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Abstract: In this paper, a precise real-time temperature control system based on infrared 

(IR) thermometry for domestic induction cooking is presented. The temperature in the 

vessel constitutes the control variable of the closed-loop power control system 

implemented in a commercial induction cooker. A proportional-integral controller is 

applied to establish the output power level in order to reach the target temperature. An 

optical system and a signal conditioning circuit have been implemented. For the signal 

processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. 

The analysis of the contributions to the infrared radiation permits the definition of a 

procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C 

in the range between 60 and 250 °C for a known cookware emissivity. A simple and 

necessary calibration procedure with a black-body sample is presented. 

Keywords: non-contact temperature measurement; infrared sensor; radiation detector; 

induction heating; temperature control 
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1. Introduction 

Induction cooktops are becoming one of the most popular appliances due to their safety, cleanliness, 

and high cooking performance [1–3]. In these system, the vessels are heated up by two dissipation 

phenomena: the induced currents and the ferromagnetic losses, both of them originated by varying 

magnetic fields generated by alternating medium frequency currents (20 to 100 kHz) flowing through a 

planar coil placed below the glass-ceramic surface [4,5] where the vessel is placed. The current 

frequency supplied by the power electronics depends on the power level selected by the user. 

In commercial induction hobs, the control system is based on a closed-loop control [6–10], which 

adapts the power supplied to the cookware depending on the selected level by the user and safety 

conditions. However, the temperature in the cookware is a hidden variable to the control because no 

temperature probe can be placed in contact with the vessel due to product requirements. The 

temperature estimation system has to be located below the cooking surface as well as the inductor coils 

and the power electronics, thus, the temperature measurements are influenced by the effect of the 

cooking surface which has to be compensated in order to obtain an accurate temperature value of the 

vessel. It should be noted the importance of this parameter as a control variable in order to achieve 

advances features for domestic induction appliances, for example, assisted or automatic cooking. 

High performance measurement systems would consist on temperature sensors placed inside the 

cookware, but this solution is not user-friendly. Alternative solutions have been proposed in order to 

overcome this drawback. One of those consists of a temperature measurement system based on a 

thermistor located under the glass-ceramic where the steady-state cookware temperature is assumed 

equal to the temperature of the in-contact glass [11,12]. The proposed system constitutes a simple and 

cost-effective solution, but it possesses some disadvantages, mainly due to the thermal inertia of the 

glass-ceramic, which introduces attenuation and time delays between the temperature of the cookware 

and the temperature of the glass. This effect becomes very critical in rapid heating transients due to the 

large difference between the measured temperature in the glass and the temperature in the cookware 

which implies that the cookware can reach high temperatures before the temperature sensor detects this 

situation. Additionally, this proposed system exhibits a strong dependence of the cookware-glass heat 

transfer due to the variability in the air gap between the cookware and the glass which influences in the 

dynamic of the measurement procedure. Other system based on inductive sensing [13] or radiation 

thermometry have been proposed in order to avoid these problems. This paper is focused on the latter 

one. Optical infrared (IR) sensors of different technologies, for example, photo-resistors [14], 

thermopiles [15–18], in array format for infrared computer vision [19–21] and including optical  

fibers [22] have been analyzed by many authors for other applications. However, the systems based on 

the infrared radiation detection by photodiodes are expected to achieve the best performance because 

of their rapid response, reduced cost, as well as the industrial applications of this technique in the 

cooking appliances industry. 

The aim of this work is to describe the main features of a temperature control system based on an 

IR temperature sensor proposed in preceding works [23,24] as well as to provide the experimental 

verification to validate the performance of this cost-effective solution. 

The temperature measurement system, shown in Figure 1, is based on the detection of the infrared 

light radiated by the bottom of the cookware and spectrally weighted by the glass-ceramic optical 
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transmittance. The signal detected by the infrared photodiode (PD) depends on the temperature of the 

cookware, Tm, the temperature glass-ceramic, Tg, placed below the cookware, and the emissivities of 

the cookware, εm, and the glass-ceramic, εg, respectively. The power control system employs the 

measured temperature in order to adapt the power supplied by the inductor coil. The rapid response of 

the proposed system to temperature changes in the cookware is suitable to use to control the 

temperature of the cookware in rapid heating systems, for instance, induction cookers. 

Figure 1. Cookware temperature measurement system based on an IR thermometry system 

which includes IR photodiode (PD), electronic amplifier and algorithm to estimate  

the temperature. 

 

The paper is organized as follows: Section 2 introduces some theoretical background about the 

operational characteristics of the IR sensor depending on the temperatures and emissivities of the 

cookware and the glass-ceramic, respectively. Section 3 describes the electronic implementation of the 

proposed measurement system as well as the closed-loop power control and the calibration procedure 

of the IR sensor applied to compensate the effect of the glass-ceramic. Section 4 provides several 

experimental results in order to evaluate the main features of the proposed system. Finally, in Section 5 

the main conclusions are drawn. 

2. Analysis of IR Temperature Sensor 

The temperature sensor is based on the detection of the infrared radiation by an extended range 

InGaAs PIN photodiode with a spectral responsivity up to 2,600 nm. A detailed analysis of the 

theoretical background given in the following subsections can be found in [24]. 

2.1. Infrared Signals in Domestic Induction Hobs 

The model to analyze the thermal radiation of a metallic surface, (the bottom of the cookware), 

considered as a grey body of spectral emissivity, εm, at the temperature, Tm, in contact with a glass-ceramic 

top at the temperature, Tg, is shown in Figure 2. The glass-ceramic radiation contribution has to be 

taken into account because it also emits additional infrared radiation to that emitted by the cookware 

and transmitted by the glass-ceramic [25,26]. 
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Figure 2. The four components of the thermal radiation of pan bottom/glass-ceramic system. 

 

The total emission of the cookware/glass-ceramic system can be modeled through the addition of 

four signal contributions, as shown in Figure 2. The first contribution belongs to the radiation which 

arrives from the bottom of the cookware through the glass slab. The second one is the radiation emitted 

by the glass. The third contribution is the emerging radiation that results from adding the multiple 

reflections and transmitted beams emitted by the bottom of the cookware. The fourth contribution is 

the addition of the reflected and the transmitted radiation emitted by the glass-ceramic toward the 

bottom of the cookware. The total spectral emissive power emitted by the cookware-glass system in 

the normal direction, is: 
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where T and R are the optical transmittance and reflectance of the glass-ceramic material, respectively, 

which have been assumed constants in the spectral region of interest, and Ebb(λ,T) is the hemispherical 

spectral emissive power of a perfect black body following the Planck’s law [27–29]: 
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(3) 

Figure 3 shows the typical transmittance spectrum, T, of conventional dark glass-ceramic  

top. Infrared radiation from metallic surface with wavelength above 2,600 nm is attenuated by the  

glass-ceramic material. Note that the use of extended photodiodes is adequate to detect IR radiation 

emitted by this kind of material. 
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Figure 3. Total transmittance, T, of dark ceramic-glass. The spectral bandwidth of interest 

in the measurement procedure ranges from 1,200 to 2,600 nm. 

 

2.2. Long-Range Single-Band Thermometry IR System 

The optical temperature sensor system is shown in Figure 4a. The radiation is detected in a spectral 

band by a long-range IR InGaAs PIN photodiode with responsivity   , detection area AD, and 

placed at the focal point of the lens. Visible radiation from the environment is blocked by a high-pass 

optical filter with a cut-off wavelength of 1,200 nm and flat transmittance 0  in the band from 1,200 to 

2,600 nm. Figure 4b shows implemented optical system. 

Figure 4. (a) Optical system, including dimensions, geometry, effective area of the 

radiation and the solid angle subtended by the lens. D = 30 – 33 mm, d = 3.6 mm, Al = 20 mm
2
 

and AD = 0.78 mm
2
 (1 mm diameter); (b) Implemented optical system, including PIN 

InGaAs, filter     and lens. 

 

Assuming the independency with respect to the wavelength of the emissivity, the reflectance and 

the transmittance of the glass-ceramic and the cookware (grey body approach) in the region from 

1,200 to 2,600 nm, the output voltage, S, due to the photo-current generated by a PIN can be 

expressed as [24]: 
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where: 
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The expression f(T) can be regarded as f(T) = aT
q
, then: 
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The temperature Tm can be derived from the preceding expression with dependence on the output 

signal, S, the emissivity of the cookware, εm, the temperature, Tg, the transmittance, T, and the 

reflectance, R, of the glass-ceramic, as it is given as follows: 
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where the emissivity of glass-ceramic, εg, can be derived from the total reflectance, R, and 

transmittance, T, of the glass slab, according to the well known expression: 

1g R T     (9) 

3. Electronic Implementation and Temperature Control System 

The implementation of the IR sensor electronics and temperature control system are explained  

as follows: 

3.1. Electronics of IR Sensor 

Previous works demonstrate the usefulness of IR thermometry for cooking purposes within the 

range of frying temperatures ranging from 140 to 180 °C [24]. Unfortunately, not so good temperature 

estimation was achieved at temperatures below 110 °C because the photocurrent of a standard InGaAs 

PIN PD is comparable to the noise of the associated electronics. However, the proposed IR system is 

designed to measure temperatures ranging from 60 to 250 °C, therefore, an infrared detector with a 

long wavelength cut-off at 2,600 nm is needed. 

InGaAs PIN photodiodes are photovoltaic detectors having p-n junctions just like Si photodiodes. 

InGaAs PIN photodiodes possesses a wider sensitivity wavelength range than Si photodiodes due to 
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their smaller energy gap. Consequently, infrared detectors with spectral response ranges with a long 

wavelength cut-off at 2,600 nm are available in the market. In this work, the InGaAs PIN J23T  

E2-66C-R 01M-2.6, supplied by Teledyne Judson Technologies (Montgomeryville, PA, USA) was 

selected, with enhanced spectral responsivity up to 2,600 nm. 

The output signal provided by the detector is low (a few nanoamperes), therefore, the amplification 

and filtering of the signal is needed prior to the processing of the signal. With this purpose, a wide 

variety of amplifier configurations can be selected based on noise, bandwidth, offset, and linearity. 

The system represented in Figure 5 includes an InGaAs PIN photodiode and a dual-stage circuit. 

The first stage is a tee-transimpedance amplifier topology [30–33], which transforms the photocurrent 

(current generated by the PD) into voltage. The most popular design approach to achieve high 

precision current-to-voltage conversion is the circuit composed of an operational amplifier network 

with a resistor in the feedback loop. In particular, the resistor tee-network still uses the fundamental 

concept of a resistive feedback loop to perform the current-to voltage conversion. In this circuit, R1 and 

R2 form a voltage divider which represents a fraction of the output voltage to RfT. Generally, R1 and R2 

are small compared to RfT, thus, the effective feedback resistance Req is given by: 

 (10) 

Note that highly effective feedback loop can be built relatively small values of resistances [34] 

which is useful in high-gain systems that would otherwise be limited by the effect of stray  

capacitance on RfT. 

Figure 5. Dual stage transimpedance amplifier with resistive-tee feedback. 

 

An additional benefit of the resistive tee-network is the reduction by a factor of (1 + R1/R2) in the 

output offset arising from the bias current requirement of the amplifier, but, at the expense of a 

proportional increase in the output error from the amplifier offset voltage [35]. The operational 

amplifier selected to implement the electronics are the low offset operational amplifier AD8639 from 

Analog Devices because provides high performance results. 

The second stage post-amplifies and filters the output signals of the first stage with a very low  

cut-off frequency filter because the signal of interest is dc with slow variations over time due to the 

temperature of the cookware changes slowly. Usually, the transimpedance amplifier is connected to a 
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low pass filter to further reduce the wideband noise in the rejected bandwidth. A single pole, low-pass 

filter improves the dynamic range of the transimpedance amplifier by a factor of 4 or 5 dB. 

Finally, the output voltage, S, of the electronics is given by the following expression: 

1 3
1

2 4

1
ft

ph ft

R R R
S I R R

R R

  
     

  
 (11) 

where Iph represents the photocurrent generated by the PD. The first gain factor represents the  

current-to-voltage conversion in the transimpedance stage with RfT = 510 kΩ, R1 = 1 kΩ, R2 = 100 Ω, 

R3 = 100 kΩ, R4 = 100 kΩ; thus, the conversion factor of the transimpedance stage is G1 = 5.5 × 10
6
 V/A 

and the gain factor of the second one is G2 ≈ 2. 

The cut-off frequency of the first stage is limited by the gain bandwidth product due to the high 

gain factor. The capacitor Cs is added for stability purposes. The cut-off frequency of the second stage 

has to be low enough in order to filter any kind of noise, but it should be as low as it is necessary to 

follow the evolution of the temperature over time. The cutoff frequency is around 16 Hz for C2 = 100 nF 

and R3 = 100 kΩ. 

3.2. Experimental IR Temperature Control System for Induction Appliances 

The experimental setup shown in Figure 6 has been built to test the performance of the preceding IR 

sensor under actual operational conditions of a domestic induction cooker. 

Figure 6. Experimental setup. 

 

3.2.1. Hardware Implementation 

Figure 7 shows the block diagram of the temperature control system. The IR sensor is placed below 

the glass-ceramic slab. The temperature of the vessel is monitored by a thermocouple. The pan is 

heated up by the induction heating system which generates ringlike temperature distributions [6,8,36], 

where the hot spots are located in the middle positions of the ring. 

In steady state at low power levels, the temperature distribution is more uniform than in heating 

transients. However, the temperature distribution is non-uniform at high power levels. To avoid this 
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phenomenon in these kinds of heaters, the IR sensor and the thermocouple must be located at the same 

radial point. Radial point with maximum temperature has been selected. 

Figure 7. Diagram of the temperature control system. 

 

The measurement procedure has been automated in order to acquire a large amount of experimental 

data. A data acquisition system (Agilent 34972A, Agilent Technologies Inc, SANTA CLARA, CA, 

USA) is used to store the information given by the thermocouple. Information relating to the  

glass-ceramic temperature and IR output voltage is obtained from the microprocessor. Microprocessor 

PIC24EP64GP206 of Microchip Technology (Chandler, AZ, USA) has been used, with 12-bit ADC 

and a sampling rate of 1 Ksps. A proportional-integral control is applied to control the output power 

level in order to reach the target temperature. 

Figure 8. Software interface module. 
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3.2.2. Software 

The main purpose of the software is to control the data acquisition process and to manage the 

acquired data. MATLAB is adopted as the programming language. The software of the monitoring 

system permits the configuration of the system and displays different data. Figure 8 shows the 

MATLAB user friendly interface module developed for displaying the electrical power, the 

temperature measurements and the estimation of the IR sensor temperature. The interface is suitable to 

select the parameters of the proportional-integral-controller and the target temperature. Afterwards, the 

data acquisition system runs automatically. 

3.2.3. Calibration Procedure 

The calibration of the IR sensor is required to obtain accurate temperature measurements in actual 

induction heating systems. Parameters a and q given in Equation (7) have been estimated from 

experimental measurements using a sample with constant emissivity in the wavelength band ranging 

between 1,200 and 2,600 nm. 

A black-body sample is heated by the induction heating system, and the temperature of the bottom 

of the sample, Tm, and the glass-ceramic, Tg, are registered simultaneously, as we can see in Figure 9. 

The temperature of the sample is varied from room temperature to 250 °C. Figure 10 shows the 

temperature of the bottom of the black-body measured with a thermocouple, Tth Temperature of the 

black-body bottom is stabilized over intervals of 250 s. 

Figure 9. Experimental setup to measure the black-body temperature, Tth, with a thermocouple. 

 

Figure 10. Black-body temperature, Tth, measured with a thermocouple applying a given 

thermal cycle. 
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Figure 11a shows the measured output voltage, S, of sensor measured simultaneously with previous 

measurement. The black-body sample is built with a special multilayer structure deposited on a 

ferromagnetic steel disc using Physical Vapour Deposition (PVD) technique. The total reflectance is 

measured with a Vis-IR spectrophotometer equipped with an integrating sphere, shown in Figure 11b. 

Figure 11. (a) Measured output voltage S from the black-body infrared radiation;  

(b) Spectral reflectance of ferromagnetic black body used in calibration of sensor. Spectral 

emissivity (ε = 1 − R) can be considered almost equal to the unit in the range of interest. 

 

The temperature in the cookware, Tm, is calculated applying Equation (8). Figure 12 shows the 

calibration curve obtained from experimental measurement. A good fitting for the black-body is achieved. 

Figure 12. Calibration curve obtained from theoretical expressions. 

 

After the calibration of the system was performed according to the previously described procedure, 

new measurements of the black-body in the temperature ranging from 50 to 250 °C are carried out.  

Figure 13 shows the comparison between the IR sensor measured temperature, TIR, and the 

temperature measured by the thermocouple, Tth. 
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Figure 13. IR sensor precision for black-body sample measurment in the temperature 

range from 50 to 250 °C. 

 

4. Results and Discussion 

Several test and measurements are carried out in order to validate the reliability and accuracy of the 

experimental measurements as well as the applicability of IR sensor. 

4.1. Response 

First of all, the IR sensor applied to the domestic induction heating cooktop is tested at temperatures 

ranging from 60 to 250 °C was carried. In that case, a metal disk sample with emissivity εm = 0.6 acts 

as the induction load. The temperature of the metal disk sample, Tm, is measured by a thermocouple 

attached to its base. 

Figure 14a shows temperature measured with the thermocouple, Tth, and the infrared sensor 

temperature, TIR, stabilized by the control. The maximum temperature error of 5 °C is obtained in the 

range between 60 and 250 °C whereas the average error of the measurement is around 1.5 °C. It should 

be noted that the proposed IR system provides accurate temperature measurement and power 

controlling below 60 °C. 

Figure 14. Temperature measured with a thermocouple and the infrared sensor, 

respectively, for a metal disk sample: (a) temperature ranging from 60 to 250 °C;  

(b) temperature ranging from 90 to 130 °C. 
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In a real system, the emissivity of the cookware is not well-known. Cookwares have typical 

emissivities in the range from 0.2 to 0.9. Estimated errors for the IR sensor temperature assuming 

different sample emissivities are shown in Figure 15. The temperature is overestimated at low-emissivities 

whereas the system overestimates the temperature at high-emissivities. In conclusion, the maximum 

absolute error is around 20 °C when the emissivity of the cookware is not known. 

As a consequence, accurate estimation of the emissivity of the cookware is required to achieve 

accurate temperature measurement for all types of cookware because, in that case, the temperature can 

be determined with a precision of within 5 °C, as shown in Figure 14b. 

Determination or compensation of emissivity, in real time, can be performed in different ways. 

First, by multi-wavelength infrared thermometry technique [37–40], second, by a direct measurement 

of the total reflectance, and, finally, through the use of compensation techniques based on radiation 

exchange between surfaces [41–43]. 

Figure 15. Estimated IR sensor temperature for different sample emissitivy values. 

 

4.2. Water Pre-Boiling and Boiling Point Temperature Control in an Induction Heating Hob 

Although the efficiency of the power electronics is very high the waste of energy in the cooking 

process highly decreases the energy efficiency of induction cookers. Improvements in the energy 

efficiency during the cooking process could be therefore achieved by means of accurate pot 

temperature control. Control system [44] for the temperature of food during the cooking and automatic 

detection system of the boiling point [45,46] are also advantageous. For instance, pot temperature 

control ensures correct food cooking minimizing the cooking time as well as avoids the hazard to reach 

excessive temperatures, which can imply the burning of the food. 

The relationship between the IR sensor temperature and water temperature depends on the boiling 

conditions determined, among others, by the type of container, volume of water, applied heater power. 

Figure 16 shows electrical power at same pre-boiling (97.5 °C) and boiling (100 °C) points under the 

operation conditions shown in Figure 8. At boiling point, the electrical power clearly increases, thus, 

the detection of the boiling point implies energy savings. 
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Figure 16. Electrical power at pre-boiling and boiling points. 

 

Both IR sensor and electrical power information could be very useful to define an automatic boiling 

point detection algorithm. The thermal transmission properties of the cookware at the boiling process 

can be extracted from the bottom cookware temperature and the maximum electrical power delivered 

by the cooktop. The thermal power flow can be derived from electrical the power consumption due to 

the high efficiency [47] of induction hobs. 

5. Conclusions 

In this work, a precise temperature control system based on IR thermometry has been presented. 

The theoretical analysis of the system includes an algorithm to discount glass-ceramic contribution 

from the total signal which allows us to obtain the temperature of the cookware with a maximum 

temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. 

A real-time feedback control of the temperature has been implemented by means of induction hob 

electrical power. A simple and necessary calibration procedure with a black-body sample is presented. 

The accuracy of our model has been tested and confirmed with measurements performed with the 

proposed system. It has been proved that the IR sensor works properly to stabilize the temperature in 

the range from 60 to 250 °C in the cookware heats up by commercial domestic induction cookers. 

Table 1 shows main characteristics of the IR temperature control system. 

Table 1. Main system characteristics. 

Parameter Value Units 

Wavelength 1,200–2,600 nm 

Power control 0–2,200 W 

Temperature range 60–250 °C 

Precision * 5  °C 

Time response 
310
 s 

Microprocessor Microchip PIC24EP64GP206 

Sampling rate 1 Ksps 

ADC 12 bits 

* Precision for a known cookware emissivity. 
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The output signal levels of the proposed system exhibit a moderate dependence on the emissivity of 

the cookware. Then, it is necessary to know accurately the emissivity of the cookware in order to 

achieve accurate temperature measurements for all types of cookware. Future works will be oriented in 

this way, because, by estimating the emissivity of cookware, the temperature can be determined with a 

precision of within 5 °C. 
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