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Abstract: In this paper, the authors investigate the role that smart devices, including 

smartphones and smartwatches, can play in identifying activities of daily living.  

A feasibility study involving N = 10 participants was carried out to evaluate the devices’ 

ability to differentiate between nine everyday activities. The activities examined include 

walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair 

ascents and stair descents. The authors also evaluated the ability of these devices to 

differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data 

from this study was used to train and test five well known machine learning algorithms: 

C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. 

Both single and multi-sensor approaches were examined to better understand the role each 

sensor in the device can play in unobtrusive activity recognition. The authors found overall 

results to be promising, with some models correctly classifying up to 100% of all instances. 

Keywords: sensor fusion; ubiquitous activity monitoring; smart devices; smartphone; 

smartwatch; geospatial awareness; activities of daily living 

 

1. Introduction 

Pervasive, ubiquitous computing is coming ever closer, and the implications for user driven 

preventative healthcare are immense. Modern smartphones and related devices now contain more 

sensors than ever before. Microelectromechanical Systems (MEMS) have made many leaps in recent 
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years, and it is now common to find sensors including accelerometers, magnetometers and gyroscopes 

in a variety of smart devices. The addition of these sensors into everyday devices has paved the way 

towards enhanced contextual awareness and ubiquitous monitoring for healthcare applications. 

The pervasive nature of these devices becomes particularly apparent when reviewing the rate of 

global sales. Total smartphone sales alone are estimated to have surpassed 837 million units in  

2013 [1]. Furthermore, a worldwide growth rate of 26% has been predicted for both tablets and 

smartphones between 2012 and 2016. These devices are inherently portable, and consequently remain 

in close proximity to the user over long periods of time. Kearney [2] estimated that by the year 2017, 

OECD countries will save $400 billion from yearly healthcare costs, due to adopted mobile  

health solutions. 

Furthermore, the reach of such devices is not constrained to developed economies alone. The 

International Telecommunication Union [3] estimates that there are 6.8 billion mobile subscriptions 

globally, comprised of subscription rates of 128.2% and 89.4% for those in developed and developing 

nations respectively. Mobile devices provide an effective healthcare solution for remote monitoring of 

those most at risk. Thus there is a compelling case to evaluate the effectiveness of such devices in 

healthcare related applications. 

Several uses exist for such a device, including fall detection [4–7] and fall prevention [8,9]. One 

particularly relevant application involves monitoring everyday physical activities and sedentary 

behaviour. A recent Lancet publication [10] estimates that physical inactivity alone causes 9% of all 

premature deaths worldwide. This figure represents over 5.8 million deaths in 2008. Furthermore, 

eradicating physical inactivity would increase life expectancy of the world’s population by an average 

of 0.68 years. 

This sentiment is echoed in publications by the U.S. Department of Health and Human Services, 

which found a strong correlation between increased physical activity and a lower risk of heart disease, 

stroke, high blood pressure, type II diabetes and even particular forms of cancer. Research conducted 

by Heidenreich et al. [11] and Dall et al. [12] documents the financial burden caused by such diseases. 

Heidenreich et al. found the total cost in 2010 of coronary heart disease among Americans to be 

$108.9 billion, while Dall et al. estimated the 2007 cost of Americans suffering type II diabetes to be 

in excess of $159 billion. Furthermore, the prevalence of cardiovascular disease and stroke is predicted 

to increase by an average of 20.75% among the American populous by 2030. A similar report by  

Leal et al. [13] places the 2003 total cost of coronary heart disease in the EU area at €44.7 billion 

($56.5 billion, at 2003 rates [14]), which includes €294 million ($371 million, at 2003 rates [14])  

for Ireland. 

A number of studies have already examined the potential role single sensors can play in activity 

recognition, including the accelerometer [15–18] and GPS [19]. More recently, the use of multiple 

sensors has come to the fore, e.g., [20,21]. In this scenario, a smart device, such as a mobile phone can 

either act as gateway for one or more dedicated devices located in a Personal Area Network (PAN), 

e.g., [22], or the sensors built into the smartphone can be used, e.g., [23]. 

In this paper, we examine the potential role smartphones and smartwatches can play in the inference 

of everyday human ambulation using both single and fused sensor approaches. We also investigate the 

potential of using both GPS and light sensors to better infer when patients have transitioned from 

indoors to outdoors or vice versa. To this end, the focus is set firmly on the built in sensors available 
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on these devices. Section 2 details some related work in the field, while Sections 3 and 4 describe the 

sensor setup and signal processing undertaken as part of this research experiment. Section 5 details the 

features computed from the raw sensors, and used for subsequent training of machine learning models. 

Section 6 provides a description of how the study was carried out, and details of the cohort are also 

provided. Section 7 presents a discussion of results attained from the study data. Finally, Section 8 

outlines a conclusion and describes areas where work still remains to be done. 

2. Related Work 

A number of papers have attempted to gather and infer physical activities using dedicated sensors, 

often strapped to the user using belts or tape, e.g., [24–30]. Recently, the viability of smartphones to 

perform the same role, yet in a less obtrusive sense, has become more apparent. 

Kwapisz et al. [31] use an Android-based cell phone accelerometer to collect data from  

29 participants. Data was collected at 20 Hz, and used to train three machine learning models: J48, 

Logistic Regression and a Multilayer Perceptron. Activities tested included walking, jogging, going up 

and down stairs, sitting and standing. Moving up and down stairs proved to be most difficult to detect, 

with best accuracies of 55% and 61%, respectively. However, the authors only examined the use of a 

cell phone accelerometer. No data was collected from any other sensor in the trial. 

Maurer et al. [32] used a bi-axial accelerometer together with a light sensor on a dedicated eWatch 

sensing platform to record six activities: standing, sitting, running, walking, ascending and descending 

stairs. The authors achieved accuracies of up to 92%, though it is unclear if this was based on a 

balanced or unbalanced dataset. Devices were limited to 1 MB of flash memory. 

Ganti et al. [21] recorded data from four sensors using a Nokia N95 device. These included the 

microphone, accelerometer, GPS and GSM (for additional location based information). The 

accelerometer sensor was sampled at 7 Hz, while the microphone was sampled at 8 kHz. Eight distinct 

activities were recorded, including aerobic, cooking, desk work, driving, eating, hygiene, meeting and 

watching television. Features chosen included estimates of energy expended, skewness of acceleration 

magnitude, and the cepstral coefficients computed from the microphone data. The authors chose to use 

a three state Hidden Markov Model (HMM) which gave average results of 66%. 

3. Sensor Setup 

Both a Samsung Galaxy Nexus smartphone and the Motorola MotoActv smartwatch were used to 

gather data from all possible sensors. On the Nexus, data was obtained from the tri-axial 

accelerometer, tri-axial magnetometer, tri-axial gyroscope, GPS, light and pressure sensor. On the 

smartwatch, data was collected from the tri-axial accelerometer, in part due to the fact that this was the 

only activity-related sensor available on this device. The authors used Purple Robot to gather data on 

both devices, as depicted in Figure 1. This Android application, developed by the Centre for 

Behavioural Interventions at Northwestern University, gives researchers access to dozens of 

underlying device sensors. Known by the term “probes” in Purple Robot terminology, these represent 

both physical and virtual sensors. Such probes can include accelerometers, gyros, and message and call 

statistics. Purple Robot uses a store and forward mechanism, only uploading data to the Purple Robot 

warehouse server, when a suitable data connection becomes available. In our experiments, the Wi-Fi 
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connection was used once data collection was complete to upload all sensor data pertaining to the 

study. Both devices were linked via a separate application running on the researcher’s phone. This 

application, called the Syncatronic, was used to annotate activities in the moment, and keep sensor data 

from both devices in sync for post hoc analysis. 

Figure 1. (a) Android application running on smartphone; and (b) smartwatch. 

 

4. Signal Processing 

Initial data processing is undertaken to interpolate the raw accelerometer, magnetometer, and gyro 

signals to a rate deemed acceptable for subsequent filtering, as presented in Figure 2. On both devices, 

raw accelerometer data can be somewhat sporadic, approximating 90 Hz and 15 Hz on the phone and 

watch, respectively. Unlike some predecessors to the Nexus smartphone, the authors have no issues to 

report regarding sensors unexpectedly powering down, or an excessively low sampling rates. Due to 

the limited battery power of the smartwatch, the accelerometer was shut down during periods of little 

or no activity, i.e., when the participant was typically sedentary. This prevented needless transmission 

of additional information to the server and had no negative effects on the study. In these circumstances, 

the last known good value from the accelerometer is held until the subsequent bout of movement. Both 

signals were linearly interpolated to a common, fixed sampling rate of 100 Hz for the purpose of 

subsequent analysis and feature generation. Similarly, the magnetometer, gyroscope and pressure 

sensor data sourced from the smartphone have raw sampling rates approximating 25 Hz, 27 Hz, and  

5 Hz, respectively. Both magnetometer and gyroscope are interpolated to a fixed sampling rate of  

100 Hz, while the pressure sensor is interpolated to a rate of 10 Hz. Data attained from the light sensor 

was interpolated to 10 Hz, while readings sourced from the GPS module were not interpolated. 
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Figure 2. Signal processing flow diagram. 

 

With interpolation complete, the authors next focused on signal filtering. The applicability of such 

filtering is not particularly trivial. Both accelerometers were low- and bandpass-filtered for the purpose 

of isolating the dynamic components due to human movement, from the static components due to 

gravity. A low pass filter implementation was used, with a cut off of 0.6 Hz, for the static component, 

while cut offs of 0.6 to 7.5 Hz were used for the upper and lower boundaries of our band pass filter. 

Filtering is also applied to raw signals sourced from the gyroscope, magnetometer, and pressure 

sensor. Although gravity is not an issue for the magnetometer or gyroscope, it was decided to bandpass 

filter these between 0.6 and 7.5 Hz. These frequency cut offs were arbitrarily chosen to eliminate those 

components of the signal whose periodicity was less than or greater than typical human gait. Similarly, 

the pressure sensor accepts all frequencies above 0.1 Hz. For this sensor, a choice of 0.1 Hz is made to 

reduce the effects of expected daily pressure fluctuations caused by current atmospheric conditions. 

With preliminary signal processing complete, the signal is validated using a Matlab based 

application where each annotated activity can be either accepted or rejected, as depicted in Figure 3. 

This gives the researcher an opportunity to omit those segments which may have been mis-annotated, 

or otherwise unusable. In total, 354 segments were accepted from 486, combined from both the 
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smartwatch and smartphone. The vast majority of rejected segments were omitted as they were  

“false starts”, i.e., the researcher momentarily pressed the annotate button when preemptively waiting 

for the participant to begin that activity. To eliminate unnecessary lead time, the authors attempted to 

annotate activities as instantaneously as possible. 

Figure 3. LightSabre application. 

 

5. Feature Generation 

Each segment in the array is windowed and features are generated from these windows. The authors 

used a window size of two seconds. For the phone, a comprehensive set of activity features can be 

found in Table 1, and include features sourced from the accelerometer, magnetometer, gyro and 

pressure sensors. Features generated included activity counts, device angle from the accelerometer and 

magnetometer, peak frequency and peak power for the magnetometer, gyro and accelerometer. 

Estimates of distance travelled, derived from the accelerometer, and altitude changes, derived from the 

pressure sensor, are also included. 

Table 1. Features computed from smartphone data. 

Feature Brief Description Derived from * 

Activity Counts × 6 

Activity counts are derived from the accelerometer and 

magnetometer, and indicate intensity. Activity Counts are 

output for each of the X, Y and Z axes. 

A, M 

RMS Counts × 2 
Counts generated from the Root Mean Square of the 

accelerometer and magnetometer signals. 
A, M 

Mean Uncorrected Device Angle × 2 

The mean angle, over a given time period. The vertical angle is 

taken to be the Y axis. This is derived from both accelerometer 

and magnetometer signals. 

A, M 
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Table 1. Cont. 

Feature Brief Description Derived from * 

Mean Corrected Device Angle × 1 
The corrected device angle is derived from the mean gravity 

vector of the accelerometer. 
A 

Coefficients of Variation × 6 
The Coefficients of Variation derived from the accelerometer 

and magnetometer for X, Y and Z axes. 
A, M 

Max Power × 9 

The maximum power derived from the accelerometer, 

magnetometer, and gyro signals. Three values are returned for 

each sensor, representing the X, Y and Z axes. 

A, G, M 

Peak Frequency × 9 

The location in Hertz of the peak in the frequency spectrum for 

each of the X, Y and Z axes derived from the accelerometer, 

magnetometer, and gyro. 

A, G, M 

Peak Power × 3 
The max value in the Max Power array, which will give an 

overall indication of intensity. 
A, G, M 

Primary Frequency × 3 The frequency which contains the most activity. A, G, M 

Step Count × 9 An estimate of the number of cyclical peaks in each axes. A, G, M 

Estimated Distance × 1 An estimate of the distance travelled in all 3 axes. A 

Altitude Difference × 1 
The first order differential of altitude values (the current value 

less the prior value). 
P 

Mean Slope × 1 The mean slope of the altitude. P 

* A = Accelerometer, M = Magnetometer, G = Gyro, P = Pressure. 

A subset of the features documented in Table 1 was used for the smartwatch, specifically those 

pertaining to the accelerometer. These include activity counts, peak frequencies, peak power, estimates 

of the step count, the instantaneous angle, and the primary frequency where most of the power  

is concentrated. 

Finally, the authors also generate features using the GPS and light sensors on the phone, to assist in 

detecting transitions from outdoors to indoors and vice versa. Features obtained from these sensors are 

documented in Tables 2 and 3. These include mean satellite count, mean satellite Signal to Noise Ratio 

(SNR), and mean lux before and after a transition. 

Table 2. Features computed from the smartphone’s GPS module. 

Feature Brief Description 

Mean Bearing The average bearing while indoors or outdoors 

Mean Speed The average speed while indoors or outdoors 

Mean Altitude The average altitude while indoors or outdoors 

Mean Satellite Count The average number of visible satellites while indoors or outdoors 

Mean Satellite SNR The average satellite signal to noise ratio while indoors or outdoors 

Table 3. Features computed from the smartwatches light sensor. 

Feature  Brief Description 

Raw Mean Lux The mean light value attained from the raw signal 

Low Pass Mean Lux The mean light value attained from the low passed signal 

Mean Differential Lux The mean differential of the light signal 
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6. Feasibility Study 

The feasibility study was composed of a cohort of ten healthy participants (eight M, two F), with a 

mean age of 23 years. The protocol used in this study is depicted in Figure 4. As can be seen from this 

figure, activities recorded included sitting, standing, walking, running, cycling, stair descent, stair 

ascent, elevator descent and elevator ascent. Approximate times have been allocated to each activity. 

Figure 4. Protocol used in feasibility study. 

 

Participants were each given a Galaxy Nexus smartphone, together with a Motoactv smartwatch. 

Participants were asked to place the smartphone in a pants pocket, while the smartwatch was placed on 

either wrist. The researcher never stipulated orientation of the smartphone or the pants pocket in which 

this should be placed. Similarly, the wrist on which the smartwatch was worn was left entirely at the 

discretion of participants. The researcher documented activities partaken using a separate smartphone 

running annotation and sensor synchronization software. 

7. Discussion 

Five de-facto machine learning algorithms were adopted to train and test from the generated 

features. These were C4.5, and CARTbased decision trees, Naïve Bayes, Multi-Layer Perceptrons and 
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finally Support Vector Machines. Multiple datasets were created, including a dataset for both balanced 

and unbalanced phone and watch data. The authors use the term balanced here to refer to the case 

whereby each activity is assigned an equal number of instances. In the case of the work presented in 

this paper, each activity can contribute up to 11.1% of the overall true positive percentage presented in 

Tables 4 and 5, as there are a total of nine activities. Thus, a balanced dataset can be useful to highlight 

those activities which the classifier finds most difficult to infer, which may otherwise go unnoticed in 

the reported overall true positive rate of an unbalanced dataset. It also better reflects overall 

performance of the classifier to infer each activity. In the case of an unbalanced dataset, overall true 

positive rates may be skewed in favor of the activity which participants partook in most often, typically 

walking. While unbalanced datasets reflect the protocol and a real world scenario quite well, the 

authors still found balancing the dataset useful to give all activities an equal representation, and thus 

establish which activities were most difficult to infer for each of the models. It should be kept in mind 

that this is not reflective of human ambulation; humans do not spend equal amounts of time walking as 

climbing stairs for instance. Details of the results attained from these algorithms using the 

aforementioned datasets follows. 

Table 4. Smartphone-based activity recognition. 

Balanced Dataset 

 
Fused Acc Mag Gyro Pressure 

C4.5 70.97% 70.13% 45.55% 35.69% 14.16% 

CART 68.61% 66.52% 51.25% 43.05% 19.44% 

MLP 65.55% 61.38% 41.38% 36.80% 18.61% 

SVM 72.63% 75.00% 53.33% 35.00% 19.72% 

NB 58.33% 54.58% 43.05% 38.19% 18.88% 

Unbalanced Dataset 

 
Fused Acc Mag Gyro Pressure 

C4.5 94.60% 93.78% 89.25% 77.83% 45.96% 

CART 94.73% 94.10% 89.27% 79.27% 47.38% 

MLP 94.43% 93.94% 87.53% 78.95% 47.38% 

SVM 93.52% 94.50% 89.35% 78.89% 47.38% 

NB 64.63% 85.72% 43.62% 68.07% 32.53% 

Table 5. Smartwatch-based activity results. 

Classifier 
Result 

Balanced Dataset Unbalanced Dataset 

C4.5 56.89% 88.62% 

CART 54.40% 89.26% 

MLP 47.89% 87.37% 

SVM 55.17% NA% 

NB 51.91% 71.23% 
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7.1. Smartphone 

On the phone, the challenge was to differentiate between nine key activities. These were sitting, 

standing, walking, running, cycling, stair ascents, stair descents, elevator ascents and elevator descents. 

For activities pertaining to ascents and descents, a measurement of altitude calculated using data from 

the raw barometric sensor, was initially thought to be most relevant. However, due to the quality of the 

pressure sensor, this was not the case. This sensor accompanying all Galaxy Nexus phones supports a 

wide range from 300 to 1,100 mmHg. The authors noted from visualizing the pressure and altitude 

signals, that these did reflect the rising and falling nature of elevators and stairs quite well. However, 

there were also a significant number of false positives, even while participants stood still. This is likely 

caused by the fact that a change of 1 mmHg equates to a corresponding change of 8.4 m in altitude. 

The BMP 180 found in the Galaxy Nexus smartphone does not appear to be sensitive enough to detect 

pressure differentials experienced while partaking in these activities. 

The data was analyzed from two perspectives: the first looked at the result attainable using the fused 

sensor data to infer all nine activities. Overall classification rate for these activities was as high as 

94%, for all but the Naïve Bayes classifier, which attained a markedly lower result of 65%, as 

presented in Table 4. 

Next, the authors investigated the role played by each of the other sensors on the smart phone. As 

one might expect, results attainable using just the accelerometry based features are almost identical to 

the fused results. In fact, the classification rate for the Naïve Bayes classifier increases significantly 

from 65% for the fused sensors, to 85% for the sole accelerometer. Of interest too are the overall 

classification rates achievable using either the magnetometer or the gyroscope. Results for these were 

as high as 89% and 79% respectively, demonstrating that these sensors can be used quite successfully 

when identifying activities in our unbalanced dataset. As one might expect, using the pressure sensor 

to solely identify activities was never greater than 47%. 

With analysis on the unbalanced dataset complete, the authors decided to balance the dataset, to get 

a better understanding of which activities the classification algorithms struggled most to infer. Thus the 

unbalanced dataset was subsampled such that each activity was represented in this new balanced 

dataset with an equal number of instances. The best overall fused results dropped from 95% to 75%, a 

decline of some 20%. Similarly, best results attainable when using the magnetometer and gyroscope 

fell to 53%, and 43% respectively. Overall results of 20% attainable using the pressure sensor  

re-emphasize our earlier claim that this is too insensitive for activity recognition. 

7.2. Smartwatch 

Results from the smartwatch located on the wrist proved particularly fruitful. Overall activity 

recognition rates were 89% for all nine activities, when using the unbalanced dataset, as depicted in 

Table 5. Of particular use is the vertical angle feature, which could easily differentiate walking from 

running, and also help infer when stair climbing activities occurred. When the dataset is balanced, the 

C4.5 classifier comes out in top place, correctly inferring 56.89% of all activities, as presented in Table 5. 

This is a good result given that four of the nine activities were thought to rely heavily on an altitude 

sensor, which was not available on the watch. The smartwatch accelerometer was sensitive enough to 



Sensors 2014, 14 5697 

 

 

differentiate when participants placed an arm on a support railing while climbing up or down stairs. 

Despite the fact the cohort examined were young, healthy participants, most reached out to the  

support railing. 

7.3. Principal Component Analysis 

Principal Component Analysis (PCA) is a technique used to reduce the dimensions of feature 

vectors. A principal component will follow the direction of the data with the largest variation, or 

power. The PCA algorithm is described fully in the literature, including [33] and involves the 

computation of the covariance matrix, eigenvalues and eigenvectors. PCA was applied to data from 

both watch and phone. From a total of 53 attributes, generated on the phone and defined earlier, 

analysis found that 29 of these features can be combined to cover 95% of the variance in the input 

values. Interestingly features generated from all three sensors (accelerometer, magnetometer, and 

gyroscope) all feature strongly in the top three principal components. Results attained when using this 

subset can be found in Table 6. Similarly, PCA was carried out on all 17 accelerometry features 

generated on the watch. Of these, 12 features were found to contain 95% of the attribute variance, and 

these were again provided to all five classifiers. Classification results attained when using this subset is 

presented in Table 7. 

Table 6. Overall PCA results for smartphone. 

Classifier Fused 

C4.5 87.55% 

CART 89.44% 

MLP 92.89% 

SVM 92.86% 

NB 87.23% 

Table 7. Overall PCA results for smartwatch. 

Classifier Accelerometer 

C4.5 56.89% 

CART 54.40% 

MLP 47.89% 

SVM 55.17% 

NB 51.91% 

7.4. Outdoors vs. Indoors 

The protocol was designed such that individuals partook in scripted activities in two separate 

buildings. The walk between buildings was outdoors and took between 5 and 10 min for all participants. 

During these tests, data was collected from the smartphones GPS and light sensors, to examine if these 

could be used to better differentiate between indoors and outdoors. This experiment was conducted 

during daylight hours. Results when using just GPS, just light, or the fused approach of using both are 

presented in Table 8. Depending on the classifier selected; results were as high as 95% and 88% when 
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using the GPS and light sensors respectively. Using the Naïve Bayes classifier, the authors attained a 

100% true positive classification rate when using data fused from both sensors. 

Table 8. Differentiating outdoors from indoors. 

 
Fused GPS Light 

C4.5 93.18% 90.90% 88.64% 

CART 93.18% 88.63% 84.09% 

MLP 95.54% 95.45% 86.36% 

SVM NA NA 81.81% 

NB 100.00% 93.18% 86.36% 

8. Conclusions and Future Work 

In this paper, the authors investigated the use of both smartphones and smartwatches as a means to 

infer physical activity, while enhancing geospatial awareness. Both smartphone and smartwatch 

provided valuable sensor data for the nine activities presented, and subsequent classification of 

features generated from this data attained results of up to 95% and 89% for smartphone and 

smartwatch respectively. The potential role of single versus multiple sensors was also established in 

this paper. While it is clear that the accelerometer contributes more than the others, it is also evident 

that sensors such as the gyroscope and magnetometer are capable of detecting a subset of activities 

quite well. The fusion of multiple sensors across a single device can prove beneficial in certain 

circumstances. This was reinforced when fusing both light and GPS sensors to successfully 

differentiate between indoor and outdoor activities using the Naïve Bayes classifier. Fully 

understanding when participants are indoors or outdoors can be useful to better comprehend a 

participant’s physical and emotional wellbeing. Work is already underway to run calibration routines 

on the devices themselves. Such calibration routines can have positive implications on the models 

developed, and be tailored to the individual. Sensor calibration, on a per-user scale would allow a 

generalizable framework to be ported to other populations, such as the elderly or those with some gait 

abnormalities. The use of a pressure sensor to determine altitude differences may prove more 

beneficial once the quality of these sensors improve. Finally, there is some scope to investigate the use 

of smarter classifiers, potentially tiered which could choose between sensors, to optimize the balance 

between contextual knowledge and energy efficiency. 
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