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Abstract: This paper presents a method for modeling a 2.5-dimensional (2.5D)  

human body and extracting the gait features for identifying the human subject. To achieve 

view-invariant gait recognition, a multi-view synthesizing method based on point cloud 

registration (MVSM) to generate multi-view training galleries is proposed. The concept of 

a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data 

onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D 

principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait 

recognition method based on point cloud registration. Experimental results on the in-house 

database captured by a Microsoft Kinect camera show a significant performance gain when 

using MVSM. 

Keywords: gait; person identification; 2.5D modeling; point cloud registration 

 

1. Introduction 

Gait recognition is a means of using the behavioral biometrics of gait to identify a human subject. 

Gait is difficult to disguise and can be easily observed in low-resolution video sequences. The need for 

a means for counter-terrorism, security and medical-related subject behavior analysis makes accurate 

modeling of human gait and effective extraction of gait signatures for view-invariant subject 
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identification have significant theoretical and practical value. For example Chowdhury and  

Tjahjadi [1] proposed a gait recognition method that combines spatio-temporal motion characteristics, 

statistical and physical parameters of a human subject to achieve robustness and high accuracy in 

subject identification. 

In surveillance applications, most of the challenging factors that affect existing gait recognition 

systems [2], e.g., variation in human walking posture for different camera views, make the 

performance of a gait recognition method that is designed to operate on a particular camera view 

degrade significantly for other views. Furthermore, for gait recognition to be used in surveillance 

applications, it is impractical to use many cameras to achieve multi-view gait recognition. Thus, 

achieving view-invariant gait recognition has become a major challenge. 

There are several approaches to view-invariant gait recognition. One approach is to reconstruct  

3-dimensional (3D) gait models using a calibrated multi-camera system and extract 3D gait features. 

Shakhnarovich et al. [3] explored the use of an image-based visual hull to reconstruct the 3D model 

and rotate the model to realize view-invariant gait recognition. Gu et al. [4] proposed viewpoint-free 

gait recognition from recovered 3D human joints. Sivapalan et al. [5] proposed the use of a 3D voxel 

model derived from multi-view silhouette images. However all current examples of 3D modeling of 

the human body are mostly based on images from multiple cameras. Due to the need for multiple 

equipment and the increased complexity of the resulting recognition algorithm, such an approach is 

usually only feasible under laboratory conditions. In addition, although radar (e.g., laser radar) can also 

be used for the 3D modeling, the resolution of the resulting model is low. 

The second approach is to use view transformation model (VTM) to achieve multi-view gait 

recognition. VTM transforms gait features from different views onto the same view. The VTM is 

constructed by decomposing a matrix comprising features from different views and of different 

subjects into subject-independent matrix and view-independent matrix. Makihara et al. [6] used VTM 

to transform gallery features onto the same view for multi-view gait recognition. Muramatsu et al. [7] 

proposed an arbitrary gait view transformation scheme using 3D gait database and VTM method. 

Kusakunniran et al. [8,9] developed the VTM model by using correlated motion regression and  

multi-layer perceptron. Although the VTM gait recognition approach demonstrates the advantages of 

multi-view gait recognition, it requires multiple-view images to generate VTM. Furthermore, the 

model accuracy is determined by the number of multi-view gaits used in the VTM construction. 

The third approach is to use a multi-view fusion classifying method. By fusing gait classification 

from multi-view data captured by multiple cameras, view-invariant gait recognition is realized. For 

example, Nizami et al. [10] explored the use of Extreme Learning Machine (ELM) multiclass classifier 

for classification, and the results are fused at score level subject to some fusion rules to realize the 

view-independent gait recognition. However, the ELM based system does not address the problem of 

using multi-view images. To address this problem, Jean et al. [11] proposes an approach to compute 

view-normalized body part trajectories. The normalized trajectories are extracted as view-invariant gait 

feature for gait recognition. However human gait information cannot be fully represented using only 

trajectories of head and feet. Thus, when the gait views are significantly changed or self-occlusion is 

encountered, the method performs poorly. 

To address the above-mentioned problems, in this paper we propose the use of a single Kinect 

camera to obtain point cloud data of a human body and construct 2.5D voxel gait model that includes 
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only one-side surface portion of the human body. A point cloud registration method is proposed to 

synthesize multi-view gait features using two reconstructed gait models from two different views. 

Dense point cloud and view-invariant Gaussian curvature are extracted to represent the gait features. 

The 2.5D data is mapped onto the 2D space, and Gaussian curvature based gait color images are used 

to facilitate the gait feature extraction, classification and identification of the human subject. 

This paper is organized as follows: Section 2 presents the construction of 2.5D gait voxel model 

using a Kinect device with point cloud data simplification. Section 3 presents point cloud registration 

for multi-view 2.5D gait voxel model. Section 4 introduces the extraction of 2.5D gait features and the 

multi-view gait recognition method of the proposed gait recognition system. Section 5 presents our 

experimental results and Section 6 concludes the paper. 

2. Preliminary Steps 

2.1. Construction of 2.5D Gait Voxel Model 

2.5D data that contains depth information is used to construct gait surface voxel model, and a 

Kinect is used to capture the 2.5D data which is a simplified 3D (x,y,z) surface representation (Figure 1). 

2.5D data contains at most one depth value d(x,y) which denotes the distance between the RGB image 

pixel (x,y) of a point on the body surface and the Kinect. 2.5D is a suitable trade-off solution between 

2D and 3D approaches. It is restricted to a given viewpoint that is called 2.5D information [12]. 

Figure 1. World coordinates of the Kinect sensor-based system. 

 

As a 3D measuring device, Kinect comprises an IR pattern projector and an IR camera. It can 

output three different images: IR image, RGB image and Depth image. The 2.5D data of the depth 

image and RGB image are used to construct a 3D voxel model for a given viewpoint by calculating all 

the 3D points from the measurement (x,y,d) in the depth image. 3D point cloud data are calculated 

using the Kinect geometrical model [13], i.e.: 

 (1) 

where d is depth value along the z-axis, c1 and c0 are parameters of the model, u0 and v0 are 

respectively the shifted parameters of IR and depth images, dis is distortion function, k is distortion 

parameter of the Kinect IR camera and K is the IR camera calibration matrix. 
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Before constructing the 2.5D gait point model, gait silhouettes are extracted from the depth image 

by foreground substraction and frame difference methods [14]. The gait silhouettes and RGB images 

are then used to calculate all the 3D point cloud data for the gait using Equation (1). The 3D point 

cloud gait model is constructed for a given viewpoint by normanizing all the gait point cloud data to 

3D space. Since only a single Kinect depth camera is used, the gait point cloud data includes only one 

side surface portion of the human body as shown in Figure 2. We call it a 2.5D voxel model. 

Figure 2. The normalized point cloud data of human body. 

 

2.2. Point Cloud Data Simplification for Gait Voxel Model 

Since the point cloud data is large, it is simplified while preserving its features. This is achieved by 

using curvature features of the point cloud by Hausdorff distance [15]. A bounding box method is first 

used to derive the relationship between a point cloud data P and its K nearest neighbors. Denote the 

two principal curvatures of P and one its neighboring points respectively as {K P

1 , K P

2 } and {K Q

1 , K Q

2 }. 

The Hausdorff distance H of the two data sets is: 

1,21,2
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j

P Q

i

P Qji
i j

K K
H

K K

 
 
 
 

 (2) 

The Hausdorff distance is defined for P as max( ), 1,2,P QH H Q k  . By calculating the 

Hausdorff distance of every point within the bounding box, a threshold ε is selected to remove the less 

important point cloud data, and thus complete the data point simplification as shown in Figure 3. The 

choice of the threshold ε directly influences the efficiency of the simplification and the computational 

cost of the algorithm. A bigger ε will reduce computational cost but less simplifying efficiency, while a 

smaller ε has the opposite effect. We conducted experiments to determine the optimum ε value. 2.5D 

gait voxel models are selected for point cloud simplifying experiment and ε is set to 10
−6

, 10
−5

, 10
−4

, 

10
−3

 and 10
−2

. 

Figure 3. Simplification of point cloud data: (a) raw data; (b) ε = 10
−6

; (c) ε = 10
−5

;  

(d) ε = 10
−4

; (e) ε = 10
−3

; and (f) ε = 10
−2

. 

 

(a) (b) (c) (d) (e) (f) 
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Figure 3a shows a raw gait point cloud data (including 25,862 point cloud data) before 

simplification, and Figure 3b–f is the results after simplification with 13,286, 8,392, 6,381, 4,592 and 

2,392 point cloud data, respectively. The computational times are 518, 432, 327, 273 and 228 ms, 

respectively. From the experiment results, we set ε = 10
−4

 with mean computational time and  

sufficient simplification. 

3. Point Cloud Registration for Multi-View 2.5D Gait Voxel Models 

3.1. Overview 

Since the 2.5D gait voxel model is constructed from data captured using a single Kinect camera, 

view-invariant gait recognition cannot be realized by just rotating the model to obtain gait features for 

different views due to self-occlusion as illustrated in Figure 4. 

Figure 4. Self-occlusion caused by rotating 2.5D gait model: (a–e) 0° view rotated 

counterclockwise; and (f–j) 90° view rotated clockwise. 

 

(a) (b) (c) (d) (e) 

 

(f) (g) (h) (i) (j) 

In order to realize multi-view gait recognition and overcome the self-occlusion problem with 2.5D 

gait models, a point cloud registration method is proposed to synthesize different view gait features. 

And two training galleries with θmin and θmax views are used. Let Pmin be the 2.5D gait point cloud data 

for θmin view and Pmax for θmax view where min maxP P   . Pmin is registered with Pmax, and the new β 

view point cloud data after registration is represented by: 

min maxmin max min ( ) 1 max ( ) 2( , ) ( ) ( )regS F P P P R T P R T            (3) 

If â is set to θmin then: 

min max minmin max ( )( )S S P P R T        (4) 
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where 
max( )R    denotes 3D rotation matrix from view θmax to â, and T denotes the translation matrix. 

Based on the registered point cloud data Sâ with â view, the 2.5D gait data between θmin and θmax views 

can be determined without encountering any self-occlusion problems using: 

( )P S R      (5) 

The self-occlusion problem is addressed by the point cloud registration and 2.5D curvature features 

extraction method as illustrated in Figure 5. This is why in our approach only two different view 

galleries are needed for multi-view gait training and recognition. 

Figure 5. Self-occlusion problem overcome by point cloud registration method: (a) gait 

point cloud registration with θmin = 0°, θmax = 90° and â = 0°; and (b) view rotated from 

registered gait without self-occlusion. 

 

(a) 

 

(b) 

3.2. Gait Point Cloud Alignment in a Cycle 

Gait features are represented by a complete cycle as shown in Figure 6. It can be seen that a gait 

cycle must include several dynamic frames. 2.5D gait models are reconstructed by data from 

corresponding frames. Therefore point cloud registration cannot be made directly between two random 

2.5D models with different views and cycles. Most often, the number of frames in a gait cycle is 

different, e.g., in Figure 6 the sample gait with 0° has eight frames while the corresponding gait with 

90° has only seven frames. It is thus difficult to directly register models between two different view 

cycles. In order to overcome these problems, only the head point cloud data as shown in Figure 7 is 

used to calculate the rotation matrix and translation matrix for registration. The resulting matrices are 

used in registration process between full gait models. The first step is to align the gait point cloud data 

in the same cycle by using the centroids of head point cloud data. The head information is used 

because it is static information when compared with legs and arms. 
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Figure 6. Gait point cloud alignment and mixed gait modeling in a cycle: (a) 0° gait view; 

and (b) 90° gait view. 

 

(a) 

 

(b) 

Figure 7. Mixed head point cloud: (a) 0° head view; (b) −90°rotated; (c) 90° head view; 

(d) 90° rotated; (e): overlapped areas of (a) and (d); and (f) overlapped areas of (b) and (c). 

 

(a) (b) (c) (d) (e) (f) 

Assume that after gait phase estimation N frames in a gait cycle are extracted, and the corresponding 

2.5D gait models are constructed. The 2.5D gait models are denoted as { , 1 }iP p i N   . The 

extracted head models are denoted by { , 1 }iH h i N   . The centroids of all head models are 

calculated as ( ) { ( ), 1 }iH h i N    . In order to complete alignment, the first gait model is set as 

reference. The translation matrices that align with the first gait model are then calculated using 
1( ) ( ), 1i iT h h i N     . The final mixed 2.5D gait model after alignment is given by 

{ ( ), 1 }i iM p T i N    . 

3.3. Gait Point Cloud Registration 

After gait point cloud alignment in a cycle, a mixed 2.5D gait model is obtained from different gait 

models in a gait cycle, which represents the 2.5D gait features. Gait point cloud registration is then 

conducted between two mixed gait models of different views. 

In order to complete point cloud registration between two 2.5D mixed gait models with â = θmin in 

Equation (4), the rotation matrix 
max min( )R    and translation matrix T need to be determined using 

iterative closest point algorithm (ICP) [16]. Let min

mixH  be the head point cloud in θmin mixed training 

model and 
3

min min{ ,1 }iL l R i n     represents the overlapped area of head point cloud data with  

θmax view. max

mixH  denotes the head point cloud data in θmax mixed training model, and 
3

max max{ ,1 }iL l R i m     represents the overlap area of head point cloud data with θmin view. 
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There are common areas of two different view head surfaces as shown in Figure 7. The accurate 

detection of the overlapped region will aid the gait point cloud registration. The optimization process 

that determines the rotation matrix 
max min( )R    and translation matrix T is a nonlinear least squares 

optimization [17], i.e.: 

min(m,n)
2

max min

1

min ( ) i i

i

E g gl l


   (6) 

Let g  be the optimum solution, then the point cloud set max max max{ ,1 }i iL l gl i n      has the same 

centroid with Lmin, and let 
min max( ) ( )L L   . We then calculate the centroid of Lmin and Lmax as 

min( )L  and 

max( )L , where
max max( ) ( )L Lg   . Let 

maxmax ( )
i

i Ld l   ,
minmin ( )

i

i Ld l    , Equation (6) then becomes: 

min(m,n)
2

1

min ( ) i i

i

E R Rd d


   (7) 

The optimization then decomposes into determining the rotated matrix R, and calculating the 

translation matrix 
min max( ) ( )L LT R   . Singular value decomposition (SVD) method is used to 

calculate R as follows. First, the covariance matrix D between Lmin and Lmax is calculated as: 

min(m,n)

1

T

i i

i

D d d


   (8) 

The matrix D is then decomposed by SVD, and let TD UVV , TX VU  and: 

det( )det( ) 0

(1,1, 1) det( )det( ) 0

X U V
A

diag U V


 

 
 (9) 

The determinant of U is denoted by det(U), and diag(1,1,−1) denotes the 3 × 3 matrix that has 

diagonal values of 1, 1, −1. If rank(D) ≥ 2, then R and T are respectively given by: 

TR UAV  (10) 

min max( ) ( )L LT R    (11) 

Lmax point could data is then transformed using R and T. After transformation a new point cloud data 

set 
maxL  is obtained by max maxL R L T    . 

We then repeat the previous steps to calculate new R and T by conducting iterative transformation 

until the square distance error 
min(m,n)

2

max min

1

i i

k k

i

e R l T l


    satisfies the smallest requirements. The 

matrices R and T are then used to construct the final registration gait model: 

min min max max min( )( )S S M M R T          (12) 

The key of the algorithm is to detect the overlapped region of two views accurately and construct 

the covariance matrix. The method to determine the matching point set is as follows. First, we 

calculate the Gaussian curvature K of the point cloud data for the head part of 2.5D gait models min

mixH  

and max

mixH . Gaussian curvature is invariant to the affine transformation and is used as the basis of  

the matching. The similar point cloud data are then searched between min

mixH  and max

mixH . Let 

min max,mix mix

i iq H p H   , and we define the curvature distance between two point cloud data as 
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( , ) ( ) ( )i i i iDis q p K q K p  . The similar point cloud data is then determined and forms the matching 

point set:  

min max{( , ) | , , ( , ) }mix mix

i i i i i iS p q q H p H Dis p q       (13) 

where 
1

(max ( , ) min ( , ))
2

i i i iDis q p Dis q p    and

 1

1
( )

n

i

i

K q
N




  . 

Since one point cloud data may be similar to many point cloud data in another point cloud data set, 

one to one correspondence analysis are performed by matching similar triangles. We first select three 

points in S from
min

mixH , and search the most similar three points in S from max

mixH  using similar triangles, 

where the distance between two triangles is 

1 3

1

3

i j i j

dis

i j i j i j

p p q q
T

p p q q  


 


  (14) 

The points with the smallest distance are selected as matching cloud point. When all the points are 

matched, the covariance matrix D is determined for computing the matrices R and T. to achieve two 

view gait point cloud model registration as Equation (12). The registration model can then be rotated to 

obtain gait features for different views to achieve view-invariant gait recognition using Equation (5). 

4. 2.5D Gait Features Extraction and Multi-View Gait Recognition 

4.1. 2.5D Gait Features Extraction 

The density of point cloud is utilized to extract silhouette data of the human subject, and Gaussian 

curvature and mean curvature [18] are used to extract 2.5D gait features. The color gait curvature 

image (CGCI) for gait recognition is formed by mapping the 2.5D gait features to a color gait image. 

4.1.1. Point Cloud Density, Gaussian Curvature, Mean Curvature and CGCI 

The normalized point cloud data is first projected onto the XY plane into NI × NJ blocks as shown 

in Figure 8, where dx and dy are respectively the horizontal and vertical sampling intervals. Each point 

cloud data is located in the corresponding block (I,J), and each block may have several point cloud 

data. In order to extract the silhouette information of the gait, the density of point cloud in each block 

(I,J) is calculated first, denoted by Density(I,J).  

The curvature information is extracted next. Since only a single Kinect camera is used, the point 

cloud data includes only one side surface portion of the human body, and the surface point set is 

denoted by [ , , ],( , )S x y z x y D  , where D is the projected grid from 2.5D gait surface onto the XY 

plane. Before extracting the curvature information, the mean value of z are calculated for all point 

cloud data located in the same block (I,J), denoted by (I,J)zmean . The discrete surface point set is then 

obtained (I,J)[ , , ]dis meanS I J z . 
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Figure 8. Projection of normalized point cloud data onto blocks. 

 

Gaussian curvature and mean curvature are view-invariant under certain class of geometric 

transformation including rotation, scaling and shearing [18]. Gaussian curvature K and mean curvature 

H are then computed through the discrete surface point set Sdis by the method in [19], respectively 

denoted as K(I,J) and H(I,J) for each block (I,J). 

The curvatures K and H in 2.5D space are normalized to the range [0, 2
16

], and the density of point 

cloud is also normalized to [0, 255]. They are then projected onto 2D RGB space to facilitate the gait 

feature extraction, classification and identification of the human subject. A pseudo 2D RGB color 

image is obtained by mapping K(I,J) and H(I,J) of each block to the red (R), green (G) and blue (B) 

components of the image. The R and G components of the image respectively denote the most 

significant 8 bit value and the low significant 8 bit values of the curvature. The B component of the 

image denotes the density of gait point cloud data that indicates the average silhouette information of 

human subject. The size of the resulting RGB image, i.e., CGCI, is NI × NJ and is shown in Figure 9. 

The final CGCI is denoted as { ( , ), ( , ), ( , )} I JN N
A R I J G I J B I J R


  . 

Figure 9. Curvature based 2D color gait feature image (CGCI): (a) R component; (b) G 

component; (c) B component; and (d) RGB image. 

 

(a) (b) (c) (d) 

4.2. Multi-View Gait Recognition 

To realize multi-view gait recognition with a single Kinect depth camera, two standard reference 

gait views θmin and θmax are needed as a training gait set. Figure 10 shows the 2.5D view-invariant gait 

recognition method based on point cloud registration using CGCI in detail. In paper, 0° and 90° view 

of gait depth images are selected as standard reference training gait sets. 
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Figure 10. 2.5D view-invariant gait recognition method based on point cloud registration. 
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4.2.1. Estimation of Phase and View Angles for 2.5D Gait 

In this paper, the gait phase is estimated using the width information of two legs in motion by 

silhouette depth images. The view angle of a test sample also needs to be estimated to enable it to be 

transformed or compared with the corresponding training samples. However it is difficult to obtain a 

reliable estimation from 2D images. Several methods have been proposed to estimate the gait angles. 

The method in [11] uses body part trajectories during walk to realize gait view normalization. This 

method does not work well when the difference in view angles is large. The method in [20] uses  

the regression models learned from training gait database. The estimation is poor when there is  

self-occlusion. The method in [21] uses perspective projection to estimate the walking angle in the 3D 

world from a video sequence of a planar scene. This method requires camera calibration and also 

performs poor when the difference in view angles is large. 

A reliable method is proposed for view angle estimation in 2.5D space from video sequences. The 

subject is assumed to be walking along a straight line AC and line AB is parallel to the Z axis as shown 

in Figure 11. First, Nth and (N + k)th depth image frames are selected in a gait cycle. The two selected 

depth images are then used to construct 2.5D voxel gait model in the world coordinate. Let 

   ,  ,  ,  1,2,... i i ix y z i N  represent the point cloud data of gait where N denotes the total number of 

point cloud data. The centroids of the Nth and (N + k)th 2.5D gait model are then calculated, denoted 
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by (X1C, Y1C, Z1C) and (XkC, YkC, ZkC) respectively. The estimation azimuth angle θ is given by 

1 1( ) / ( )kc c kc cTan X X Z Z    . 

Figure 11. Estimation of view angles for 2.5D gait. 

 

Table 1 shows the gait view angle estimation experiment results using 100 subjects for each subject 

for 0°, 15°, 30°, 45°, 60°, 75°, 90° views. The experimental results demonstrate that the proposed 

method is feasible. 

Table 1. Gait view angle estimation results. 

θ View Angle of 

Test Data  

Estimation Resultθest 

[ ]estE   σ
2
 

0°   0.55° 0.17 

15°   15.62° 0.32 

30°   29.47° 0.26 

45°   44.31° 0.21 

75°   74.29° 0.23 

90°   90.48° 0.09 

4.2.2. Multi-View Galleries Synthesizing 

Before synthesizing multi-view galleries, two standard reference mixed gait models 
minM  and 

maxM  must be constructed by the method in Section 3.2. This is followed by point cloud registration 

to form a new 2.5D mixed gait model Sâ. Multi-view galleries are then synthesized. It is based on 

rotating the new registered gait model Sâ in ∆θ step interval to obtain gait features for different view 

between two reference views. Let kP  denotes the θ view synthesized 2.5D gait galleries, i.e.: 

( ) , 1... , 0 , ,2 ,...,90kP S R k N

              (15) 

where N represents the number of training objects. The density of point cloud data and 2.5D curvature 

features are then extracted from kP . Finally gait CGCI features with different view from 0° to 90° are 

obtained denoted as , 1...I JN N

kA R k N 
  . 
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4.2.3. DCT and 2DPCA Based Gait Feature Dimension Reduction 

The size of a CGCI is determined by the sampling intervals dx and dy (see Section 4.1). 2D discrete 

cosine transforms (2D-DCT) [22] and 2-dimensional Principle Component Analysis (2DPCA) is used 

to reduce the dimensionality of the gait feature space. DCT is applied to R, G and B components of the 

CGCI separately. The DCT coefficient matrices are then obtained with the same size as CGCI. The 

low frequency components containing the most important information of the image are concentrated in 

the upper left corner of the DCT matrix, while the high frequency components are distributed in the 

lower right corner as shown in Figure 12. Since the high frequency components are less important, we 

only need to retain the low frequency components when reconstructing the image. 

Figure 12. DCT transform of CGCI: (a–d) are respectively the DCTs of (a–d) in Figure 9. 

 

(a) (b) (c) (d) 

A m × m matrix is used to extract the low frequency DCT coefficients in the upper left corner. The 

gait features extracted from DCT coefficients from N CGCIs with α view are then denoted by

, 1...m m

kA R k N   , 2DPCA is then applied to further reduce the dimensions. Unlike PCA which 

involves vectors, 2DPCA deals with matrices corresponding to images, and uses a matrix to construct a 

covariance matrix [23]. After extracting multi-view CGCI-DCT gait features, the data dimensionality 

of gait features for each view is then conducted further reduction. Let CGCI-DCT feature matrices 

with N objects be denoted by: 

, 1... , 0 , ,2 ,...,90m m

kA R k N           (16) 

The mean matrix A  and covariance matrix S
á
 of the N DCT matrices are then calculated. 

Eigenvalue decomposition is then performed on S
á
, i.e.: 

( )TS X D X     (17) 

where: 

1 2 1 2{ , ,..., }, ...m mD diag                (18) 

and m mX R   comprises the corresponding eigenvector. The optimum projective matrix optX   

comprises d (d ≤ m) eigenvectors corresponding to the largest eigenvalues. Thus, the reduced gait 

features kA
 is: 

, 1...k k optY A X k N      (19) 

The energy of 2DPCA is: 
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1 1

/
d N

i i

i i

E   
 

   
(20) 

The value of d is selected according to E, where E denotes the information rate of reducing the 

dimensionality. It is usually around [0.9, 1]. In paper, E is set to 0.95 which gives a good reduction and 

recognition result. Since a CGCIs-DCT is used to represent gait features, each image has three 

matrices, one for the R component R

kA , another for the G component G

kA  and the third for the B 

component B

kA . 2DPCA is performed on each of these matrices. 

4.2.4. Recognition 

Each probe gait sequence is first processed to estimate their view è and generate the corresponding 

probe gait features. The gallery gait set that has the most similar view is selected for gait recognition. 

2.5D probe gait features with è view are projected onto a plane to generate the CGCI and 2DPCA 

based DCT coefficients matrix denoted by { , , }R G B

t t t tY Y Y Y    , where the superscripts R, G and B 

respectively denote the R, G and B components. We define the Euclidean distance: 

2

( , ) , 1,...,col col col col

t k t kD Y Y Y Y k c       (21) 

where kY   is a gait feature matrix belonging to the kth class, col = {R,G,B}, and c is the number of 

class in training samples. Denote Wi as the ith class of training samples. The smallest distance is 

chosen as the recognition result, i.e., col

t iY W   if: 

2

1
( , ) min

c
col col col col

t k t k
k

D Y Y Y Y   


   (22) 

We define the final fused distance measure: 

1 2 3( , ) ( , ) ( , )R R G G B B

fused t k t k t kD k D Y Y k D Y Y k D Y Y            (23) 

where 
1 2 3 1/ 3,k k k    Let t iY W   if ( , ) mint k fusedD Y Y D   . 

5. Experiments 

5.1. 2.5D CSU Point Cloud Gait Database 

Hofmann et al. [24] presented a 2.5D TUM-GAID Database with depth information. However it is 

a gait database with depth information only. It is neither a 2.5D point gait database nor a multi-view 

database for gait. Since there are no publicly available 2.5D multi-view gait databases, we created the 

CSU database to evaluate the extraction of 2.5D gait features (e.g., as shown in Figure 13) and the 

identification algorithm using CGCI. 

The database consists of 100 subjects, the data of each subject has 0°, 15°, 30°, 45°, 60°, 75°,  

90° views. Each gait of the sample is captured three times. We use a single Microsoft Kinect camera  

to capture the videos. Each video sequence is of 8 s duration, recorded at full frame rate  

(30 frames/s). The original video format is 24-bit full-colour JPG and depth image files with resolution 
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of 640 × 480. We extracted the subjects’ data that have been segmented from background using 

OpenNI and generate 2.5D point cloud sets that contain the subjects’ gait features. 

Figure 13. 2.5D point cloud gait features with different views. 

 

5.2. Point Cloud Registration 

The point cloud registration algorithm using head point cloud data is proposed in Section 3.3. 

Object No. 8 in CSU Point Cloud Gait Database is taken as an example. The original views of mixed 

head point cloud data are 0° and 90°. Figure 14a shows the mixed head point cloud data in β = 45° 

after rotation from the original views. Figure 14b represents the data after registration with θmin = 45°, 

θmax = 90° and β = 45° in Equation (3). Figure 15 shows the relation between distance error ek and the 

number of iteration. We set the end condition for iteration as: 

1k ke e   , 
max min

min(m,n)
2

1

i i

k k k

i

e R l T l 


    (24) 

where k denotes the number of iteration, and ε = 10
−5

. Table 2 shows the point cloud registration result. 

Matrices R and T matrix are then used in full gait body to gain full registration gait model. By rotating 

the full registration gait model Sâ using Equation (5), the gait features for different views are obtained. 

Figure 14. Registration result: (a) before registration; and (b) after registration. 

 

(a) (b) 
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Figure 15. Relation between distance error and the number of iteration. 

 

Table 2. Point Cloud Registration Result. 

Number of 

Iterations 
Pixels R Matrix T Matrix 

  0.998 0.002 0.329

0 0.999 0.008

0.352 0.007 0.991

 
 
 
   

 

0.2118

0.0012

0.0011

 
 
 
  

 18 10,062 

  

5.3. Multi-View Gait Recognition Experiments and Results 

In order to evaluate the effectiveness of the proposed algorithm, experiments are carried out to 

compare the multiple-view gait recognition performances using three different methods. The first 

method uses the VTM technique and GEI as gait features [6]. The second method uses the 3D-based 

VTM technique and GEI as gait features [7]. It uses a 3D gait database comprising visual hulls with 

intact 360 degree body surfaces to construct the VTM model and realize view-invariant gait 

recognition by the VTM technique. In our experiment, we use our 2.5D voxel model which only has 

one side surface portion of the human body instead of the 3D data used in [7]. The third method uses 

our multi-view synthesizing method based on point cloud registration (MVSM). 

The 2.5D CSU Point Cloud Gait Database is used in the experiments, where each gait sample is 

captured three times for each view. The database is divided into two sets. In all experiments, the two 

sets of gaits with different views are used. But only 0° and 90° views data from one set are retained for 

training and also as the gallery data sets for evaluating performance of multi-view gait recognition. 

The other set is used as the probe data set with different views. 

Figure 10 illustrates the overview structure of the proposed gait recognition method. The three 

methods are trained using two standard reference gait view sets instead of the multi-view gait data  

in [6, 7]. The reference gait view θmin and θmax are set to 0° and 90°, respectively. The step interval ∆θ 

is set to 15 . Therefore, the VTM in VTM-GEI [6] method is constructed from GEI features with just 

0° and 90° views from the training data set. The VTM in the 3D-based VTM-GEI [7] method is also 

constructed from GEI features but with more views. It includes 0° and 90° of the original views and 

others, i.e., 15°, 30°, 45°, 60°, 75° views data that are generated by rotation from 0° and 90° (not from 

database). The GEI features are extracted from the B component in CGCI that indicates the average 

silhouette information of gait. 
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To compute the comparison chart, in the VTM method the probe gait data from one view is 

transformed to a feature data under two other views that match one of the views (0° or 90°) in gallery 

gait database. In our proposed approach, the probe gait data from one view is matched with the 

corresponding synthesized galleries from (0° or 90°) data, and the gait similarity measurement is then 

calculated. Figure 16 shows the performances of the three methods. 

Additional experiments that set different step intervals in multi-view synthesizing process are 

conducted to show the improvement of the view-invariant 2.5D gait recognition. The results are shown 

in Figures 17 and 18. Cumulative Match Scores (CMS) are used to illustrate our 2.5D view-invariant 

gait recognition results. The CMS value α corresponding to rank r indicates a fraction 100·α% of 

probes whose top r matches must include the real identity matches. 

Figure 16. Comparison of recognition performance using different approaches. 

  

Figure 17. Recognition results with step interval ∆θ = 15°. 

  

Figure 18. Recognition results with step interval ∆θ = 20°. 
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Figure 16 shows that the proposed 2.5D view-invariant gait recognition approach outperforms the 

VTM method and the 3D-based VTM method. The 3D-based VTM method has better performance 

than the original VTM method because it can rotate the 2.5D gait data to extract multi-view gait 

features for VTM construction. The original VTM method has the worst performance, especially for 

the 30°, 45° and 60° views. This is because during training these views do not include the gallery sets 

that lead to bigger VTM angle transformation before the similarity measurement. The experimental 

results in [6–9] indicate the recognition rate degrades dramatically when the probe and gallery views 

differ by 30°. Another reason is that the number of multiple images from the gallery sets used in VTM 

construction and recognition directly influences its performance. In our method, only gallery data from 

two views are needed for training while three times more are used in [6–9]. Unlike the VTM-based 

method, our approach uses data registration and a 3D rotation method to synthesize different gallery 

data. As a result, five additional synthesized gallery data for views 15°, 30°, 45°, 60° and 75° are used 

that overcome the big angle transformation problem. This is the main reason why our method has 

achieved higher recognition results for probe views of 15°, 30°, 45°, 60° and 75° in Figure 6. 

There are several other reasons why our method achieves significantly better performance. The first 

is that our multi-view 2.5D gait recognition method uses a single Kinect camera whereas VTM and 

other multi-view gait recognition approaches use multiple cameras or multi-view images. The 

experiment shows the method in [7] requires an intact gait 3D surface. Its recognition result drops 

significantly when our two standard reference gait view sets with only one side surface portion of the 

human body are used. This is because of the self-occlusion problem when using incomplete 3D sets to 

rotate the 3D gait models to construct VTM. 

The second reason is that view-invariant 2.5D features are effectively extracted through Gaussian 

curvature, where Gaussian curvature is invariant to affine transformation. It is view-invariant under 

certain class of geometric transformation including rotation, scaling and shearing. This improves the 

performance of 2.5D gait feature extraction for multi-view gait recognition. 

The last key point is that compared to GEI, our CGCI contains more surface information. The 

CGCI are gray images with curvature information instead of binary silhouette images used in GEI. 

Furthermore, Figures 17 and 18 show that the test gait view closer to reference training views or 

synthesized gallery views has significantly better recognition rate. Thus, in real applications, step 

interval ∆θ can be set to be small to gain more accuracy in arbitrary view gait recognition, but with a 

larger size for synthesizing gait databases. 

6. Conclusions 

In this paper, a 2.5D voxel gait model is constructed by point cloud data captured by a Kinect 

camera. In order to achieve multi-view gait recognition with one single Kinect camera, a point cloud 

registration method is proposed to synthesize different view gait features. Density of point cloud, 

Gaussian curvature and mean curvature are then introduced for extracting 2.5D gait features, which are 

projected to 2D RGB space to generate CGCI as expression of gait features. 

The experimental results show that the proposed method is more effective than VTM-based  

multi-view gait recognition and other multi-view gait recognition methods using a single camera. Our 

2.5D view invariant gait recognition based on point cloud registration approach needs only one camera 
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and does not use multi-view images to achieve gait training and recognition. It achieves arbitrary view 

gait recognition without any camera calibration information. These advantages enable the proposed 

method to be used in many practical surveillance applications. 
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