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S1. The Detailed Set of Values Used for the Electroless Deposition of Silver Grains 

Table S1. The detailed set of values used for the electroless deposition of silver grains. 

Metal Species Silver (Ag) 

HF Concentration in Solution 0.15 M 

Ag Concentration in Solution 
0.05 mM (size < 1,000 nm) 

1 mM (size > 1,000 nm) 

Pattern Size (nm) 

10, 20, 30, 40, 50, 80, 100, 150, 200, 300, 400, 500, 

1,000, 2,500, 5,000 

(the deposition time is hold fixed = 20 s) 

Time of Deposition (s) 
5, 20, 50, 120, 6000 

(the deposition time is hold fixed = 20 s) 

Temperature of Deposition (°C) 20, 50 

  

OPEN ACCESS 
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S2. The Parameters Used for the Diffusion Limited Aggregation (DLA) Simulations of 

Electroless Deposits 

The variables utilized in the DLA simulations assume, for the considered case, prescribed values as 

recapitulated in the following Table S2. 

Table S2. The physical constants used for the simulations. 

Variable Symbol Units Value Source 

Mass of a silver ion m [Kg] 17 × 10−25 Reference [1] 

Temperature of the system T [k] 323 - 

Velocity of the ion v [m·s−1] 51        

Viscosity of water at T = 323 K μ [Pa·s] 0.3 × 10−3 Reference [1] 

Diffusion coefficient D [m2s] 3.95 × 10−9          

Mean path length Δx [nm] 0.3      

Time interval τ [s] ~10−11 Δ    

The meaning of the time parameter t above, is that of an estimate of a hypothetical true external 

time that a clock measures. The time interval ntcan be considered as the simplest basis, or subunit, of 

this absolute time. An interaction, that is, the dislodgement of a metal ion by a lattice unit, takes the 

time τ, and the system cannot see or sense any time shorter than τ. To this extent, the total time can be 

discretized in τ units. τ is not arbitrary, and instead depends on physically observable variables of the 

system, such as the temperature T, the mass m and diameter d of the dislodging ions, the viscosity of 

the medium. 

Notice that, while the electroless growth in the real world takes place in a three dimensional space, 

the DLA model implemented here would instead reproduce bi-dimensional systems. This strategy 

allows one to dramatically reduce the duration of the simulations, while still maintaining the capability 

to gain physical insight into the mechanisms of metal deposition at the smaller scales. While the use of 

a two-dimensional model is motivated by its simplicity and relative computational tractability, the 

electroless growth at the nanoscales is nearly a two-dimensional process, in that we are considering 

axial-symmetric channels where the transversal length is comparable to the dimension of the diffusing 

molecule. The transport can be therefore described in terms of the sole longitudinal (that is, perpendicular 

to the silicon substrate) and lateral (that is, parallel to the silicon substrate) coordinates. A combination 

of particle-wall hydrodynamic interactions and steric restrictions is responsible for this simplified 

representation of the problems thus disregarding any extra dimension [2]. Moreover, in comparing the 

experiments to the theory, we used the ratio between the characteristic length scale of the aggregates  

to the dimension of the pattern, that is a non-dimensional parameter. In consideration of all this, we 

retain that the DLA 2D model, implemented in the present paper, is a reliable description of generic 

electroless growth phenomena. 

Deviations between the experiments and the simulations could arise because of the differences in 

the extent of particle spread with time, that in a three dimensional frame is proportional to (6D)
1/2

 [3], 

while in a bi-dimensional space is proportional to (4D)
1/2

 (Equation (1)). Therefore, the correction 

factor (3/2)
1/2

 was considered in comparing the experimental results with the theory. 
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As regarding the assumption that ―At any cycle the particles move within a regular square pattern of 

cells by one lattice unit (l.u.)‖, made in the work: here we substantiate this hypothesis. Using as the average 

diameter of silver ion the value a = 0.2 × 10
−9

 m [1], from the celebrated Stokes-Einstein relation we 

may derive the diffusion coefficient of those ions as D = (Kb × T/6 × π × mu × a) = 3.95 × 10
−9

 (m
2
·s), 

where Kb is the Boltzmann constant, T = 323 K the temperature of the system, mu = 0.3 × 10
−3

 Pa·s  

the viscosity of water at T = 323 K. The velocity of silver ion, between a collision and another,  

is v = (Kb × T/m)
1/2

 = 51.1 m/s, where m = 17 × 10
−25

 Kg is the mass of a silver ion [1]. Therefore, the 

mean path length can be derived as Δx = 4D/v = 0.3 nm, that is roughly the diameter of the ion. The 

assumption that ―At any cycle the particles move within a regular square pattern of cells by one lattice 

unit (l.u.)‖ is equivalent to say that, in the time constant tau, each particle of size a travels a distance a, 

that is, exactly its size, and has been proved above. Incidentally, notice how the DLA model we 

utilized permits regulating at will the mean path length Δx of the dislodging ions, that can be arbitrarily 

fixed as an integer number of times the lattice unit, according to the problem in analysis (that is to say, 

the displacement of ions with an arbitrary size and mean path length, can be correctly reproduced in 

the grid). 

As regarding the usage of a kinetic theory similar to that of rarefied gases, the kinetic theory of 

gases describes a gas as a large number of small particles (atoms or molecules), all of which are in 

constant, random Brownian motion. This has evident similarities with the metal ions in solution, where 

ions are transported by a purely diffusive process. Notice that diffusion, and the laws of diffusion, is a 

way to express an otherwise complex process in statistical form. In deriving the laws of diffusion,  

one makes explicit use [3] of the formula for the velocity of a particle between collisions, being  

v = (Kb × T/m)
1/2

, that is a direct result of the kinetic theory of gases. 

The use of the mathematics of diffusion, as in the paper, is possible provided that the following 

assumptions hold true [3]: (a) The ensemble consists of very small particles. This smallness of their 

size is such that the total volume of the individual ions added up is negligible compared to the volume 

of solution. This is equivalent to stating that the average distance separating the ions is large compared 

to their size; (b) These particles have the same mass; (c) The number of ions is so large that statistical 

treatment can be applied; (d) These molecules are in constant, random, and rapid motion; (e) Except 

during collisions, the interactions among molecules are negligible. (That is, they exert no forces on one 

another). This also implies that the ions are treated as classical objects, and that the equations of 

motion of the ions are time-reversible. 

Notice that all these requirement are met by the Ag
+
 ions. Condition a is particularly important. 

Even considering the most concentrated solution (1 mM), one would have approximately 1,020 ions 

per liter of solution, that is equivalent to having roughly 10
20

/3 = 5 × 10
6
 ions aligned in a mono 

dimensional line with a length of 10 cm. In this case, the distance between ions would be 21 nm, that is 

more than two orders of magnitude larger than the Van der Waals size of a silver ion, that is ~0.2 nm [1]. 

S3. The Concept of Fractal Dimension, and Its Application to the Analysis of the DLA  

Simulated Aggregates 

Fractals are mathematical objects that are too irregular to be described by conventional geometry. 

They all retain, to different extents, certain properties that may be reviewed as follows: (i) they reveal 



Sensors 2014, 14 S4 

 

 

details on arbitrarily small scales (fine structure); (ii) they can be generated (and thus described) by 

short algorithms (perhaps recursively); (iii) they exhibit a fractal dimension Df strictly greater than the 

classical topological dimension [4–6]. The latter property reserves particular attention, in that it claims 

that a surface, under a fractal point of view, may have a dimension Df even greater than 2, and the 

more Df is close to 3, the more the fractal set fills the space it is embedded in. The fractal dimension  

of the simulated nanoparticles aggregates can be derived using certain mathematical procedures as 

described below: 

The power spectrum of a fractal set. [6] A power spectrum (PS) can be associated to each of the 

DLA generated deposits. The PSdensity function: 

 
      

 

     
                     

 
(S1) 

contains relevant information regarding the microstructure of the aggregates in that represents the 

energy content per each image. In (S1), q is the wave number, related to the characteristic wavelength 

λ as q = 2 π/λ; χ = (x, y) is the planar coordinate; z(χ) is the surface profile measured from the average 

surface plane, defined as z=0; and the symbol … stands for ensemble averaging over a collection 

of different surfaces with identical statistical properties. Since the 2D power spectrum density 

introduced above is impractical for comparison purposes, a 1D power spectrum density can be 

conveniently extracted using the transformation: 

     
 

 
              

 

  
                     

  

  

 (S2) 

where the polar variables q = (qx
2
 + qy

2
)

1/2
, ψ = arctan(qy/qx), in the plane (x, y) of interest have  

been considered. 

Deriving the fractal dimension from the power spectrum density function [6]. In the case of  

self-affine surfaces, for which a rescale in the planar coordinates x→bx and y→by is accompanied by a 

rescaling in the normal direction z (bχ)→bHz(χ), the power spectrum C(q) takes the form: 

     
 

  
 
  

  
 
 

 
 

  
 
       

 (S3) 

for q > qo, where qo is the lower cut-off wavenumber corresponding to an upper cut-off wavelength  

λo = 2π/qo; and ho is related to the rms roughness amplitude as ho = 2
1/2

 Rrms. A self-affine fractal 

surface can be consequently univocally identified by specifying the surface roughness (Rrms), the  

cut-off wavenumber qo and the coefficient H, known as the Hurst coefficient. In a loglog plot, the 

power spectrum density appears as a line with a slope β for q > qo (see, as for an instance, Figure 2F in 

the main text). The slope β is related to the Hurst parameters as β = 2(H + 1). The fractal dimension D 

of the surface can be derived from β or H as D = (8 − β)/2 or D = 3 − H. The fractal dimension D for a 

surface ranges from 2, representing a perfectly flat surface (Euclidean dimension of a surface), to 3, 

representing an extremely rough surface. For D = 2.5, the so-called Brownian surfaces are identified 

which have totally random and uncorrelated profiles. 

Deriving the Power Spectrum from the pair correlation analysis of numerical DLA aggregates [5]. 

The power spectrum of a signal gives the distribution of the signal power among various frequencies. 

The power spectrum is the Fourier transform of the correlation function, and reveals information on 
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the correlation structure of the signal. For a discrete set of data, as those obtained through the DLA 

simulation described in the Section S2, the power spectrum coincides with the Fourier transform of the 

pair correlation of those data, C(r). 

The pair correlation function is related to the probability of finding the center of a particle a given 

distance from the center of another particle. For short distances, this is related to how the particles are 

packed together. For example, consider hard spheres, like marbles. The spheres can’t overlap, so the 

closest distance two centers can be is equal to the diameter of the spheres. However, several spheres 

can be touching one sphere; then a few more can form a layer around them, and so on. Further away, 

these layers get more diffuse, and so for large distances, the probability of finding two spheres with a 

given separation is essentially constant. In that case, it’s related to the density—a more dense system 

has more spheres, thus it’s more likely to find two of them with a given distance. The pair correlation 

function C(r) accounts for these factors by normalizing by the density; thus at large values of r it goes 

to 1, uniform probability. Here we provide an explanation of how C(r) can be calculated: [A] Pick a 

value of dr [B]. Loop over all values of r that you care about: (1) Consider each particle you have in 

turn. Count all particles that are a distance between r and r + dr away from the particle you’re 

considering. You can think of this as all particles in a spherical shell surrounding the reference particle. 

The shell has a thickness dr. (2) Divide your total count by N, the number of reference particles you 

considered—probably the total number of particles in your data. (3) Divide this number by 4πr
2
dr, the 

volume of the spherical shell (the surface area 4πr
2
, multiplied by the small thickness dr). This 

accounts for the fact that as r gets larger, for trivial reasons you find more particles with the given 

separation. (4) Divide this by the particle number density. This ensures that C(r) = 1 for data with no 

structure. In other words, if you just had an arbitrarily placed spherical shell of inner radius r and outer 

radius r + dr, you’d expect to find about ρ V particles inside, where ρ is the number density and V is the 

volume of that shell. In 2D, follow the algorithm as above but divide by 2yvr dr instead of step 3 above. 

S4. FDTD Simulations of the EM Field around Dimers of Silver NPs: The Effect of a Different 

Polarization Direction 

The FDTD simulations reproduced a system of two silver hemispheres with a diameter of 55 nm, 

placed at a distance of 5 nm, at the center of the region as in the Figure S1A. A broadband plane wave, 

with wavelengths ranging between 300 and 600 nm, is generated in the vertical, z-axis direction,  

with polarization along the x-axis of the dimer (Figure S1B). In this Supplementary Information, the 

intensity of the electric field is reported for a different direction of polarization, that is, the y direction 

(Figure S1C). In this case, the enhancement of the electric field is vanishingly small, and this would 

prove that the device works as an effective SERS substrate. 

Nanostructured substrates for SERS are expected to be anisotropic in terms of the local surface 

Plasmon resonances [7], which imply that the enhancement factor should extrinsically depend on the 

incident polarization. This effect is expected to be particularly strong for nanometric gaps between 

nanoparticles [8]. Here, we report on the polarization-dependent electrical field enhancement inside the 

gap from isolated silver dimmers studied by FDTD simulation. 
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Figure S1. The geometry of the simulated system (A) and the orientations of the incident 

radiation (B,C) utilized in the simulation of the EM field around the dimers. 

 

If we compare the results obtained in Figure 5 in the main text for a polarization parallel to the axis 

of the dimer with those reported in the Figure S2, where the polarization is perpendicular to this axis, a 

clear switch off effect is found. In the first case, in fact, is obtained an enhancement in the intensity of 

the electric field of the order of 10
3
 while in the second is zeroed. In the Figure S2A,C there is an 

enhancement of 5 times for a share of around z = 33 nm which is attributed to the effects of reflection 

of the incident wave on the surface of the hemispheres. These results are found to be consistent with 

electrodynamics theory, confirming the plasmonic nature of the resonance observed in Figure 5  

in the main text, and strongly support the idea that nano-gaps are a key ingredient of ultrasensitive 

SERS analysis. An explanation for this behavior can be given for small particles in which the 

electromagnetic interactions between the localized modes are essentially of a dipolar nature and so the 

particles can be treated as interacting dipoles. Using the simple approximation of interacting point 

dipoles, the direction of the resonance shifts for in-phase illumination can be determined by 

considering the Coulomb forces associated with the polarization of the particles. The restoring force 

acting on the oscillating electrons of each particle is either increased or decreased by the charge 

distribution of neighboring particles. Depending on the polarization direction of the exciting light, this 

leads to a blue-shift of the plasmon resonance for the excitation of transverse modes, and a red-shift for 

longitudinal modes. 

Figure S2. The simulated EM field enhancement in along the yz (A) and xz (B) planes, and 

as a function of z (C) and wavelength (D). 
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S5. Determining the Particle Size Distribution in A Pattern 

While for the smaller pattern sizes, where often a single particle is present, the length or size of that 

particle could be measured directly, in the case of larger pattern sizes, where a large number of particles 

is deposited, an automatic image analysis algorithm was utilized for determining their size distribution. 

The Matalab code is provided immediately after this discursive description. Also, you will find an 

example, that is, a cluster of nanoparticles in a pattern (Figure S3a), to which the algorithm has been 

applied to derive the granulometry (size distribution) of those nano-particles (Figure S3b). 

Figure S3. SEM image of a nanoparticles cluster (a) and size distribution of particles  

in the image (b). 

 

The algorithm determines the size distribution of objects in an image without explicitly segmenting 

(detecting) each object first. At the end, we will have the size distribution of single nanoparticles in a 

cluster of nanoparticles. In estimating the particle size distribution, a convenient conversion factor is 

utilized, whereby pixels in an image are converted in nanometers. This conversion factor is determined on 

measuring the size bar of an image in pixels and dividing it by its actual length in nano-meters. Therefore: 

1. The image interest is read an imported as a 16 bit graphic. 

2. The intensity contrast in the image is enhanced, performing contrast-limited adaptive histogram 

equalization. The image intensity is rescaled so that it fills the data type’s entire dynamic range. 

3. The intensity surface area distribution in the enhanced image is determined. The intensity 

surface area distribution of nano-particles as a function of size is determined. Image objects are 

compared to stones whose sizes can be determined by sifting them through screens of increasing 

size and collecting what remains after each pass. Image objects are sifted by opening the image 

with a structuring element of increasing size and counting the remaining intensity surface area 

(summation of pixel values in the image) after each opening. 

4. Calculate first derivative of distribution. A significant drop in intensity surface area between two 

consecutive openings indicates that the image contains objects of comparable size to the smaller 

opening. This is equivalent to the first derivative of the intensity surface area array, which 

contains the size distribution of the particles in the image. 
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5. Extract particles having a particular radius. Notice the minima and the radii where they occur in 

the graph. The minima tell you that particles in the image have those radii. The more negative 

the minimum point, the higher the particles' cumulative intensity at that radius. In the example of 

Figure Sx.1b, the pronounced minimum at radius = 31 pixels indicate that 31 pixels is the size of 

the most frequent feature in the image. 31 pixels will be further converted in real dimensions 

using a convenient conversion factor as described above; for this particular configuration,  

31 pixels correspond to a 110 nm diameter. 

The original Matlab Code 

function [n1]=sigprova(nome,psnm); 
rgb = imread(nome); 

  
I=rgb; 

 
I = adapthisteq(I,'NumTiles',[1010]); 
I = imadjust(I); 
imshow(claheI); 

  
for counter = 0:50 
 remain = imopen(I, strel('disk', counter)); 
 intensity_area(counter + 1) = sum(remain(:)); 
end 

 
figure,plot(intensity_area, 'm - *'), grid on; 
title('Sum of pixel values in opened image as a function of radius'); 
xlabel('radius of opening (pixels)'); 
ylabel('pixel value sum of opened objects (intensity)'); 

  
imshow(remain); 

  
intensity_area_prime= diff(intensity_area); 

  
data=zeros(2); 

  
data(1)=num; 
data(2)=num2; 

  
t = strcat(nome, '_sizeY.txt'); 
t2 = strcat(nome, '_sizeX.txt'); 

  
dlmwrite(t, intensity_area_prime, 'delimiter', '\t','precision', 5) 
x = zeros(1,50); 
for i = 1:50, x(i) = i; end 
dlmwrite(t2, psnm*x, 'delimiter', '\t','precision', 5) 

  
plot(intensity_area_prime, 'm - *'), grid on; 
title('Granulometry (Size Distribution) of particles'); 
set(gca, 'xtick', [0481216202428323640444852]); 
xlabel('radius of particles (pixels)'); 
ylabel('Sum of pixel values in particles as a function of radius'); 
n1=3; 
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S6. Examples of SEM Images of the Nano-Grains at the Smallest Feature Size 

We include here arrays of representative, ultra-high resolution SEM micrographs of the silver  

nano-grain aggregates at the smallest scales. The reader can now apprehend how those images have a 

sufficient degree of detail to allow to extracting useful information regarding the grain morphology 

even at the tiniest scales. 

Figure S4. Array of ultrahigh resolution SEM images that demonstrate the capability of 

retrieving the particles size at the smallest nano-scales. 

 

Figure S5. Array of ultrahigh resolution SEM images that demonstrate the capability of 

retrieving the particles size at the smallest nano-scales. 

 

(a) (b) (c) 

S7. Representative SEM Images of Clusters of Silver Nano-Grains with A Packing Factor 

Greater than One 

In the particular case of δ ˃ 1, the cluster size is larger than the pattern diameter, as indicated by 

specific images reported in this section. In this case, the packing factor may be readily derived on 

measuring separately (a) the pattern size, that is the diameter of the exposed features in the EBL 
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sensitive resist prior electroless growth; and (b) the nano-grains size obtained upon exposition to the 

electroless solution, and calculating the ratio between the two. 

Figure S6. Arrays of ultrahigh resolution SEM images show cases in which the packing 

factor of the structures is larger than one, that is, the diameter of the nanoparticles is greater 

than the pattern size. 
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Figure S7. Arrays of ultrahigh resolution SEM images show cases in which the packing 

factor of the structures is larger than one, that is, the diameter of the nanoparticles is greater 

than the pattern size. 

 

S8. SERS Controls on BT 

Here we include additional data and Raman diagrams to substantiate the findings of the work. 

These are: (i) the reference spectrum of benzenethiol measured starting from a largely concentrated 

solution (10 mM), compared to the Raman signal of a diluted solution of benzenethiol (10
−16

 M) 

deposited upon a system of nanoparticle dimers (Figure S8A); (ii) the spectrum of benzenethiol (initial 

concentration 10
−16

 M) measured using a monomer particles array, compared to the Raman signal  

of the same solution acquired using a system of dimers (Figure S8B); (iii) the Raman signal of the 

solvent of benzenethiol alone (that is, ethanol), acquired upon a silver nanoparticle dimers SERS 

substrate (Figure S9). 

On analyzing diagram (i), one can observe how the band centered at 1,580 cm
−1

, that corresponds to 

the C–C stretching mode in the molecule of benzenthiol, can be realistically utilized as a reference 

band line for deriving the 3D Raman intensity map reported in Figure 5G in the main text. 

On analyzing diagram (ii), one can notice how an array of silver nanoparticle dimers may enhance 

the Raman signal with a great efficiency in contrast to the modest (vanishingly small, for the considered 

concentration) enhancement of a simple system of particle monomers. 

On analyzing diagram (iii), one can observe how the solvent evaporates completely upon the 

deposition on the substrate, this is particularly evident from the absence of any peak in correspondence 

of the frequency line centered at 3,300 cm
−1

, that would correspond to the O–H stretching of the 

Ethanol molecule. Therefore, any signal measured on the substrate can be attributed to the BT. This 

would also confirm the absence of contaminants in solution. 
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Figure S8. Raman spectrum of BT measured in excess of solute in comparison to the 

SERS measurement of diluted BT on arrays of silver dimers (A), Raman spectrum of 

diluted BT measured on arrays of monomers of silver nanoparticles arrays compared to the 

Raman spectrum of BT measured on arrays of dimers of silver nanoparticles (B, C), . 

 

Figure S9. The Raman spectrum of BT measured on arrays of dimers of silver nanoparticles 

compared to the Raman spectrum of ethanol (that is, the solvent of BT), measured on the 

same substrate. 
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