1

2

[ ] 2

2

mn

     

    

 

 
 

  
 
 

 (20) 



Sensors 2014, 14 4883 

 

 

Due to the fact the cracks are parallel to the coordinate plane 2 3 , the effect of the damage on the 

stiffness of the plate in this coordinate plane 2 3 can be neglected, which means the component 1

11C  

and 3

11C of stiffness matrix due to damage effect are negligible. Then matrix (18) can be further 

simplified as: 
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(21) 

Letting
3 0  based on plane-stress assumption and using Equation (17), the constitutive relations 

with damage of the piezoelectric plate for the plane stress problems are obtained as follows: 
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where: 
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(28) 

In the present research, the Kachanvo damage evolution law [32] is adopted for an arbitrary point i

of the piezoelectric plate with damage: 
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i i

eq f

i i
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   

   

 

 
 (29) 

where B , m and are the material constants, 
eq is an equivalent stress which is based on certain failure 

criterion, 
f is the limit stress. 

The relations between the electric fields , ,x y zE E E and the electric potential  in the Cartesian 

coordinate system are defined by: 

, , ,, ,x x y y z zE E E         (30) 

For the piezoelectric plate, only thickness direction electric field 
zE is dominant. If the voltage 

applied to the piezoelectric plate with piezoelectric effect in the thickness only, then: 

z eE V h  (31) 

where 
eV is the applied voltage across the thickness of piezoelectric plates. 

2.2. Basic Equations of Piezoelectric Plates 

Now, consider a thin piezoelectric plate with transverse cracks subjected to uniformly distributed 

in-plane compressive load P  in the x-direction, having thickness h , length a  in the x-direction, width 

b  in the y-direction shown in Figure 2. The reference surface defined by 0z   is set on the middle 

surface of the undeformed plate. 
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Figure 2. Geometric configuration of a piezoelectric plate with transverse cracks under the 

uniform compressive in-plane loads. 

 

Setting ,u v and w as the displacement components of an arbitrary point on the mid-surface along the 

direction of ,x y and z , respectively, and denote w as the initial geometric deflection. According to 

classical nonlinear theory, the strain components 0 0,  x y  and 0

xy of the mid-surface [33] can be written as: 

xyyxyxxyxyyyyyyxxxxx
wwwwwwvuwwwvwwwu

,,,,,,,,

0

,,

2

,,

0

,,

2

,,

0   ,
2

1
  ,

2

1
   (32) 

and the curvatures ,  x y  and xy of the mid-surface as: 

, , ,, , 2x xx y yy xy xyw w w         (33) 

then the nonlinear strain-displacement relations are expressed as follows: 

 (34) 

Suppose the damage variable remains constant through the thickness of plate. Denoting
xyyx

NNN ,, as 

the membrane stress resultants and
xyyx

MMM ,, as the stress couples of the plate, according to the 

classical nonlinear plate theory, the nonlinear governing equations of the piezoelectric plate with initial 

geometric deflection [33] can be written as: 

0)()(2)(2

0

0

,,,,,,,,,

,,

,,







yyyyyxyxyxyxxxxxyyyxyxyxxx

yyxxy

yxyxx

wwNwwNwwNMMM

NN

NN

 (35) 

Using Equations (22) and (34), the following constitutive equations can be obtained: 
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where , ,p p p

x x xyN N N and , ,p p p

x y xyM M M represent the component resultants and couples due to the 

piezoelectric effect, respectively. The stiffness coefficients 
ijA and

ijD of the piezoelectric plate are 

defined as follows: 
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The resultants and couples due to the piezoelectric effect can be written as: 

 (39) 

Introducing the following dimensionless parameters: 
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By using Equations (22), (32–39) and (40), the dimensionless nonlinear governing equations of 

piezoelectric plate with initial geometric deflection under compressive loads in-plane including 

damage effects are obtained and expressed in terms of VU , andW as follow: 
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(41) 

Suppose the boundary of the piezoelectric plate is simply movably supported, the dimensionless 

boundary conditions can be expressed as: 
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The dimensionless damage evolution equation of the piezoelectric plate subjected to the uniformly 

in-plane compressive load can be written respectively as follows: 
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 (43) 

Taking the mid-surface normal stress of the piezoelectric plate as the equivalent stress eq that is 

parallel to the fibrous direction, it can be presented as: 

2 2 2 2 2 2 11 1
11 12, 1 , 1 , , , 2 , 2 , , 312 2

( ) ( )eq eC U W W W C V W W W e V                   (44) 

3. Solution Methodology 

Suppose the dimensionless initial geometric deflection is taken as: 

0 sin sinW W p q   (45) 

where p and q are the mode number in the  -direction and -direction of the piezoelectric plate, 

respectively. Since the load and the structure are symmetric, only one quarter of the plate needs be 

considered. So the domain of the problem is selected as 0 1 2, 0 1 2     . 

To seek the approximate solutions of the governing Equations (41) which satisfied the boundary 

conditions (42), the unknown functions ,U V  and W are separated both for space and for time. The 

finite difference method is used for space, and the partial derivatives with respect to the space 

coordinate variables are replaced by difference form. The time is equally divided into small time 

segments  , and the whole equations are iterated to seek solutions. At each step of the iteration, the 

nonlinear items in the equations and the boundary conditions are linearized. For example, at the step J , 

the nonlinear items may be transformed to: 

pJJJ
yxyx )()()(   (46) 

where 
pJ

y)( is the average value of those obtained in the preceding two iterations. For the initial step of 

the iteration, it can be determined by using the quadratic extrapolation, i.e.:  

321
)()()()(




JJJJ
yCyByAy

p
 (47) 

and for the different step of the iteration, the coefficients ,A B andC can be expressed as follows: 

:1J  0,0,1  CBA  

:2J  0,1,2  CBA  

:3J  1,3,3  CBA  

(48) 

Moreover, using the Newmark scheme, the inertia in Equation (41) can be expressed as follows: 
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 (49) 

For every time step, the iteration lasts until the difference of the present value and the former is 

smaller than 0.1%, then continue the calculation of the next step. 

4. Numerical Results 

4.1. Comparison Study 

To ensure the accuracy and effectiveness of the present method, a test example was calculated for 

postbuckling analysis of isotropic rectangular plate with initial geometric deflection. Comparison of 

postbuckling response curves for isotropic rectangular plate with initial geometric deflection is shown 

in Figure 3. The boundaries of the plate are clamped movable edges. 0W denotes the center deflection 

of the plate. The close agreements between the present results and those of reference [33] demonstrate 

the present method is accurate and effective. 

Figure 3. Comparison of postbuckling response curves for isotropic rectangular plate with 

initial deflection )3/1,1.0(
0

 W . 

 

4.2. Parametric Study 

To study the piezo-effects and damage effects on the postbuckling behavior of the plates, several 

numerical examples were solved for initial flat and deflected plate. A piezoelectric plate consisting of 

the PZT-5A including initial damage is considered for postbuckling analysis. The material properties 

of PZT-5A are given as follows: 

 

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.3

0.6

0.9

1.2

1.5

P
a

2
/

2
E

h
3

W
0

 Present

 Ref[25]
 

 

Ref [33] 



Sensors 2014, 14 4889 

 

 

11 22 33 12 13 23

3 3

12 13 23

2 2 2

31 32 33 15 24

8 8

11 22 33

61.0GPa, 53.2GPa, 0.35, 0.38

22.6GPa, 21.1GPa, 7.75 10 (kg/m )

7.209C/m , 15.118C/m , 12.322C/m

1.53 10 F/m, 1.5 10 F/m

E E E

G G G

e e e e e

  



   

     

    

    

    

 
(50) 

When the effect of damage is omitted and the linear strain-displacement relations are adopted, the 

dimensionless governing equation corresponding to Equation (41) is presented as: 

4 2 2 2 2 4
11 12 66 221 , 1 2 , 1 2 , 2 ,

2

1 31 , ,

2 4

( )( ) 0e

D W D W D W D W

P e V W W
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 

     



   

   
 (51) 

The corresponding dimensionless boundary conditions of the simply movable supported plate can 

be written as: 

,

,

0, 1: 0 0

0, 1: 0 0

W W

W W









  

  

，

，
 (52) 

Considering a harmonic displacement solution for this buckling problem (51), the displacement that 

satisfies with the boundary conditions (52) can be expressed as: 

0( , ) sin sinW W m n     (53) 

Substituting Equation (53) into the Equation (51), the buckling load mnP of a perfect plate and the 

relation of the center deflection and the compressive load in-plane of the plate with initial geometric 

imperfection can be obtained, respectively, as: 

4 4
2

2 2
1

2 2 2 2 2 2 2
11 12 22 661 2 2 31( 2 4 )

n
mn e

m
P m D n D D n D e V
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         (54) 

31 0
0
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( )

emn

mn

P e V W
W P

P P





 (55) 

The least critical buckling load crP of the piezoelectric plate is determined by applying Equation (54) 

for the buckling mode ( , ) (1,1)m n  , as: 

4
2

2
1

2 2 2 2
11 12 22 661 2 2 31( 2 4 )cr eP D D D D e V




         (56) 

When the geometric parameters are given as
1 2 0.1,   0 0.1W  , the critical buckling load crP is 

obtained as 0.03290 and 0.03272 by using the Equation (56) and the algorithm in the present paper, 

respectively. Figure 4 shows the relations of the center deflection 0W of the piezoelectric plate and the 

in-plane compressive load P without considering the damage effect. It can be seen that the nonlinearity 

of the plate has great influence on the postbuckling paths of the piezoelectric plate with initial deflection. 
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Figure 4. Response curves of the centre deflection vs. compressive loads in plane without damage. 

 

A parametric study has been carried out and typical results are shown in Figures 5–14. It should be 

appreciated that in all figures 0W , 0W , eV and crP denote the dimensionless maximum deflection, the 

dimensionless maximum initial deflection of the plate, the dimensionless applied voltage acted upon 

the plate and the dimensionless least critical buckling load. In all examples the least critical buckling 

load is taken as 0.03272crP  , which was calculated without considering piezo-effects and with the 

geometric parameters
1 2 0.1   . 

When the damage effect is in consideration, the material parameters related to damage in all 

examples are taken as: 
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Figure 5 shows the postbuckling response curves for an initially flat and deflected piezoelectric 

plate without damage under different electrical loads and Figure 6 shows the effects of electrical loads 

on the postbuckling response curve of a piezoelectric plate without damage under two initial deflection 

conditions, respectively. The geometric parameters are given as
1 2 0.1   .Three electrical load 

conditions, referred as 1, 2 and 3, are considered. It can be seen that the negative control voltage 

results in the increase of the buckling load and the decrease of postbuckled deflection at the same 

compressive loads. In contrast, the positive control voltage decreases the buckling load and induces 

larger postbuckled deflections. It can be concluded that the positive control voltage acting upon the 

piezoelectric plate is equivalent to a compressive piezoelectric force acting in the in-plane direction of 

the plate to some certain extent, which leads to the smaller buckling loads. 
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Figure 5. Comparisons of postbuckling response curves for initially flat and deflected 

piezoelectric plate without damage under different electrical loads. 

 

Figure 6. Effect of electrical loads on postbuckling response curves of piezoelectric plate 

without damage under two different initial deflections. 

 

Figure 7 shows the effect of initial deflections on the postbuckling response curve of piezoelectric 

plate without damage. The geometric parameters are given as
1 2 0.1   . It can be seen that the larger 

the initial deflections of the plate, the larger the postbuckled deflection of the plate under the same 

compressive load, and that the postbuckled deflections of the plate under different initial deflections 

will reach the same value with the increase of postbuckling loads. 
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Figure 7. Effect of initial geometric deflections on the postbuckling response curves of 

piezoelectric plate without damage. 

 

Figure 8 shows the effect of thick-span ratio of the plate on postbuckling response curves of 

piezoelectric plate without damage under different electrical loads. It can be found that the buckling 

loads increase with the increase of the thick-span ratio of plate, and that the control voltage has a small 

effect on the postbuckling behaviors of the plate with lower thick-span ratio. 

Figure 8. Effect of thick-span ratio on postbuckling response curves of piezoelectric plate 

without damage under different electrical loads (the inset figure is a zoom-in snapshot of 

the region around orgin point to depict the difference of three cases). 
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that the buckling loads are increased by increasing the aspect ratio of the plate. It can also be found 

that the effect of control voltage is more pronounced for the square plate than for the rectangular plate. 

Figure 10 shows the effect of external loads on postbuckling response curves of piezoelectric plate 

with damage and initial deflection. The electrical load is taken as 0eV  . It can be concluded that the 

larger the external compressive loads, the quicker the development of damage and the more obvious 

the effect of damage on the postbuckling deflection. From Figure 11, the conclusion that the change of 

initial deflection has a small effect on the postbuckled deflection and the damage effect varies slightly 

can be drawn. 

Figure 9. Effect of aspect ratio on postbuckling response curves of piezoelectric plate 

without damage under different electrical loads. 

 

Figure 10. Effect of external loads on postbuckling response curves of piezoelectric plate 

with damage and initial deflection. 
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Figure 11. Effect of initial deflections on the postbuckling response curves of piezoelectric 

plate with damage. 

 

Figure 12 shows the effect of electrical loads on the postbuckling response curves of piezoelectric 

plate with damage and initial deflection. It can be seen that the control voltage has a notable effect on 

the postbuckled deflection and the effect of damage varies greatly. The negative control voltage results 

in a smaller rate of damage development of the plate than that of the same plate without electrical 

loads, so it can be concluded that the positive control voltage can increase the rate of degradation of 

the stiffness of the piezoelectric plate. This can be explained as follows: the effect of positive control 

voltage on the damaged piezoelectric plate is equivalent to a tensile force acting in the in-plane 

direction of the plate, resulting in the acceleration of the piezoelectric plate degradation process. 

Therefore, it demonstrates a prominent effect on the deformation of piezoelectric plate with damage 

under the same loading capacity. 

Figure 12. Effect of electrical loads on postbuckling response curves of piezoelectric plate 

with damage and initial deflection. 
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Figure 13 shows the effect of aspect ratio on postbuckling response curves of the piezoelectric plate 

with damage and initial deflections and Figure 14 shows the effect of thick-span ratio on postbuckling 

response curves of the piezoelectric plate with damage and initial deflections. The electrical load is 

taken as 0eV  . From Figure 13, it can be seen that the bigger the aspect ratio of the plate, the smaller 

the postbuckled deflection of the plate and the smaller the effect of damage. Figure 14 indicates that 

the larger the thick-span ratio, the smaller the postbuckled deflection of the plate and the smaller the 

effect of damage. 

Figure 13. Effect of aspect ratio on postbuckling response curves of piezoelectric plate 

with damage and initial deflection. 

 

Figure 14. Effect of thick-span ratio on postbuckling response curves of piezoelectric plate 

with damage and initial deflection. 

 

 

0 2000 4000 6000 8000
0.2

0.3

0.4

0.5

0.6

0.7



=0.10


=0.12



=0.10


=0.11

P =  1.2P
cr

P
cr
=0.03272

W
0
=0.1

   damage

 no damage



W
0



=0.10


=0.10

 

 

 

0 2000 4000 6000 8000 10000

0.7

0.8

0.9

1.0

1.1



W
0



=0.095


=0.095



=0.09


=0.09



=0.10


=0.10

   damage

 no damage

P =  1.2P
cr

P
cr
=0.03272

W
0
=0.1

 

 



Sensors 2014, 14 4896 

 

 

5. Conclusions 

This paper presents an approach to investigate the postbuckling analysis of piezoelectric plates 

including damage effects using Talreja’s tensor valued internal state damage variables and the 

Kachanvo damage evolution equation. The effects of applied voltage, plate aspect ratio, thick-span 

ratio, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric 

plate are investigated. Numerical results show that the nonlinearity of structure has a great influence on 

the postbuckling paths of the piezoelectric plate. The negative control voltage results in the increase of 

the buckling loads and the decrease of postbuckled deflections under the same in-plane compressive 

loads, whereas the positive control voltage decreases the buckling loads and induces larger 

postbuckled deflections. The buckling loads increase with the increase of the thick-span ratio of the 

plate, and the control voltage has a small effect on the postbuckling behaviors of the plate with lower 

thick-span ratio. When the damage and damage evolution are considered, the postbuckled deflection of 

the plate will gradually grow with the increase of the time until the damage reaches a characteristic 

damage state. The external in-plane compressive loads and the applied control voltage have great 

effects on the postbuckled deflections of the plate and the damage development. The negative control 

voltage can decrease the degradation rate of the stiffness of the piezoelectric structures and will 

provide a control mean for the damaged smart structures. 
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