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Abstract: This paper addresses the problem of modeling maneuvering target motion in 

tracking applications. A target trajectory can typically be divided into segments with 

different dynamic motion modes, such as a constant velocity motion, a constant acceleration 

motion or a constant turn rate motion. To integrate the different motion modes into a uniform 

model, a Constant Speed Changing Rate and Constant Turn Rate (CSCRCTR) model is 

proposed. A new state vector is defined, and the state transition function is derived. Based 

on the CSCRCTR model, we present a tracking algorithm using a particle filter. The 

performances of the CSCRCTR model, the uniform model (UM) and the interacting 

multiple model (IMM) for tracking a simulated maneuvering target are compared and show 

that the CSCRCTR model maintains a good consistency for different types of motions and 

achieves better accuracy than UM and IMM when maneuvers occur.  

Keywords: dynamic model; constant speed changing rate and constant turn rate 

(CSCRCTR) model; maneuvering target tracking 

 

1. Introduction 

In most tracking systems, the target motion is modeled as a system whose varying state makes a 

transition according to an underlying model or several switching models. More useful information 

about the target’s state can be extracted from observations by using a more appropriate model for the 
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target’s motion. The selection of the proper model for applications of maneuvering target tracking is 

important and this topic has received much attention.  

Many specific dynamic models of target motion have been developed for maneuvering target 

tracking. The simplest models for a maneuvering target are the white-noise acceleration model [1], 

which assumes the acceleration to be an independent process, and the constant-acceleration model [1], 

which assumes the acceleration to be a process with independent increments. The Singer acceleration 

model [2] assumes the acceleration to be a time-correlated stochastic process and lays the foundation 

for several other effective maneuver models, such as the mean-adaptive acceleration model [3] and the 

asymmetrically distributed normal acceleration model [4]. These models, in which the filters are 

uncoupled across the coordinates show poor performance for several typical maneuvers, such as turns. 

The constant turn rate (CT or CTR) model [5,6] replaces the acceleration with the turn rate. The CT 

model has been incorporated and extended in many other models [7,8]. Many filters and algorithms for 

maneuvering targets [1,5,9–12] are developed based on these specific dynamic models. The details of 

these models and more other dynamic models are illustrated in [9,13].  

Each of the models described above performs well in specific scenarios, but there is no universally 

optimal model for all applications. The interacting multiple model (IMM) method [14–16] models the 

target motion as a hybrid system in which the state evolves according to a stochastic differential 

equation; the model jumps from one to another among a finite number of possible models according to 

a set of transition probabilities. The IMM algorithm constructed with a small number of models 

provides good estimations when the models cover the types of motion well. A bank of more models is 

required to cover various types of maneuvers, which reduces the effectiveness of the IMM due to the 

unnecessary competition between many non-matched models at any particular time [17].  

The segmenting track identifier (STI) [18], which is a non-Bayesian tracker was proposed as an 

alternative approach for maneuvering target tracking. This data-driven estimator partitions a target 

trajectory into a sequence of segments and estimates the state parameters for each segment. The STI 

operates well in tracking a highly maneuvering target with unknown behavior such as a free-swimming 

fish, but does not perform as well in sophisticated weapon delivery, air traffic control or satellite 

surveillance systems in which the target motion is easier to predict. A key component of STI is to 

approximate one segment as a circular arc or as a straight line, which can also be treated as an arc with 

an infinite radius. Based on this idea, this paper proposes a constant speed changing rate and constant 

turn rate (CSCRCTR) model in which the trajectory in each frame is approximated as an arc. In many 

practical systems, the tangential force which makes a speed change and the normal force which makes 

a heading change are independent. By introducing the distances travelled during the last two frames 

and the heading angles at the last two sampling times to the state vector, the speed and the heading 

angle evolve independently in the state transition function. The CSCRCTR model matches well with a 

coordinated turn and a motion with a constant speed changing rate, which are the most common  

typical maneuvers.  

This paper is organized as follows: the constant speed changing rate and constant turn rate 

(CSCRCTR) model for maneuvering target motion is proposed in Section 2. The tracking algorithm 

based on the CSCRCTR model, including the initialization and recursive filtering method, is described 

in Section 3. Section 4 presents a simulation of tracking a maneuvering target and compares the 
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performances of the CSCRCTR model, the uniform motion (UM) model and the interacting multiple 

model (IMM). Section 5 summarizes concluding remarks.  

2. Constant Speed Changing Rate and Constant Turn Rate model 

In this study, we consider a target that is moving in a two-dimensional plane. In most traditional 

models, the state vector includes the position, the velocity, and the acceleration in both dimensions. 

The speed (magnitude of the velocity) and heading angle (direction of the velocity) are rarely included 

in the state. However, the direct result of a maneuver is a change of the speed or heading, which results 

in changes of the velocity and the acceleration. When the target starts to increase power, the resultant 

force in the movement direction causes the target to change speed; when the target starts to turn, the 

resultant force perpendicular to the movement direction makes the target change its heading angle.  

Equations (1) and (2) are in the integral forms of the target motion: 

t T

t T t
t

v v a d 


     (1)  

t h

t T t
t

d   


     (2)  

where tv  and t  are the speed and the heading angle of the target at time t , respectively, a  and   

are the changing rate of the speed and the changing rate of the heading angle at time  , respectively, 

T  is the sampling interval. The parameters tv , t , a  and   are all scalars, but not vectors. The 

changing rate of the heading angle,  , is the so-called turn rate.  

Since observations from the sensors are usually available only at discrete times, the model is often 

designed in a discrete-time form. A system with a fixed sampling interval, which is very common in 

many applications, is considered in this paper. We also make two assumptions here: 

(1) The speed changing rate is constant or nearly constant. 

(2) The turn rate is constant or nearly constant.  

The two assumptions are appropriate for both rectilinear motion with a uniform acceleration and a 

coordinated turn, which are two typical maneuvers. Obviously, the two assumptions both hold for a 

uniform motion. Based on these two assumptions, we have Equations (3) and (4):  

1c ps s aT constant    (3)  

2c p T constant      (4)  

where cs  and c  are the speed and heading angle at the current sampling time, respectively, ps  and 

p  are the speed and heading angle at the previous sampling time, respectively, a  is the constant 

speed changing rate, and   is the constant turn rate.  

As mentioned in Section 1, we approximate the trajectory between the previous sample and the 

current sample as an arc. The geometric relationship between the states at the two neighboring 

sampling times is shown in Figure 1.  
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Figure 1. The geometric relationship between two neighboring samples. 
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For the thk  frame, ( ( ), ( ))p px k y k  and ( ( ), ( ))c cx k y k  represent the positions at the previous 

sampling time and the current sampling time in a Cartesian coordinate system, respectively , 

( ( ), ( ))o ox k y k  represents the position of the center of the arc, and ( )cd k  represents the distance (not 

the displacement) during the current frame (the time between the previous sampling time and the 

current sampling time), which equals to the arc length. The geometric relationship between two 

neighboring samples can be written as Equations (5) and (6): 

( ) ( ) ( ) sin ( ) ( ) ( ) sin ( )o c c p px k x k r k k x k r k k      (5)  

( ) ( ) ( ) cos ( ) ( ) ( ) cos ( )o c c p py k y k r k k y k r k k      (6)  

where ( )r k  represents the radius of the arc and can be written as (7):  

( )
( )

( ) ( )

c

c p

d k
r k

k k 



 (7)  

For the explicitness of the model construction and the simplicity of implementing the filter, cs , 

which is the speed at the current sampling time, and ps , the speed at the previous sampling time, are 

replaced by cd , the distance during the current frame, and pd , the distance during the previous frame. 

Equation (3) thus becomes (8): 

2

3c pd d aT constant    (8)  

Let ( ) [ ( ), ( ), ( ), ( ), ( ), ( )]T

c p c pX k x k y k k k d k d k   denote the state vector at the 
thk  sampling time. 

By combining Equations (4)–(6) and (8), the transition function of the new proposed CSCRCTR 

model can be expressed as (9)–(14): 

( ) 2 ( 1) ( 1) ( 1)c c pk k k u k         (9) 

( ) ( 1)p ck k    (10) 
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( ) 2 ( 1) ( 1) ( 1)c c pd k d k d k v k       
(11)  

( ) ( 1)p cd k d k   (12)  
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 (14)  

The terms ( 1)u k   in (9) and ( 1)v k   in (11) represent the process noises, which are assumed to be 

two independent zero-mean Gaussian variables with variances of 2 ( 1)k   and 2( 1)d k  , respectively. 

3. Tracking Algorithm Based on the CSCRCTR Model 

The algorithm based on the CSCRCTR model is described in this section. As shown in (13)  

and (14), the transition function is nonlinear. By inserting (9)–(12) into (13) and (14), we find that the 

additive noises in (9) and (11) due to the modeling errors or variations in the speed changing rate and 

turn rate are not additive to the entire state vector. A particle filter is used to implement the algorithm. 

The sensor model we consider in this paper is shown in a simple form as (15) and (16), and only the 

position data are obtained:  

(k) (k) (k) (k)Z H X W   (15)  

1 0 0 0 0 0
(k)

0 1 0 0 0 0

T

H
 

  
 

 (16)  

(k)W  is a zero-mean Gaussian white noise with a covariance 
2 2Q(k) ( , )diag   . The first stage 

provides an initialization method and the second stage presents the filtering process. 

3.1. Initialization  

At least three samplings of sensor observations are needed to initialize a track. As shown in  

Figure 2, the trajectory from the first observation to the third is still approximated as an arc.  According 

to Heron’s formula and the sine law, we can derive the initialization procedure using (17) to (27): 

2 2( ) ( )B A B AAB x x y y       (17)  

2 2( ) ( )C A C AAC x x y y       (18)  

2 2( ) ( )C B C BBC x x y y       (19)  

    
,r if
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r

if
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Figure 2. The geometrical relationship between the initial three observations. 
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The initial state estimation at the third sampling time is obtained by the derivation presented above. 

The results are shown in (23), (24) and (26)–(29): 

(3) Cx x  (28)  

(3) Cy y  (29)  

The initial covariance of the state estimation can be written as (30): 
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Table 1. Summary of the recursive filtering algorithm. 

Initialization Set of particles { (3) : 1,2, , }iX i N , each with a weight 1/ N  

Posterior distribution: 

1

1
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p X X X
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 Z  

Set 3k   
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for 1:i N  
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Table 1. Cont. 

 Filtering Weight calculation: 
* 2 * 2

1 2

2 2

( ( ) ( )) ( ( ) ( ))1
( ) exp

2 2

i i
i

Z k x k Z k y k
q k

 

   
  

 
, 1:i N  

Weight normalization: 

1

( )
( )

( )

i
i N

j

j

q k
q k

q k





, 1:i N  

State estimation: 

*

1

( | ) ( ) ( )
N

i i

i

X k k q k X k


  

Covariance of the state estimation: 

  * *

1

P( | ) ( ) ( ) ( | ) ( ) ( | )
N T

i i i

i

k k q k X k X k k X k X k k


    

Posterior distribution:  

*

1

( ( ) | ( )) ( ) ( ( ) ( ))
N

i i

i

p X k k q k X k X k


 Z  

Updated particles Set of particles 
*{ ( ) : 1,2, , }iX k i N , each with a weight ( )iq k  

Resampling       Resample N times from the posterior distribution and obtain  
*

{ ( ) : 1,2, , }iX k i N , each with a weight 1/ N  

3.2. Recursive Filtering 

The particle filter [10] has been widely used in nonlinear/non-Gaussian Bayesian estimation 

problems. Based on the principle of the particle filter, a complete cycle of recursive filtering is given in 

Table 1. Once a tracker is initialized, N particles can be drawn from the PDF of the estimated state  

which is assumed to be a Gaussian vector with a mean of the initial estimation and a covariance given 

by (30). For a new cycle of filtering, each particle sample is predicted according to the transition 

function of the CSCRCTR model. In the prediction step, the distances and the heading angles should 

be predicted first, followed by the positions. When a new observation comes, the mean, covariance and 

even the PDF can be estimated by calculating the likelihood of each sample and obtaining a 

normalized weight. To avoid the degeneracy phenomenon, the particles are resampled in every cycle. 

4. Simulation Results 

A simulated maneuvering target is tracked using the proposed CSCRCTR model. The CSCRCTR 

model is compared to two uniform motion (UM) models with different levels of process noise  

and an IMM composed of a UM model, a constant acceleration (CA) model and four different turn  

rate models.  



Sensors 2014, 14 5247 

 

 

4.1. The Scenario 

The maneuvering target goes through seven stages, including uniform motions and several 

maneuvers. In the 1st stage (1st–10th frame), 3rd stage (29th–45th frame), 5th stage (61st–80th) and 

7th stage (111th–120th frame), the target moves with a constant velocity. In the 2nd stage (11th–28th 

frame), it turns at a rate 5 / s   . In the 4th stage (46th–60th frame), it increases power with a speed 

changing rate which increases from 20 /a m s  to 210 /a m s  (46th–48th frame), then remains at 
210 /a m s  (49th–57th frame) and decreases from 210 /a m s  to 20 /a m s  (58th–60th frame). In 

the 6th stage (81st–110th frame), it simultaneously turns with a rate 3 / s   and decelerates at a 

speed changing rate 24 /a m s  . The trajectory and the indicators of the maneuvers, such as the speed 

changing rate and the turn rate, are shown in Figure 3. 

Figure 3. (a) Target trajectory (b) Speed changing rate of the target (c) Turn rate of  

the target. 
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The initial position of the target is [4,000 m, 3,000 m], the speed is 200 m/s and the heading angle is 

53.13 . The sensor can only provide the Cartesian coordinates:  

[ , ]TZ x y W   (31)  

where W  is a zero-mean Gaussian white noise with a covariance 
2 2Q ( , )diag   . The parameter   

is assumed to be 40 m, so the coordinate-combined raw measurement error is approximately 57 m. The 

sampling interval 1T s . 

4.2. Parameters of the Different Models 

The UM model [1] is a constant velocity model. In a 2D tracking application, the state vector is 

defined as [ , , , ]X x x y y , and it follows the simplest constant velocity model. The process noise, 

which is a design parameter, can be used to account for turbulence or an acceleration, etc. UM is a 

linear model and can be implemented using a Kalman filter. The process noise is a normally zero-mean 

Gaussian white noise with a covariance of Q  in the form of (32).  
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 (32)  

In this paper, a low level of Q  with 2 2 150x y    and a high level of Q  with 2 2 400x y    are 

selected to compare with the CSCRCTR model. The target is also tracked using an IMM algorithm, 

which includes a nearly constant velocity model (UM), a nearly constant acceleration (CA) model and 

four coordinated turn (CT) models with different turn rates. Since the turn rate is known in each model, 

the models are linear. The transition matrix is written as (33): 
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1 0
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0 1
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T T

 

 

 


 

 

 

 
 
 
 


 
 
 
  

 (33)  

The form of the process noise is similar to (32), and the process noise q  is selected to be 5, which 

is of the same level as a noise 2 2 25x y    in (32). The turn rates of these four models are 6 / s , 

3 / s , 3 / s  and 6 / s . The process noise in the UM model is assumed to be very small 

( 2 2 1x y   ) to make an accurate estimation during the uniform motion. To track additional 

maneuvers, a CA model is added to the set of models. The process noise in the CA model is assumed 

to be 2 2 64x y    to track the maneuvers other than a coordinated turn. The basic idea of this IMM 

algorithm is based on [13], which provides additional details of this method. Although the performance 

of the IMM does not rely on the transition probability of the models, we provide the numbers used  

in (34) in the simulation: 

0.9 0.02 0.02 0.02 0.02 0.02

0.06 0.9 0.01 0.01 0.01 0.01

0.06 0.01 0.9 0.01 0.01 0.01

0.06 0.01 0.01 0.9 0.01 0.01

0.06 0.01 0.01 0.01 0.9 0.01

0.06 0.01 0.01 0.01 0.01 0.9

ijp

 
 
 
 

  
 
 
 
 

 (34)  

4.3. Results 

The results are obtained based on 100 independent Monte Carlo simulations. The RMS position 

errors for the two UM models, the IMM and the CSCRCTR model are shown in Figure 4. The UM 

model I refers to the UM model with a high level of process noise and the UM model II refers to the 

model with a low level of process noise. Each model has its advantages and disadvantages. The UM 

model II works very well in the steady state, but it deteriorates sharply w hen a maneuver occurs. 

Although the UM model I has the flexibility to adapt to different physical behaviors of the target, it 
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cannot obtain an accurate estimation for any type of motion. The RMS position errors of UM model I 

are greater than those of the proposed CSCRCTR model at almost all sampling times.  

Figure 4. RMS position errors. 
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The CSCRCTR model can estimates the heading angle well and provide good position estimations  

during the coordinated turn between the 11th and 28th frames. The IMM performs slightly better 

because the turn is perfectly matched with one of the multiple models. For the rectilinear motion with a 

constant acceleration between the 49th and 57th frames, the CSCRCTR model performs much better 

than the IMM. Even when the speed changing rate is not a constant (Frames 46–49), the CSCRCTR 

model gives better estimations because it reacts faster to the accelerating tendency. For a compound 

maneuver in which the target decelerates and turns at the same time, the CSCRCTR model  

provides the most accurate estimation. However, when the target is in the uniform motion mode 

(Frame 81–110), there is a certain loss in the steady-state performance because we use an arc to 

approximate the trajectory, which is actually a straight line.  

When the target maneuvers in the 2nd, 4th and 6th stage, the CSCRCTR model reacts quickly and 

converges with a high rate. The IMM algorithm is considered to have rapid response to maneuvers, but 

the CSCRCTR model is more sensitive to changes of motion modes.  

If we transform the state estimated to Equation (35) based on the assumption of a constant speed 

changing rate, we can estimate the speed:  

3 (k) (k)
(k)

2

c p
c

d d
s

T


  (35)  

In the two UM models and the IMM, the speed and heading angle can also be calculated based on 

the estimation of [ , ]Tx y . The RMS speed and heading angle errors are presented in Figure 5. The 
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results also reveal that the CSCRCTR model has a good performance when the target maneuvers. 

Specifically, the CSCRCTR evaluates the speed well when the target accelerates and the heading angle 

well when the target turns.  

Figure 5. (a) RMS speed errors; (b) RMS heading angle errors. 
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The average tracking errors of each model for each maneuver are listed in Table 2. The highest 

errors for each segment of motion are marked in italics and the lowest errors are marked in bold.  

Table 2 gives a similar conclusion as the results shown in Figures 4 and 5 and provides more details. 

Every segment of motion is separated into the beginning stage (“B”), which includes the first five 

frames, and the stable stage (“S”), which includes the other frames. When the target begins a 

coordinated turn (Frames 11–28), the IMM and the CSCRCTR model both react quickly to the 

maneuver and provide good position estimations. During the turn, the CSCRCTR model estimates the 

heading angle well, while the IMM estimates the speed accurately. During a constant acceleration 

motion (Frames 49–57), the CSCRCTR model outperforms the other models in estimating the position 

and speed because the accelerating behavior matches the model (Equation (11)). When the target is in 

the uniform motion (Frames 61–80) and there are no speed and heading changes, the errors of the 

CSCRCTR model are slightly higher because it overestimates the change of distance or heading angle 
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caused by measurement noise. For a compound maneuver in which the target decelerates and turns at 

the same time (Frames 81–110), the CSCRCTR model describes both behaviors well and provides the 

best estimations. The peak RMS position estimation errors for UM I, UM II, IMM and CSCRCTR are 

49.1 m, 54.4 m, 48.9 m and 41.8 m, respectively. The CSCRCTR model shows improvements of 

approximately 14% over IMM, 15% over UM I, and 23% over UM II. As shown in Table 2, the 

CSCRCTR model never achieves the highest position errors among the four models in any stage and 

shows great stability. Although it does not yield the lowest errors during the uniform motion, 

CSCRCTR shows good comprehensive performance for different types of motions, including typical 

and compound maneuvers.  

Table 2. Average tracking errors. 

Motion type 
Coordinated 

Turn 
Acceleration 

Simultaneously 

Deceleration and 

Turn 

Uniform 

Motion 

Stage of motion * B S B S B S B S 

Frame index 11–15 16–28 49–53 54–57 81–85 86–110 61–65 66–80 

Average 

RMS 

position 

error[m] 

UM I 46.9 49.1 42.3 44.0 47.9 47.0 46.1 43.7 

UM II 44.9 54.4 39.7 42.9 46.5 49.3 41.5 38.2 

IMM 42.5 37.7 48.9 47.3 44.7 43.4 44.1 36.4 

CSCRCTR 41.8 38.6 38.9 38.7 41.7 40.3 42.2 40.9 

Average 

RMS speed 

error [m/s] 

UM I 14.7 12.9 18.1 18.9 13.9 15.6 13.5 13.6 

UM II 10.6 9.2 17.6 18.8 12.2 12.8 10.7 9.7 

IMM 4.4 4.9 24.2 23.8 11.0 15.1 14.8 4.0 

CSCRCTR 12.5 10.2 13.1 10.3 10.7 10.5 14.4 10.2 

Average 

heading 

angle 

error [°] 

UM I 8.2 8.8 3.9 3.1 4.8 5.6 2.8 2.6 

UM II 9.6 11.2 2.6 2.2 5.8 6.9 2.0 1.8 

IMM 8.8 5.0 2.1 3.2 5.2 2.5 2.3 1.7 

CSCRCTR 6.4 4.4 3.0 2.8 3.6 3.8 2.3 2.4 

* Each period of motion is divided into the beginning stage (B) and the stable stage (S). 

5. Conclusions 

In most traditional models, the velocities and the accelerations in different dimensions are coupled 

according to the target motion. A new state vector, which includes the positions, the distances travelled 

in the current and previous frames, and the heading angles of the current and previous sampling times, 

is defined in this paper. We proposed the CSCRCTR model for tracking a maneuvering target based on 

the assumptions of constant speed changing rate and constant turn rate by approximating the trajectory 

between two adjacent samplings as an arc. The model can be adapted to different types of maneuvers 

as it treats the speed and the heading angle independently. Due to the obvious nonlinearity of the 

model, a particle filter is used to implement the tracking algorithm.  

Compared to the UM model and the IMM, the CSCRCTR model reacts faster to a maneuver and 

obtains more accurate estimations during the maneuvering period. The CSCRCTR model yields an 

improvement of approximately 14% in the peak RMS position estimation error for all types of motions 

over the IMM and more significant improvements over the UM models. It provides a more accurate 
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speed estimation for an accelerating target and a more accurate heading angle estimation for a turning 

target. The CSCRCTR model is adaptable to different types of maneuvers and achieves a good balance 

between stability and maneuverability.  
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